Ch4. Performance Measurement

© copyright 2006 SNU IDB Lab.

Preview of Chapters

- Chapter 2
 - How to analyze the space and time complexities of program
- Chapter 3
 - Review asymptotic notations such as O, Ω, Θ, o for simplifying the performance analysis
- Chapter 4
 - Show how to measure the actual run time of a program by using a clocking method

Bird's eye view

- When you try to market your code
 - Memory requirements is easy to figure out
 - Running time requires need of experiments
- In this chapter
 - How to perform such an experiment for run time
 - Factors affecting running time
 - The number and type of operations
 - The memory access pattern for the data & instructions in your program

Table of Contents

Introduction

- Choosing Instance Size
- Developing the Test Data
- Setting Up the Experiment
- Your Cache and You

Introduction

Performance measurement

- Obtaining the actual space and time requirements of a program
- Dependent on the particular compiler and the specific computer
- Space requirements can be measured easily through the compiler and the analytical method
- Time requirements can be measured by Java method *System.currentTimeMills()*
- System.currentTimeMills()
 - Returning the present time in millisecs since midnight (GMT), January 1, 1970
- With the system clock, if we want to measure the worst case time requirements for sorting
 - Need to decide the size of input data
 - Need to determine the data that exhibit the worst case behavior

Table of Contents

- Introduction
- Choosing Instance Size
- Developing the Test Data
- Setting Up the Experiment
- Your Cache and You

Choosing Instance Size

- Want to measure the time of insertion sort for the array of n objects
 - In theory, we know $f(n) = \Theta(n^2)$
 - We can determine the quadratic function with three values of n

$$f(n) = an^2 + bn + c$$

- In practice, we need the times for more than three values of n
 - Asymptotic analysis tells us the behavior only for sufficiently large values of n
 - Even in the region where the asymptotic behavior is exhibited, the times may not lie exactly on the predicted curve
- Reasonable choice of the input size
 - N= 100, 200,, 1000
 - N= 500, 1000, 1500, 5000

Insertion Sort

- N = 5, input sequence = (2, 3, 1, 5, 4)
- Making a sorted array using insertion
- Best case: n-1 comparisons
- Worst case: (n-1)*n / 2 comparisons

Table of Contents

- Introduction
- Choosing Instance Size
- Developing the Test Data
- Setting Up the Experiment
- Your Cache and You

Developing the Test Data

- Worst case or Best case
 - Easy to generate the test data
- Average case
 - Difficult to generate the test data
- If we cannot develop the test data showing the complexity
 - Pick the least (maximum, average) measured time from randomly generated data as an estimate of the best (worst, average) behavior

Table of Contents

- Introduction
- Choosing Instance Size
- Developing the Test Data
- Setting Up the Experiment
- Your Cache and You

Setting Up the experiment: Program 4.1

```
public static void main(String [] args){
   int step = 10;
   System.out.println("The worst-case times, in milliseconds, are");
   System.out.println("n \telapsed time");
   for (int n = 0; n <= 1000; n += step) {
    Integer [] a = new Integer[n]; // create element array
    for (int i = 0; i < n; i++) // initialize array
         a[i] = new Integer(n - i);
    long startTime = System.currentTimeMillis() ;
    InsertionSort2.insertionSort(a); // sort the elements
    long elapsedTime = System.currentTimeMillis() - startTime;
    System.out.println(n + "\t" + elapsedTime);
    if (n == 100) step = 100;
```

Data Structures

Execution Times using program 4.1

1	ime	n	Time
	0	100	0
	0	200	0
	0	300	0
	0	400	0
	0	500	60
	0	600	50
	0	700	0
	50	800	60
	0	900	50
	0	1000	110

Data Structures

Experiment Accuracy

- Accuracy of measurements
 - When n is small, measured time can be inaccurate because of an error tolerance
 - Error tolerance of System.currentTimeMills()

 $t - 100 \le t \le t + 100 \ (t = ms)$

- To improve the accuracy upto 10%
 - Elapsed time should be 1000 msecs
 - For different data sizes
 - Repeat the program upto 1000 msecs
 - Measure the average

