
Robust Design

4013.315 Architectural Engineering System Design

June 3rd, 2009

Moonseo Park

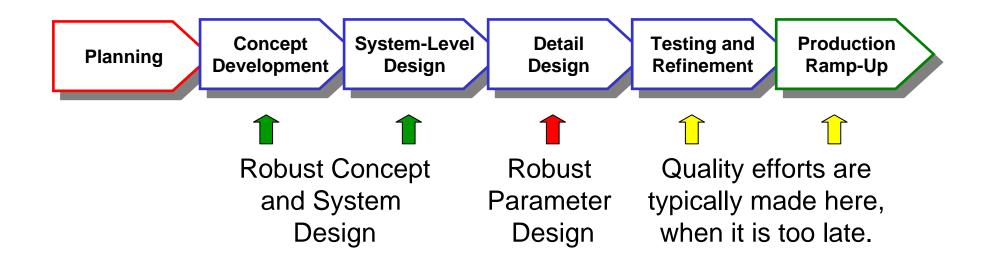
Associate Professor, PhD

39동 433 Phone 880-5848, Fax 871-5518 E-mail: mspark@snu.ac.kr

> Department of Architecture College of Engineering Seoul National University

Robust Design: Experiments for Better Products

Teaching materials to accompany:


Product Design and Development Chapter 13 Karl T. Ulrich and Steven D. Eppinger 3rd Edition, Irwin McGraw-Hill, 2004.

Product Design and Development Karl T. Ulrich and Steven D. Eppinger 3rd edition, Irwin McGraw-Hill, 2000.

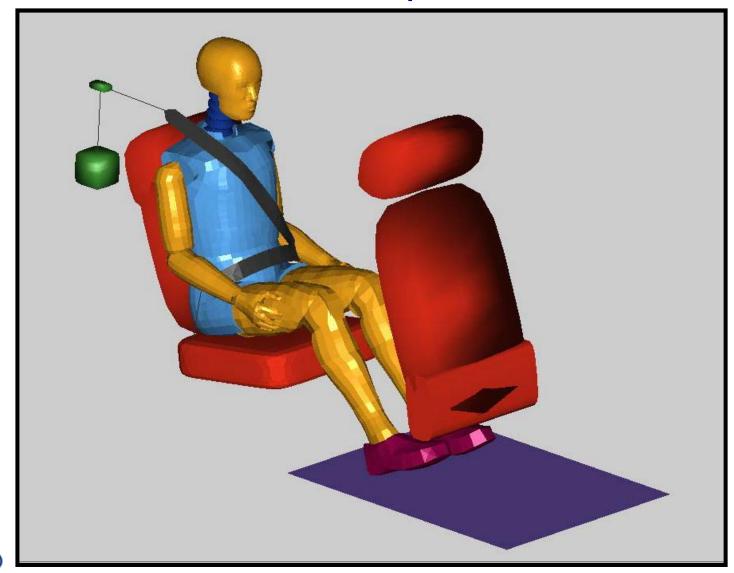
Chapter Table of Contents

- 1. Introduction
- 2. Development Processes and Organizations
- 3. Product Planning
- 4. Identifying Customer Needs
- 5. Product Specifications
- 6. Concept Generation
- 7. Concept Selection
- 8. Concept Testing
- 9. Product Architecture
- **10.** Industrial Design
- **11.** Design for Manufacturing
- **12.** Prototyping
- 13. Robust Design
- **14.** Patents and Intellectual Property
- **15.** Product Development Economics
- **16.** Managing Projects

Robust Design and Quality in the Product Development Process

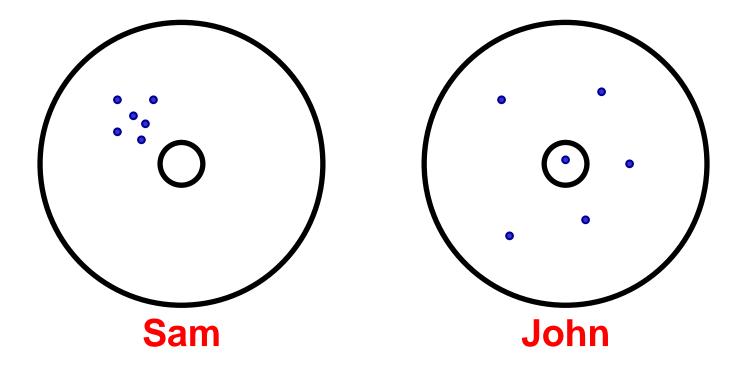
Goals for Designed Experiments

- Modeling
 - -Understanding relationships between design parameters and product performance
 - -Understanding effects of noise factors
- Optimizing
 - -Reducing product or process variations
 - -Optimizing nominal performance

