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Geometric modeling system
 Software enabling shape creation and visulaization 

in the design process
 Designer realizes the shape in his mind while the 

shape data are stored inside
 Wireframe Modeling System
 Surface Modeling System
 Solid Modeling System
 Non-manifold Modeling System
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History of Geometric Modeling
 Tips
 Okino, Kubo at Hokaido University, 1973
 Constructive Solid Geometry (CSG)

 Build
 Braid, Lang at Cambridge University, 1973
 Boundary Representation (B-rep)

 CADAM, Unigraphics, CATIA, I-DEAS, BRAVO, 
ME10/30, Pro/ENGINEER, DesignBASE, SolidEdge, 
SolidWorks, …
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Why 3 Dimensional Model?
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Wireframe Modeling System
 User inputs characteristic points and curves
 Good for simple visualization
 Ambiguous situations may occur
 Impossible to automatically calculate mass 

properties, NC tool paths, and finite elements
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Ambiguous wireframe models 
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Surface Modeling System
 Surface information in addition to wireframe model
 Usually user specify the curves on a surface, then 

system stores the surface equation
 Adjacency information between surfaces are not 

stored in general
 Intersection calculation is needed to derive the 

boundary curves
 Some surface modeling systems store boundary 

curves also
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Surface Modeling System – cont’
 Point set
 Curve net
 Curve movement (Sweeping, Skinning)
 Good for aesthetic evaluation, Styling CAD
 Input for NC tool path generation
 Good for modeling object bounded by complicated 

surfaces
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Modeling of automobile body by surface 
modeling system
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Calculation and verification of NC tool paths
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Solid Modeling System
 Adjacency information between faces, and inside-

outside information of each face are stored in 
addition

 Volume inside modeled object is defined
 Volumetric operations are possible
 Automatic generation of solid elements for FEA
 Automatic generation of tool paths for rough cut
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Solid Modeling System – cont’
 Partial modeling is not allowed, complete solid model 

should be made
 More modeling tasks
 Many convenient modeling commands are provided
 Face adjacency, in-out information, etc. are generated by 

the system
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Non-manifold Modeling System
 Accommodate all different levels of geometric model
 Wireframe model : Wireframe modeling system
 Surface model : Surface modeling system
 Solid model : Solid modeling system

 Models of mixed dimension, incomplete models are 
allowed (support design process, analysis model)
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Non-manifold Modeling System
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 Retrieves a solid of a 
simple shape

 Primitives are stored 
by the procedures how 
they are created.

 Parameters specifying 
the size are passed to 
the corresponding  
procedure as 
arguments.
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Modeling Functions
(1) Primitives Creation



Modeling Functions
(2) Boolean operation

 Primitive solid is assumed to be a set of points
 Boolean operation is performed between the point 

sets
 The result is the solid composed of the points 

resulting from the set operation.
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Modeling Functions
(2) Boolean operation
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Modeling Functions
(2) Boolean operation

 Boolean operation may result an invalid solid
 Non-manifold modeling systems can handle Boolean 

operations between objects of mixed dimension.
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Example of Boolean operation to be avoided
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BA 

A

B

A  BA∩B



Example of modeling  in CSG approach 
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Modeling Functions
(3) Sweeping

 Planar closed domain is translated or revolved to 
form a solid

 When the planar shape is not closed, the result is a 
surface
 Used in surface modeling system
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Modeling Functions
(3) Sweeping – Example.1

 Example of translation sweeping
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Modeling Functions
(3) Sweeping – Example.2

 Example of rotational sweeping
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Generator
surface

Swept
solid

Axis of revolution



Modeling Functions
(4) Skinning

 Form a closed volume by creating a skin surface 
over pre-specified cross sectional planar curves

 If two end faces corresponding to the two end cross 
sections are not added, the result would be a surface
 Used in surface modeling system
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Modeling Functions
(4) Skinning (Lofting) - Example