Insertion Sort Exp with 10% accuracy (1)

```
public static void main(String [] args) {
  int step = 10; // initially data size 10, 20,...
  System.out.println("The worst-case times, in milliseconds, are");
  System.out.println("n repetitions elapsed time time/sort");
  for (int n = 0; n <= 1000; n += step)
    { Integer [] a = new Integer[n]; // create element array
      long startTime = System.currentTimeMillis() ;
     long counter = 0:
     do { counter++;
           for (int i = 0; i < n; i++) a[i] = new Integer(n - i); // initialize array
           InsertionSort2.insertionSort(a); // sort the elements }
     while(System.currentTimeMillis( ) - startTime < 1000); // keep going upto 1000 msecs</pre>
      long elapsedTime = System.currentTimeMillis() - startTime;
      System.out.println (n + " " + counter + " " + elapsedTime + " " + ((float) elapsedTime)/counter
      if (n == 100) step = 100; // after 100, data size \rightarrow 100, 200, 300, ...
Data Structures
```

Insertion Sort Exp with 10% accuracy (2)

n	Repetitions	Total Time	Time per Sort
0	11273	1050	0.09
10	8842	1050	0.12
20	6891	1040	0.15
30	5126	1040	0.20
40	3890	1050	0.27
50	3093	1040	0.34
60	2426	1040	0.43
70	1928	1050	0.54
80	1577	1040	0.66
90	1309	1040	0.79
100	1109	1050	0.95

* fixed given time * fixed given data

Table of Contents

- Introduction
- Choosing Instance Size
- Developing the Test Data
- Setting Up the Experiment
- Your Cache and You

A Simple Computer Model (1/2)

Consider a simple computer model

ALU: Arithmetic Logical Unit R: Register L1: Level 1 Cache L2: Level 2 Cache

Data Structures

A Simple Computer Model (2/2)

- Cycle of our model
 - Time needed to load data
 - 2 cycles, $L1 \rightarrow R$
 - 10 cycles, $L2 \rightarrow L1 \rightarrow R$
 - 100 cycles, main memory \rightarrow L2 \rightarrow L1 \rightarrow R
 - Add
 - 1 cycle, $R \rightarrow ALU$
 - Store
 - 1 cycle, write operation in memory

Effect of Cache Misses on Run Time

- Compiling "a = b + c"
 - load b; load c; add; store a
 - add, store
 - 1 cycle each
 - load
 - No cache miss \rightarrow 2*2 cycles \rightarrow total 4 cycles
 - Every cache miss \rightarrow 100*2 cycles \rightarrow total 202 cycles
- Run time depends on cache miss!

Rows of Matrix are stored adjacently in memory

Matrix multiplication (2/5)

Multiplication of two square matrices

$$c[i][j] = \sum_{k=1}^{n} a[i][k] * b[k][j]$$
$$(1 \le i \le m, \ 1 \le j \le p)$$

- Position of elements in the memory
 - Same row \rightarrow adjacent
 - Same column \rightarrow apart

Matrix multiplication (3/5)

public static void fastSquareMultiply(int [][]a, int [][] b, int [][] c, int n)
{ for (int i = 0; i < n; i++)
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 for (int j = 0; j < n; j++)
 for (int k = 0; k < n; k++) c[i][j] += a[i][k] * b[k][j];
}</pre>

$$\begin{array}{rcl} \bullet A(3,3) \ast B(3,2) & = & C(3,2) \\ a_{11}a_{12}a_{13} & & b_{11}b_{12} & & c_{11} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} \\ a_{21}a_{22}a_{23} & & b_{21}b_{22} & & c_{12} = a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{31}a_{32}a_{33} & & b_{31}b_{32} \end{array}$$

Data Structures

Matrix multiplication (4/5)

For loop order

- ijk order
 - Elements of a, c are accessed by row
 - Elements of b are accessed by column
 - Probability of cache miss
- ikj order
 - All elements of a, b, c are accessed by row
 - It will take less time

Matrix multiplication (5/5)

Run times for matrix multiplication

n	ijk order	ikj order
500	15.3	13.7
1000	127.9	110.5
2000	1059.1	886.5

ikj order takes 10% less time

Observation

- Matrix multiplication
 - Knowledge about computer architecture
 - Memory access pattern of matrix multiplication
 - Simple idea about data positioning \rightarrow

a very fundamental data structure technique

Performance vs. Data structure

Summary

- When you try to market your code
 - Memory requirements is easy to figure out
 - Running time requires need of experiments
- In this chapter
 - How to perform such an experiment for run time
 - Factors affecting running time
 - The number and type of operations
 - The memory access pattern for the data & instructions in your program