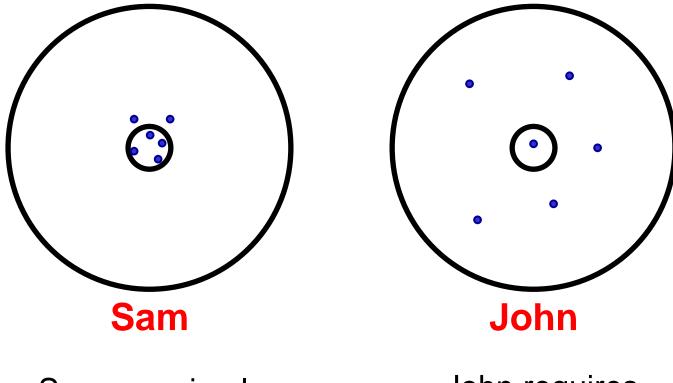

Robust Designs

A robust product or process performs correctly, even in the presence of noise factors.

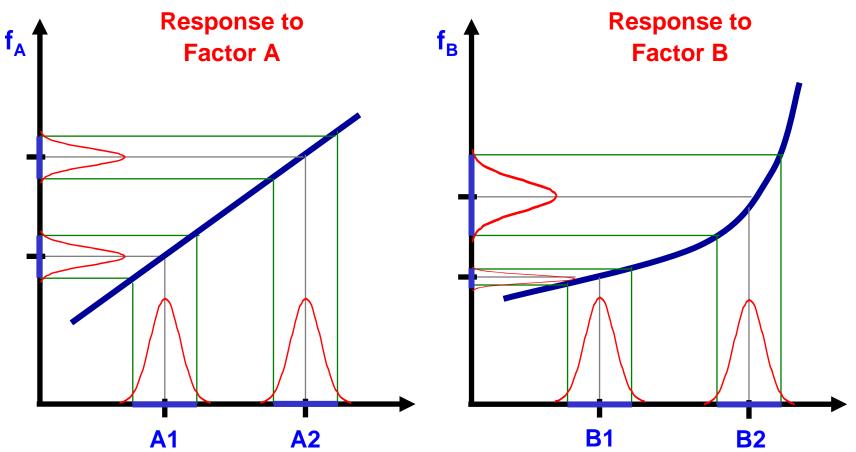
Noise factors may include:


- parameter variations
- environmental changes
- operating conditions
- manufacturing variations

Robust Design Example: Seat Belt Experiment



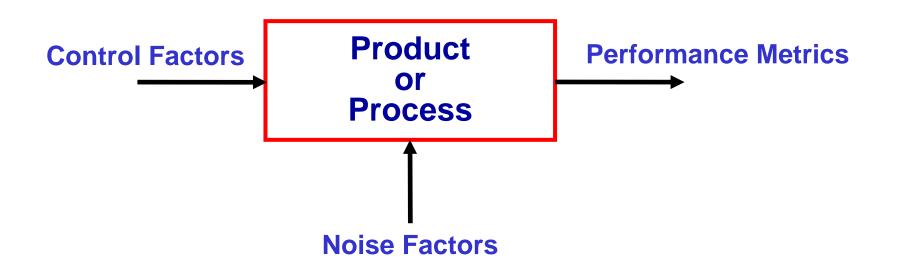
Who is the better target shooter?


Who is the better target shooter?

Sam can simply adjust his sights.

John requires lengthy training.

Exploiting Non-Linearity to Achieve Robust Performance


Response = $f_A(A) + f_B(B)$ What level of factor B gives the robust response? How do we use factor A?

Robust Design Procedure Step 1: Parameter Diagram

Step 1: Select appropriate controls, response, and noise factors to explore experimentally.