Modeling Functions
(5) Blending

 Sharp edge or sharp vertex is replaced by a smooth 
curved surface

 Normal vector is continuous across the surfaces 
meeting at the original sharp edge or vertex
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Modeling Functions
(5) Blending – Example
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Edge rounding Edge filleting Vertex rounding

complex intersecting blends 



Modeling Functions
(6) Lifting
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 Pull a portion or whole face of a solid

Example of lifting



Modeling Functions
(6) Lifting
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 Face lifting



Modeling Functions
(6) Lifting

 When a portion of a face is lifted, the face should be 
split beforehand
 Add a splitting edge
 Update face connectivity 
 Update edge adjacency, … 

 Euler operators will handle these tasks
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Modeling Functions
(6) Lifting
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 Self interference caused by lifting



Modeling Functions
(7) Tweaking

 Vertex Tweaking  Edge Tweaking

34



35

Modification by vertex moving

Modification by edge replacement

Modeling Functions
(7) Tweaking



Modeling Functions
(8) Boundary Modeling
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 Add, delete, modify entities such as vertices, edges, 
and faces directly



Modeling Functions
(8) Boundary Modeling

 Very tedious operation
 Boundary modeling functions are mainly used to 

create only up to two dimensional shapes which are 
used for sweeping or skinning

 Can be effectively applied to modify a shape of an 
existing solid
 Tweaking operation
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Modeling Functions
(9) Feature based modeling

 Let designers model a solid by the shape units 
familiar to them

 The resulting solid carries the information on the 
existence of these shape units in addition to the 
elementary shape entities such as vertices, edges, 
faces, etc.
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Modeling Functions
(9) Feature based modeling

 E.g.
 ‘ Make a hole of a certain size at a certain place ’
 ‘ Make a chamfer of a certain size at a certain place ’

 Existence of hole and chamfer is added to model information

 Set of features varies depending upon the frequent 
applications of the system
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Modeling Functions
(9) Feature based modeling

 Popular feature
chamfer, hole, fillet, slot, pocket, …

manufacturing features

These features can be matched to 
a specific machining process
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Modeling Functions
(9) Feature based modeling
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Example of modeling using “slot” and “hole” features



Example modeling using machining features 

42

(a) Chamfering

(c) Pocket (d) Fillet

(b) Hole



Modeling Functions
(9) Feature based modeling

 Any feature based modeling system cannot provide 
all the features necessary for all the specific 
applications

 The desirable set of features is different between 
applications

 Many systems provide feature definition language so 
that any specific feature can be defined

 When they are defined, they are parameterized as 
the primitives
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Modeling Functions
(10) Parametric Modeling

 Model a shape by using the geometric constraints 
and the dimension data

 Geometric constraints describe the relation between 
shape elements

 Dimensional data include dimensions and relations 
between the dimensions
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Modeling Functions
(10) Parametric Modeling

 Input two dimensional shape roughly
 Input geometric constraints and dimension data
 Reconstruct the two dimensional shape
 Create 3D shape by sweeping or swinging
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Modeling Functions
(10) Parametric Modeling
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Data structure of solid model
 CSG Representation storing CSG tree
 Store procedure Boolean operation in tree structure

 Boundary Representation (B-Rep)
 Data structure vertex, edge, face tables
 Data structure using half edge
 Data structure using Winged-edge
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Data structure of solid model – cont’
 Data structure storing decomposition model
 Octree representation
 Voxel representation
 Cell decomposition model
 Similar to finite element
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CSG tree
 Stores the procedure in which Boolean operations 

are applied 
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Example of CSG tree

P0

P1

P2

P0

P1

P2



Implementation of CSG tree structure in C 
language 
struct operator {

int op_type, /* union, intersection or difference operator */

L_type; /* left node type: 0=operator, 1=primitive */

R_type /* right node type: 0=operator, 1=primitive */

void *L_ptr; /* left node */

*R_ptr; /* right node */

*p_ptr; /* parent node */

}

struct primitive {

int prim_type; /* type of primitive */

double pos_x, pos_y, pos_z; /* position of instance */

double ori_x, ori_y, ori_z; /* orientation of instance */

void *attribute; /* the value of dimensions of the primitive */

}
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CSG tree representation– advantages
 Compact data, Easy to maintain 
 Represent only valid object 
 Possible to be converted to B-Rep
 Many  applications can be integrated
 Model can be easily changed by changing parameter 

