!'_ Ch4. Performance Measurement

© copyright 2006 SNU IDB Lab.

SNU
IDB Lab.

i Preview of Chapters

= Chapter 2

= How to analyze the space and time complexities of program

= Chapter 3

= Review asymptotic notations such as O, @, ©, o for
simplifying the performance analysis

= Chapter 4

= Show how to measure the actual run time of a program by
using a clocking method

SNU
Data Structures 2 IDB Lab.

i Bird’s eye view

= When you try to market your code
= Memory requirements is easy to figure out
= Running time requires need of experiments

= In this chapter
= How to perform such an experiment for run time

= Factors affecting running time
= The number and type of operations
= The memory access pattern for the data & instructions in your program

SNU
Data Structures 3 IDB Lab.

i Table of Contents

= Introduction

= Choosing Instance Size

= Developing the Test Data
= Setting Up the Experiment
= Your Cache and You

SNU
Data Structures 4 IDB Lab.

i Introduction

s Performance measurement
=« Obtaining the actual space and time requirements of a program
= Dependent on the particular compiler and the specific computer

= Space requirements can be measured easily through the compiler and the
analytical method

= Time requirements can be measured by Java method System.currentTimeMills()

= System.currentTimeMills()
= Returning the present time in millisecs since midnight (GMT), January 1, 1970

= With the system clock, if we want to measure the worst case time requirements for
sorting

= Need to decide the size of input data
= Need to determine the data that exhibit the worst case behavior

SNU
Data Structures 5 IDB Lab.

i Table of Contents

= Introduction

s Choosing Instance Size

= Developing the Test Data
= Setting Up the Experiment
= Your Cache and You

SNU
Data Structures 6 IDB Lab.

Choosing Instance Size

= Want to measure the time of insertion sort for the array of n objects
= In theory, we know ¢ (ﬂ) — @(nZ)

= We can determine the quadratic function with three values of n
f(n)=an®+bn+c

= In practice, we need the times for more than three values of n
« Asymptotic analysis tells us the behavior only for sufficiently large values of n

= Even in the region where the asymptotic behavior is exhibited, the times may
not lie exactly on the predicted curve

= Reasonable choice of the input size
« N= 100, 200,, 1000
= N= 500, 1000, 1500, 5000

SNU
Data Structures 7 IDB Lab.

* Insertion Sort

= 5, input sequence = (2, 3, 1, 5, 4)
o Maklng a sorted array using insertion
= Best case: n-1 comparisons
Worst case: (n-1)*n / 2 comparisons

SNU
Data Structures 8 IDB Lab.

i Table of Contents

= Introduction

= Choosing Instance Size

= Developing the Test Data
= Setting Up the Experiment
= Your Cache and You

SNU
Data Structures 9 IDB Lab.

i Developing the Test Data

= Worst case or Best case
= Easy to generate the test data

= Average case
= Difficult to generate the test data

= If we cannot develop the test data showing the complexity

= Pick the least (maximum, average) measured time from randomly
generated data as an estimate of the best (worst, average) behavior

SNU
Data Structures 10 IDB Lab.

i Table of Contents

= Introduction

= Choosing Instance Size

= Developing the Test Data
m Setting Up the Experiment
= Your Cache and You

SNU
Data Structures 11 IDB Lab.

Setting Up the experiment: Program 4.1

public static void main(String [] argsy{
int step = 10;
System.out.printin(" The worst-case times, in milliseconds, are');
System.out.printin("n \telgpsed time");
for (int n=0; n <=1000; n += step) {
Integer [] a= new Integer[n]; // create element array
for (int1 =0; 1 <n;i++) I/ initialize array
ai] = new Integer(n - i);
long startTime = System.currentTimeMillis() ;
InsertionSort2.insertionSort(a); // sort the elements
long elapsedTime = System.currentTimeMillis() - startTime;
System.out.printin(n + "\t" + elapsedTime);
If (n==100) step = 100;
}

} SNU
Data Structures 12 IDB Lab.

‘L Execution Times using program 4.1

n | Time I Time
0 0 100 0
10 0 200 0
20 0 300 0
30 0 400 0
40 0 500 60
50 0 600 50
&0 0 700 0
70 50 00 60
o 0 200 50
a0 0 || 1000 110

Times are in milliseconds

Data Structures

13

SNU
IDB Lab.

i Experiment Accuracy

= Accuracy of measurements

= When n is small, measured time can be inaccurate because of an error
tolerance

= Error tolerance of System.currentTimeMills()

t-100 < t < t+100 (t = ms)

= To improve the accuracy upto 10%
» Elapsed time should be 1000 msecs

« For different data sizes
= Repeat the program upto 1000 msecs
= Measure the average

SNU
Data Structures 14 IDB Lab.