- <u>Control factors</u> (input parameters)
- <u>Noise factors</u> (uncontrollable)
- <u>Performance metrics</u> (response)

The "P" Diagram

Parameter Diagram

Control Factors Passenger **Performance Metrics** Restraint **Back angle** Belt webbing stiffness Process Slip of buttocks **Belt webbing friction** Hip rotation Lap belt force limiter **Noise Factors** Forward knee motion Upper anchorage stiffness Buckle cable stiffness Shape of rear seat Front seatback bolster Type of seat fabric **Tongue friction** Severity of collision Wear of components Attachment geometry Positioning of passenger Positioning of belts on body Size of passenger Type of clothing fabric Web manufacturing variations Latch manufacturing variations

Example: Brownie Mix

- Control Factors
 - Recipe Ingredients (quantity of eggs, flour, chocolate)
 - Recipe Directions (mixing, baking, cooling)
 - Equipment (bowls, pans, oven)
- Noise Factors
 - -Quality of Ingredients (size of eggs, type of oil)
 - Following Directions (stirring time, measuring)
 - Equipment Variations (pan shape, oven temp)
- Performance Metrics
 - Taste Testing by Customers
 - Sweetness, Moisture, Density

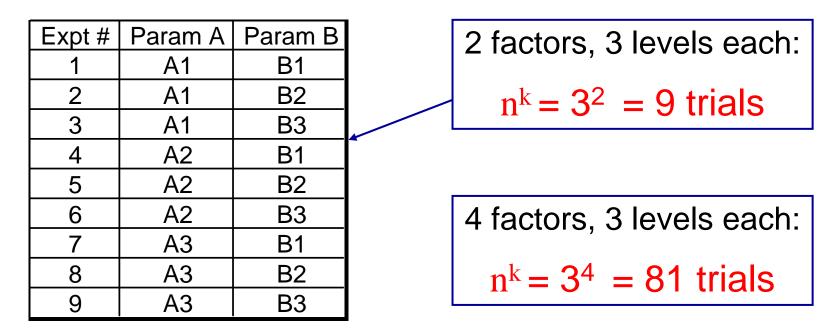
Robust Design Procedure Step 2: Objective Function

- Step 2: Define an objective function (of the response) to optimize.
- <u>maximize</u> desired performance
- <u>minimize</u> variations
- target value
- <u>signal-to-noise</u> ratio

Types of Objective Functions

Larger-the-Better e.g. performance $\eta = \mu^2$

Nominal-the-Best e.g. target η= 1/(μ–t)² Smaller-the-Better e.g. variance $\eta = 1/\sigma^2$


Signal-to-Noise e.g. trade-off $\eta = 10 \log[\mu^2/\sigma^2]$

Robust Design Procedure Step 3: Plan the Experiment

- Step 3: Plan experimental runs to elicit desired effects.
- Use <u>full or fractional factorial</u> designs to identify interactions.
- Use an <u>orthogonal array</u> to identify main effects with minimum of trials.
- Use inner and outer arrays to see the effects of noise factors.

Experiment Design: Full Factorial

- Consider k factors, n levels each.
- Test all combinations of the factors.
- The number of experiments is n^k.
- Generally this is too many experiments, but we are able to reveal all of the interactions.

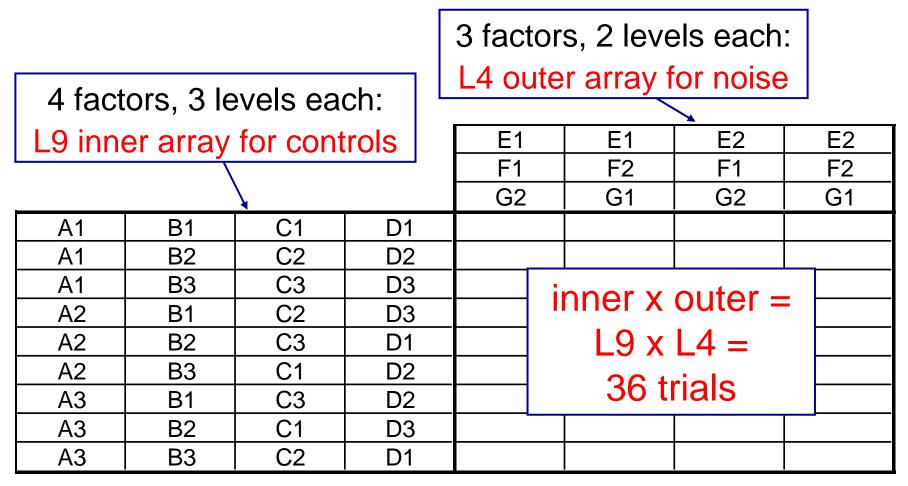
Experiment Design: One Factor at a Time

- Consider k factors, n levels each.
- Test all levels of each factor while freezing the others at nominal level.
- The number of experiments is nk+1.
- BUT this is an <u>unbalanced</u> experiment design.