values of primitives
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CSG tree representation – disadvantages
 Allows only Boolean operations
 Shapes to be modeled are limited
 Impossible to modify locally
 Significant computation is required for boundary 

evaluation
→ bad for interactive display

 Trends are to store  B-Rep and Feature tree together
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Modification of solid by changing parameters
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B-Rep(Boundary Representation)
 Shape is expressed by its bounding entities such as 

faces, edges, and vertices
 Bounding entities and their connectivity are stored in 

graph structure
→ Graph-based model 
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B-Rep Structure – cont’
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Body

Face

Edge

Vertex Vertex

List of faces

List of 
edges

End vertices

< Topology >< Geometry >

Surface Eqn.

Curve Eqn.

X,Y,Z 
Position

Topology  vs. Geometry



B-Rep – advantages
 Boundary data are stored explicitly and enables 

quick interactive response
 Topology information can be easily derived
 Supports various modeling commands (local 

operations in addition to Boolean)
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B-Rep – disadvantages
 Complicated data structure with a large amount of 

data
 Invalid solid may result
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Table-based structure for storing B-Rep 
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Face table  Edge table  Vertex table 

Face Edges  Edge Vertices  Vertex Coordinates 
F1 E1, E5, E6  E1 V1, V2  V1 x1, y1, z1 
F2 E2, E6, E7  E2 V2, V3  V2 x2, y2, z2 
F3 E3, E7, E8  E3 V3, V4  V3 x3, y3, z3 
F4 E4, E8, E5  E4 V4, V1  V4 x4, y4, z4 
F5 E1, E2, E3, E4  E5 V1, V5  V5 x5, y5, z5 
   E6 V2, V5  V6 x6, y6, z6 
   E7 V3, V5    
   E8 V4, V5    

 



Things to be cosidered
 Balance between structure compactness and 

effectiveness in data retrieval
 Basically used for polyhedron models
 For objects with curved surfaces and curved edges, 

information on surface equations are stored in the 
Face table, information on curve equations are 
stored in the Edge table

 If there are faces with holes, the current Face table 
cannot be used 
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Treatment of face with multiple boundaries

60

Adding bridge-edge is one way to 
handle hole



B-Rep – Things to be considered
 Length of edge table in the Face table varies

→ Loss of memory usage
 Deriving adjacency among Vertex, Edge, Face 

requires a heavy search

Ex) Which faces share a given edge?
Which edges share a given vertex?
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Half Edge Data Structure
 Varying length of edge list in the Face table can be  

solved by linked list
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F1

E5 E6 E1

F2

E2 E6 E7

Doubly linked list for face F1

Doubly linked list for face F2



Half Edge Data Structure – cont’
 Every face points to any one edge, every edge 

points to its next edge
→ The number of edges bounding a face has no effect

 The next edge of edge E6 changes depending on  
the face being considered

→ Data for F2 are deleted when data for F3 is stored

 Each edge is split into two halves, and each split 
edge is used for each Face 

→  half edge 
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Half edges of the example solid
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F1

h9 h12 h2

F2

h4 h11 h14

Doubly linked list using half edges



Half Edge Data Structure – cont’
 Face with holes has a peripheral boundary and 

several inner boundary
→ Attach the inner boundaries to the peripheral

boundary using bridge-edges
→ Introduce the Loop concept
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Treatment of a face with holes using loops
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F1

L1 L2 L3

h9 h11 h13 h15

h1 h3 h5 h7



Half Edge Data Structure – cont’
 Assign opposite directions for peripheral boundary 

and inner boundary
→ Inside of face always exists on the left-hand side as 

one proceed along the boundary
→ Inside and outside of face is specified
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Half Edge Data Structure – cont’
 For connectivity among vertex, edge, face

Edge Half edge Vertex

he1   he2      Starting vertex             he 

 Ex) Which loops share a given edge?
Which edges share a given vertex?
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Half Edge Data Structure (represented by C)
struct solid

