
SNU

IDB Lab.

Ch4. Performance Measurement

© copyright 2006 SNU IDB Lab.

2
SNU

IDB Lab.Data Structures

Preview of Chapters

� Chapter 2

� How to analyze the space and time complexities of program

� Chapter 3

� Review asymptotic notations such as O, Ω, Θ, o for
simplifying the performance analysis

� Chapter 4

� Show how to measure the actual run time of a program by
using a clocking method

3
SNU

IDB Lab.Data Structures

Bird’s eye view

� When you try to market your code

� Memory requirements is easy to figure out

� Running time requires need of experiments

� In this chapter

� How to perform such an experiment for run time

� Factors affecting running time

� The number and type of operations

� The memory access pattern for the data & instructions in your program

4
SNU

IDB Lab.Data Structures

Table of Contents

� Introduction

� Choosing Instance Size

� Developing the Test Data

� Setting Up the Experiment

� Your Cache and You

5
SNU

IDB Lab.Data Structures

Introduction

� Performance measurement
� Obtaining the actual space and time requirements of a program
� Dependent on the particular compiler and the specific computer
� Space requirements can be measured easily through the compiler and the

analytical method
� Time requirements can be measured by Java method System.currentTimeMills()

� System.currentTimeMills()
� Returning the present time in millisecs since midnight (GMT), January 1, 1970

� With the system clock, if we want to measure the worst case time requirements for
sorting
� Need to decide the size of input data
� Need to determine the data that exhibit the worst case behavior

6
SNU

IDB Lab.Data Structures

Table of Contents

� Introduction

� Choosing Instance Size

� Developing the Test Data

� Setting Up the Experiment

� Your Cache and You

7
SNU

IDB Lab.Data Structures

Choosing Instance Size
� Want to measure the time of insertion sort for the array of n objects

� In theory, we know

� We can determine the quadratic function with three values of n

� In practice, we need the times for more than three values of n
� Asymptotic analysis tells us the behavior only for sufficiently large values of n
� Even in the region where the asymptotic behavior is exhibited, the times may

not lie exactly on the predicted curve

� Reasonable choice of the input size
� N= 100, 200, …. , 1000
� N= 500, 1000, 1500, …. 5000

)()(2nnf Θ=

cbnannf ++= 2)(

8
SNU

IDB Lab.Data Structures

Insertion Sort

� N = 5, input sequence = (2, 3, 1, 5, 4)

� Making a sorted array using insertion

� Best case: n-1 comparisons

� Worst case: (n-1)*n / 2 comparisons 2

2 3

1 2 3

1 2 3 5

1 2 3 4 5

9
SNU

IDB Lab.Data Structures

Table of Contents

� Introduction

� Choosing Instance Size

� Developing the Test Data

� Setting Up the Experiment

� Your Cache and You

10
SNU

IDB Lab.Data Structures

Developing the Test Data

� Worst case or Best case

� Easy to generate the test data

� Average case

� Difficult to generate the test data

� If we cannot develop the test data showing the complexity

� Pick the least (maximum, average) measured time from randomly
generated data as an estimate of the best (worst, average) behavior

11
SNU

IDB Lab.Data Structures

Table of Contents

� Introduction

� Choosing Instance Size

� Developing the Test Data

� Setting Up the Experiment

� Your Cache and You

12
SNU

IDB Lab.Data Structures

Setting Up the experiment: Program 4.1

public static void main(String [] args){
int step = 10;
System.out.println("The worst-case times, in milliseconds, are");
System.out.println("n \telapsed time");
for (int n = 0; n <= 1000; n += step) {

Integer [] a = new Integer[n]; // create element array
for (int i = 0; i < n; i++) // initialize array

a[i] = new Integer(n - i);
long startTime = System.currentTimeMillis() ;
InsertionSort2.insertionSort(a); // sort the elements
long elapsedTime = System.currentTimeMillis() - startTime;
System.out.println(n + "\t" + elapsedTime);
if (n == 100) step = 100;

}
}

13
SNU

IDB Lab.Data Structures

Execution Times using program 4.1

14
SNU

IDB Lab.Data Structures

Experiment Accuracy

� Accuracy of measurements

� When n is small, measured time can be inaccurate because of an error
tolerance

� Error tolerance of System.currentTimeMills()