Expt #	Param A	Param B	Param C	Param D	
1	A2	B2	C2	D2	
2	A1	B2	C2	D2	
3	A3	B2	C2	D2	
4	A2	B1	C2	D2	
5	A2	B3	C2	D2	
6	A2	B2	C1	D2	
7	A2	B2	C3	D2	
8	A2	B2	C2	D1	
9	A2	B2	C2	D3	

4 factors, 2 levels each:
nk+1 =
2x4+1 = 9 trials

Experiment Design: Orthogonal Array


- Consider k factors, n levels each.
- Test all levels of each factor in a balanced way.
- The number of experiments is order of 1+k(n-1).
- This is the smallest balanced experiment design.
- BUT main effects and interactions are confounded.

Expt #	Param A	Param B	Param C	Param D	
1	A1	B1	C1	D1	
2	A1	B2	C2	D2	
3	A1	B3	C3	D3	
4	A2	B1	C2	D3	
5	A2	B2	C3	D1	
6	A2	B3	C1	D2	
7	A3	B1	C3	D2	
8	A3	B2	C1	D3	
9	A3	B3	C2	D1	

4 factors, 3 levels each: 1+k(n-1) =1+4(3-1) = 9 trials

Using Inner and Outer Arrays

• Induce the same noise factor levels for each combination of controls in a balanced manner

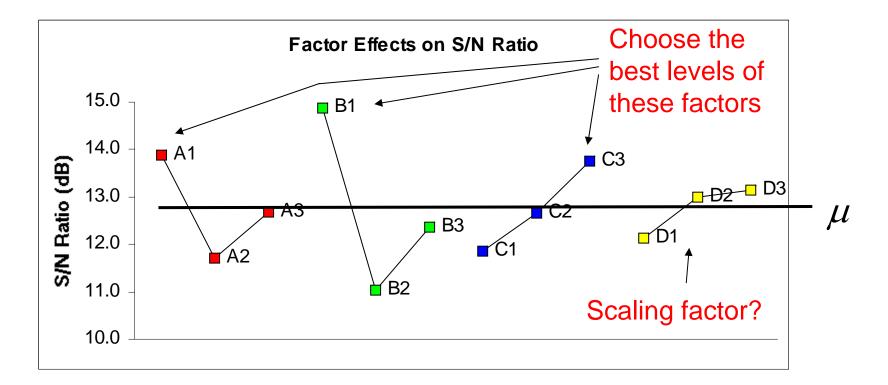
Robust Design Procedure Step 4: Run the Experiment

Step 4: Conduct the experiment.

- Vary the control and noise factors
- Record the performance metrics
- Compute the objective function

Paper Airplane Experiment

Expt	#Weigh	t Wingle	t Nose	Wing	Trials	Mean	Std Dev	′ S/N
1	A1	B1	C1	D1				
2	A1	B2	C2	D2				
3	A1	B3	C3	D3				
4	A2	B1	C2	D3				
5	A2	B2	C3	D1				
6	A2	B3	C1	D2				
7	A3	B1	C3	D2				
8	A3	B2	C1	D3				
9	A3	B3	C2	D1				


Robust Design Procedure Step 5: Conduct Analysis

Step 5: Perform analysis of means.

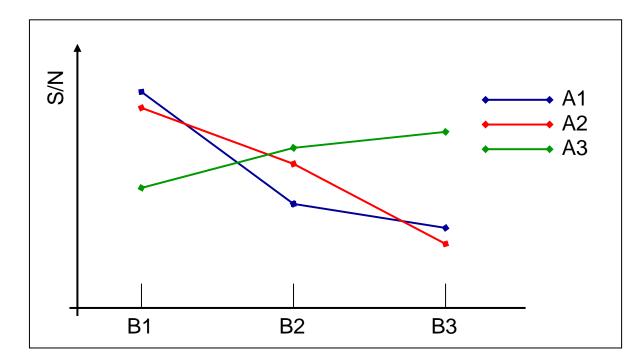
- Compute the mean value of the objective function for each factor setting.
- Identify which control factors reduce the effects of noise and which ones can be used to scale the response. (2-Step Optimization)

Analysis of Means (ANOM)

• Plot the average effect of each factor level.

Robust Design Procedure Step 6: Select Setpoints

Step 6: Select control factor setpoints.


- Choose settings to maximize or minimize objective function.
- Consider variations carefully. (Use ANOM on variance to understand variation explicitly.)

Advanced use:

- Conduct confirming experiments.
- Set scaling factors to tune response.
- Iterate to find optimal point.
- Use higher fractions to find interaction effects.
- Test additional control and noise factors.