{

Id          solidno ; /* solid identifier */

Face *sfaces ; /* pointer to list of face */

Edge *sedges ; /* pointer to list of edges */

Vertex *sverts ; /* pointer to list of vertices */

Solid *nexts ; /* pointer to next solid */

Solid *prevs ; /* pointer to previous solid */

} ;

struct face

{

Id faceno ; /* face identifier */

Solid *fsolid ; /* back pointer to solid */

Loop *flout ; /* pointer to outer loop */

Loop *floops ; /* pointer to list of loops */

vector feq ; /* face equation */

Face *nextf ; /* pointer to next face */

Face *prevf ; /* pointer to previous face */

} ;
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Half Edge Data Structure (represented by C) 
– cont’
struct loop 

{

HalfEdge *ledg ; /* ptr to ring of halfedges */

Face *lface ; /* back pointer to face */

Loop *nextl ; /* pointer to next loop */ 

Loop *prevl ; /* pointer to previous loop */

} ;

struct edge

{

HalfEdge *he1 ; /* pointer to right halfedge */

HalfEdge *he2 ; /* pointer to left halfedge */

Edge *nexte ; /* pointer to next edge */ 

Edge *preve ; /* pointer to previous edge */

} ;
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Half Edge Data Structure (represented by C) 
– cont’
struct halfedge

{

Edge *edg ; /* pointer to parent edge */

Vertex *vtx ; /* pointer to starting vertex */

Loop *wloop ; /* back pointer to loop */ 

Halfedge *nxt ; /* pointer to next halfedge */

Halfedge *prev ; /* pointer to previous halfedge */

} ;

struct vertex

{

Id *vertexno ; /* vertex identifier */

HalfEdge *vedge ; /* pointer to a halfedge */

vector *vcoord ; /* vertex coordinates */ 

Vertex *nextv ; /* pointer to next vertex */

Vertex *prevv ; /* pointer to previous vertex */

} ;
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Half Edge Data Structure (represented by C) 
– cont’
union nodes

{

Solid s ;

Face f ;

Loop l ;

HalfEdge h ;

Vertex v ;

Edge e ;

} ; 
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Example of finding an adjacency information 
between edges and vertices 
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V1

h1

h2

prev_h1

new_h2



Winged Edge Data Structure 
 Half edge data structure
 Face is the agent to provide the connectivity

 Winged edge data structure
 Edge is the agent to provide the connectivity
 Edge list of faces are derived when needed
 Proposed by Baumgart in 1974
 Extended by Braid in 1979

 Loop concept is introduced to handle faces with holes
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Definition of winged edges
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V1

E3

V2

E1

E2

E4 E5

F1
F2

L1 L2



Winged Edge Data Structure – cont’
 E2, E3, E4, E5: Winged edges of E1

 Four winged edges stored with specific names 
→ connectivity defined explicitly

 Every edge is assigned direction
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Connections between vertices, edges, and 
faces
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Edge

Next Vertex

Previous Vertex

Left-arm Edge

Left-leg Edge

Left Loop

Right-arm Edge

Right-leg Edge

Right Loop

Loop

Edge

Vertex

Edge



Winged Edge Data Structure – cont’
 Neighboring  faces of an edge have specific names

 F1 Left  face
 F2 Right  face
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Winged Edge Data Structure – cont’
 Loop is used to handle faces with holes

L1 ←  E1 →  L2

Left loop             Right Loop 
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Face

Loop 1 Loop 2 Loop n



Winged Edge Data Structure – cont’
 Every Loop points to any one edge
 Edge list of a loop can be derived by tracing winged 

edges 
 Connectivity between edges and vertices are also 

stored 
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Edge

Previous 
vertex

Next 
vertex

Vertex

Edge



Winged Edge Data Structure
(represented by C)
typedef struct snu_body Body;

typedef struct snu_shell Shell;

typedef struct snu_face Face;

typedef struct snu_loop Loop;

typedef struct snu_edge Edge;

typedef struct snu_vertex Vertex;

typedef struct snu_surface Surface;

typedef struct snu_curve Curve;

typedef struct snu_point Point;

struct snu_body

{

int id;          /*body indentifier*/

Body        *next;       /*pointer to next body */

Shell        *shell;       /*pointer to shell*/

Char        *name;      /*pointer  to body name */

};
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Winged Edge Data Structure
(represented by C) – cont’
struct snu_shell