� To improve the accuracy upto 10%

� Elapsed time should be 1000 msecs

� For different data sizes

� Repeat the program upto 1000 msecs

� Measure the average

ms)(t 100 100 =+≤≤− ttt

15
SNU

IDB Lab.Data Structures

Insertion Sort Exp with 10% accuracy (1)

public static void main(String [] args) {
int step = 10; // intially data size 10, 20,…
System.out.println("The worst-case times, in milliseconds, are");
System.out.println("n repetitions elapsed time time/sort");
for (int n = 0; n <= 1000; n += step)

{ Integer [] a = new Integer[n]; // create element array
long startTime = System.currentTimeMillis() ;
long counter = 0;
do { counter++;

for (int i = 0; i < n; i++) a[i] = new Integer(n - i); // initialize array
InsertionSort2.insertionSort(a); // sort the elements}

while(System.currentTimeMillis() - startTime < 1000); // keep going upto 1000 msecs
long elapsedTime = System.currentTimeMillis() - startTime;
System.out.println (n + " " + counter + " " + elapsedTime + " " + ((float) elapsedTime)/counter
if (n == 100) step = 100; // after 100, data size ���� 100, 200, 300, …

}
}

16
SNU

IDB Lab.Data Structures

Insertion Sort Exp with 10% accuracy (2)

* fixed given time * fixed given data

17
SNU

IDB Lab.Data Structures

Table of Contents

� Introduction

� Choosing Instance Size

� Developing the Test Data

� Setting Up the Experiment

� Your Cache and You

18
SNU

IDB Lab.Data Structures

A Simple Computer Model (1/2)

� Consider a simple computer model

ALU
R L1 L2

main
memory

ALU: Arithmetic Logical Unit
R: Register
L1: Level 1 Cache
L2: Level 2 Cache

19
SNU

IDB Lab.Data Structures

A Simple Computer Model (2/2)

� Cycle of our model
� Time needed to load data

� 2 cycles, L1�R

� 10 cycles, L2�L1�R

� 100 cycles, main memory� L2�L1�R

� Add
� 1 cycle, R � ALU

� Store
� 1 cycle, write operation in memory

20
SNU

IDB Lab.Data Structures

Effect of Cache Misses on Run Time

� Compiling “a = b + c”

� load b; load c; add; store a

� add, store

� 1 cycle each

� load

� No cache miss � 2*2 cycles � total 4 cycles

� Every cache miss � 100*2 cycles � total 202 cycles

� Run time depends on cache miss!

21
SNU

IDB Lab.Data Structures

Matrix multiplication (1/5)

� Matrix multiplication

� Rows of Matrix are stored adjacently in memory

i

k

k

j

i

j* =

22
SNU

IDB Lab.Data Structures

Matrix multiplication (2/5)

� Multiplication of two square matrices

� Position of elements in the memory

� Same row � adjacent

� Same column � apart

)1 ,1(

]][[*]][[]][[
1

pjmi

jkbkiajic
n

k

≤≤≤≤

=∑
=

23
SNU

IDB Lab.Data Structures

Matrix multiplication (3/5)

public static void fastSquareMultiply(int [][]a, int [][] b,int [][] c, int n)
{ for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++) c[i][j] = 0;
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++) c[i][j] += a[i][k] * b[k][j];

}

�A(3,3) * B(3,2) = C(3,2)

What if we exchange j and k

333231

232221

131211

aaa

aaa

aaa

3231

2221

1211

bb

bb

bb

32132212121112

31132112111111

bababac

bababac

++=

++=

24
SNU

IDB Lab.Data Structures

Matrix multiplication (4/5)

� For loop order

� ijk order

� Elements of a, c are accessed by row

� Elements of b are accessed by column

� Probability of cache miss

� ikj order

� All elements of a, b, c are accessed by row

� It will take less time

25
SNU

IDB Lab.Data Structures

Matrix multiplication (5/5)

� Run times for matrix multiplication

� ikj order takes 10% less time

886.5

110.5

13.7

ikj order

1059.12000

127.91000

15.3500

ijk ordern

26
SNU

IDB Lab.Data Structures

Observation

� Matrix multiplication

� Knowledge about computer architecture

� Memory access pattern of matrix multiplication

� Simple idea about data positioning �

a very fundamental data structure technique

� Performance vs. Data structure

27
SNU

IDB Lab.Data Structures

Summary

� When you try to market your code

� Memory requirements is easy to figure out

� Running time requires need of experiments

� In this chapter

� How to perform such an experiment for run time

� Factors affecting running time

� The number and type of operations

� The memory access pattern for the data & instructions in your program