Insertion Sort Exp with 10% accuracy (1)

public static void main(String [] args) {
int step = 10; // intially data size 10, 20, ...
System.out.printin(*The worst-case times, in milliseonds, are");
System.out.printin("n repetitions elapsed time timesort");
for (intn = 0; n <= 1000; n += step)
{ Integer [] a = new Integer|[n]; // create element array
long startTime = System.currentTimeMillis() ;
long counter = 0O;
do{ counter++;
for (inti =0;1<n; i++) a[i] = new Integer(n -1i); // initialize array
InsertionSort2.insertionSort(a); / sort the elementg

while(System.currentTimeMillis() - startTime < 1000); //keep going upto 1000 msecs
long elapsedTime =System.currentTimeMillis() - startTime;

System.out.printin (n + " " + counter + " " + elapsedTime + " " + ((float) elapsedTime)/counter

if (n == 100) step = 100// after 100, data size> 100, 200, 300, ...

}

} SNU
Data Structures 15 IDB Lab.

Insertion Sort Exp with 10% accuracy (2)

n | Repetitions | Total Time | Time per Sort

0 11273 1050 0.09
10 8842 10560 0.12
20 6891 1040 0.15
30 5126 1040 0.20
40 3890 1050 0.27
50 3093 1040 0.34
60 2426 1040 0.43
70 1928 1050 0.4
80 1577 1040 0.66
20 1309 1040 0.79
100 1109 1050 0.9b

Times are in milliseconds
* fixed given time * fixed given data

SNU
Data Structures 16 IDB Lab.

i Table of Contents

= Introduction

= Choosing Instance Size

= Developing the Test Data
= Setting Up the Experiment
= Your Cache and You

SNU
Data Structures 17 IDB Lab.

* A Simple Computer Model (1/2)

= Consider a simple computer model

B o

ALU: Arithmetic Logical Unit
R: Register

L1: Level 1 Cache

L2: Level 2 Cache

SNU
Data Structures 18 IDB Lab.

i A Simple Computer Model (2/2)

= Cycle of our model

= Time needed to load data
= 2 cycles, L1=>R
= 10 cycles, L2->L1->R
= 100 cycles, main memory-> L2->L1->R

=« Add
= 1 cycle, R > ALU

= Store
= 1 cycle, write operation in memory

SNU
Data Structures 19 IDB Lab.

Effect of Cache Misses on Run Time

= Compiling™a=b+c”
= load b; load c; add; store a

= add, store
= 1 cycle each

= load
= No cache miss > 2*2cycles - total 4 cycles
= Every cache miss =2 100*2 cycles - total 202 cycles

= Run time depends on cache miss!

SNU
Data Structures 20 IDB Lab.

* Matrix multiplication (1/5)

= Matrix multiplication

| k i
* .j: .j

= Rows of Matrix are stored adjacently in memory

SNU
Data Structures 21 IDB Lab.

i Matrix multiplication (2/5)
= Multiplication of two square matrices

il j] = Y ali][K]* biKI[]

(1<i < mﬁs] <P)

= Position of elements in the memory
= Same row > adjacent
= Same column > apart

SNU
Data Structures 22 IDB Lab.

i Matrix multiplication (3/5)

public static void fastSquareMultiply(int [][]a, int [][] b,int [][] c, int n)
{ for(inti =0;1<n;i++)

for (intj=0;j<n;j++) ([i][j] =0;

for (intj =0;j <n;j++)

for (intk =0; k <n; k++) c[i][j] +=a[i][k] * bIK][]];

}

A(33)*B(B2) = C(32
&18,83 SISE C, =ayb, +a,b, +ash;,
o1 G2 921022 C, = 8y, 3,0, + 3,
Az Ay Az 03105,

SNU
Data Structures 23 IDB Lab.

i Matrix multiplication (4/5)

= For loop order

n |_]k order
=« Elements of a, ¢ are accessed by row
= Elements of b are accessed by column
= Probability of cache miss
n |k_] order
= All elements of a, b, c are accessed by row
= It will take less time

SNU
Data Structures 24 IDB Lab.

i Matrix multiplication (5/5)

= Run times for matrix multiplication

n ijk order ikj order
500 15.3 13.7
1000 127.9 110.5
2000 1059.1 886.5

= ikj order takes 10% less time

Data Structures

25

SNU
IDB Lab.

i Observation

= Matrix multiplication
=« Knowledge about computer architecture
= Memory access pattern of matrix multiplication
= Simple idea about data positioning >
a very fundamental data structure technique
» Performance vs. Data structure

SNU
Data Structures 26 IDB Lab.

i Summary

= When you try to market your code
= Memory requirements is easy to figure out
= Running time requires need of experiments

= In this chapter
= How to perform such an experiment for run time

« Factors affecting running time
= The number and type of operations
= The memory access pattern for the data & instructions in your program

SNU
Data Structures 27 IDB Lab.