{

int id;          /*shell indentifier*/

Body        *body;      /*pointer to body */

Shell        *next;       /*pointer to next shell*/

Face        *face;        /*pointer to face*/

};

struct snu_face

{

int id;          /*face indentifier*/

Shell         *shell;       /*pointer to shell*/

Face         *next;        /*pointer to next face*/

Loop        *loop;        /*pointer to loop*/

Surface      *surface;     /*pointer to geometry data*/

};
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Winged Edge Data Structure
(represented by C) – cont’
struct snu_loop

{

int  id;         /*loop indentifier*/

Face       *face;      /*pointer to face*/

Loop      *next;      /*pointer to next loop*/

Edge      *edge;      /*pointer to edge */

int        type  ;     /*loop type*/

};
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Winged Edge Data Structure
(represented by C) – cont’
struct snu_edge

{

int id;          /*edge indentifier*/

Loop    *left_loop;   /*pointer to left  loop*/

Loop    *right_loop;  /*pointer to right loop*/

Edge    *left_arm;   /*pointer to left arm ( ccw left edge )*/

Edge    *left_leg;    /*pointer to left leg ( cw left edge )*/

Edge    *right_leg;   /*pointer to right leg ( ccw right edge )*/

Edge    *right_arm;   /*pointer to right arm ( cw right edge )*/

Vertex   *tail_vertex;  /*pointer to tail vertex ( previous vertex)*;/

Vertex   *head_vertex;  /*pointer to head vertex ( next vertex )*/

Curve   *curve;       /*pointer to geometry data*/

};

struct snu_vertex

{

int id;            /*vertex indentifier*/

Edge    *edge;         /*pointer to edge*/

Point    *point;         /*pointer to geometry data */

};
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Winged Edge Data Structure – cont’
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Decomposition Model Data Structure
 Decomposition model:
 Represent an object as an aggregation of simple objects 

such as cubes
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Voxel model (Exhaustive enumeration) 
 Space of interest is represented by a set of cubes 

(voxels) after being subdivided  by grid planes
 Only the voxels embodied by the object are stored
 Use 3D array C(i, j, k), C(i, j, k) corresponding to the 

embodied voxels is set to 1. Others set to 0
 Popular in digital image processing
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Voxel model – cont’
 Any shape can be represented, approximately at 

elast 
 Used to model human bones and organs from digital 

topography
 Easy to implement mass property calculation and 

Boolean operation
 Information on empty space is also available
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Voxel model – cont’
 Memory requirement varies drastically depending 

upon desired resolution
 Used as a secondary representation for computation 

convenience
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Visualization of voxel representation
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Octree representation
 Only voxels occupying the object space are 

subdivided, Extension of Quadtree to 3D
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Data structure for storing octrees
struct octreeroot

{

float xmin, ymin, zmin; /* space of interest */

float xmax, ymax, zmax;

struct octree *root; /* root of the tree */

};

struct octree

{

char code; /* BLACK, WHITE, GREY */

struct octree *oct[8]; /* pointers to octants, present if 
GREY */

};
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Procedure of octree generation
make_tree( p, t, depth )

primitive *p; /* p = the primitive to be modeled */

octree *t; /* t = node of the octree, initially 

the initial tree with one grey node */

int depth; /* initially max. depth of the recursion */

{

int i;

switch( classify( p, t ) )

{

case WHITE:

t->code = WHITE;

break;

case BLACK:

t->code = BLACK;

break;
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Procedure of octree generation – cont’
case GREY:

if( depth == 0 )

{

t->code = BLACK;

}

else

{

subdivide( t );

for( i = 0; i < 8; i++ )

make_tree( p, t->oct[i], 
depth-1 );

}

break;

}

}

}

/* classify octree node against primitives */

classify( … );

/* divide octree node into eight octants */

subdivide( … );
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Cell decomposition model
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