Confounding Interactions

- Generally the main effects dominate the response. BUT sometimes <u>interactions</u> are important. This is generally the case when the confirming trial fails.
- To explore interactions, use a fractional factorial experiment design.

Alternative Experiment Design Approach: Adaptive Factor One at a Time

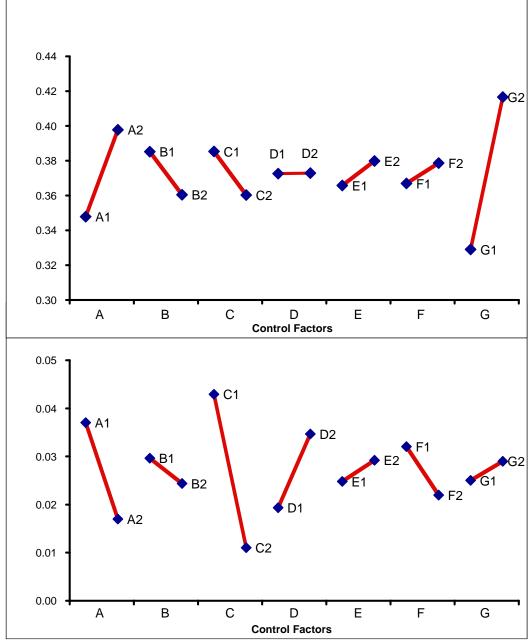
- Consider k factors, n levels each.
- Start at nominal levels.
- Test each level of each factor one at a time, while freezing the previous ones at <u>best level so far</u>.
- The number of experiments is nk+1.
- Since this is an <u>unbalanced</u> experiment design, it is generally OK to stop early.
- Helpful to sequence factors for strongest effects first.
- Generally found to work well when interactions are present.

						_
Expt #	Param A	Param B	Param C	Param D	Response	
1	A2	B2	C2	D2	5.95	
2	A1	B2	C2	D2	5.63	
3	A3	B2	C2	D2	6.22	
4	A3	B1	C2	D2	6.70	< <u>₿1</u>
5	A3	B3	C2	D2	6.58	
6	A3	B1	C1	D2	4.85	
7	A3	B1	C3	D2	5.69	
8	A3	B1	C2	D1	6.60	
9	A3	B1	C2	D3	6.98	

4 factors, 2 levels each:						
nk+1 =						
2x4+1 = 9 trials						

Key Concepts of Robust Design

- Variation causes quality loss
- Two-step optimization
- Matrix experiments (orthogonal arrays)
- Inducing noise (outer array or repetition)
- Data analysis and prediction
- Interactions and confirmation


References

- Taguchi, Genichi and Clausing, Don "Robust Quality" *Harvard Business Review*, Jan-Feb 1990.
- Byrne, Diane M. and Taguchi, Shin "The Taguchi Approach to Parameter Design" *Quality Progress*, Dec 1987.
- Phadke, Madhav S.
 Quality Engineering Using Robust Design Prentice Hall, Englewood Cliffs, 1989.
- Ross, Phillip J.
 Taguchi Techniques for Quality Engineering McGraw-Hill, New York, 1988.

DOE Plan and Data

		A	В	С	D	E	F	G	N-	N+	
	1	1	1	1	1	1	1	1			
	2	1	1	1	2	2	2	2			
	3	1	2	2	1	1	2	2			
	4	1	2	2	2	2	1	1			
	5	2	1	2	1	2	1	2			
	6	2	1	2	2	1	2	1			
	7	2	2	1	1	2	2	1			
	8	2	2	1	2	1	1	2			
								-			
	A	В	С	D	E	F	G	N-	N+	Avg	Range
1	1	1	1	1	1	1	1	0.3403	0.2915	0.3159	0.0488
2	1	1	1	2	2	2	2	0.4608	0.3984	0.4296	0.0624
3	1	2	2	1	1	2	2	0.3682	0.3627	0.3655	0.0055
4	1	2	2	2	2	1	1	0.2961	0.2647	0.2804	0.0314
5	2	1	2	1	2	1	2	0.4450	0.4398	0.4424	0.0052
6	2	1	2	2	1	2	1	0.3517	0.3538	0.3528	0.0021
7	2	2	1	1	2	2	1	0.3758	0.3580	0.3669	0.0178
8	2	2	1	2	1	1	2	0.4504	0.4076	0.4290	0.0428

Factor Effects Charts

