
Geometric Modeling System

Human-centered CAD Lab.

1 2009-03-05

Geometric modeling system
 Software enabling shape creation and visulaization

in the design process
 Designer realizes the shape in his mind while the

shape data are stored inside
 Wireframe Modeling System
 Surface Modeling System
 Solid Modeling System
 Non-manifold Modeling System

2

History of Geometric Modeling
 Tips
 Okino, Kubo at Hokaido University, 1973
 Constructive Solid Geometry (CSG)

 Build
 Braid, Lang at Cambridge University, 1973
 Boundary Representation (B-rep)

 CADAM, Unigraphics, CATIA, I-DEAS, BRAVO,
ME10/30, Pro/ENGINEER, DesignBASE, SolidEdge,
SolidWorks, …

3

Rochester U. (Voekker & Riquicha)
PADL & PADL II

Hosaka (Kimura) Tokyo U.
Geomap Geomap II Geomap III

(Okino) Hokkaido U.
TIPS

(Hatvany) Hungarian Academy of Sciences (Varady)
Blending

(Eastman) CMU
Glide

SI Norway
SI Package (C)

(Baumgart-Stauf.)

Stroustrup Bell Labs
CUCL (C++)

CUCL CAD Group (Lang) (Braid) CUED Cranfleld (Jared)
Build I (SAL) Build II (Algol GB)

Grayer-Machs.
Appl. Geometry

AG Package (C)

SHAPE DATA [E & S] [MD] EDS
Romulus (Fortran) Parasolid (AGA)

65 70 75 80 85 90 95 2000

THREE-SPACE
ACIS (C++)

Sabin
BAC

GRAFTEK
GMS

SPATIAL TECH
Strata (C++)

D-CUBED
Constrains 2D 3D (C++)

ACIS 7.0

4

5

Solid Edge
EDS

Dasssault Systems
CATIA V.1

Varimetrix

Ricoh’s software division
DESIGNBASE

SDRC

SolidWorks Inc.

Intergraph Mechanical CAD/CAM

Matra Datavision

65 70 75 80 85 90 95 2000

CATIA V.5

First PC based B-rep solid modeler

Unigraphics Unigraphics II

SolidWorks

I-DEAS

Solid Edge

CASCADE

Open
CASCADE

PARAMETRIC TECH
Pro/Engineer V.1

Why 3 Dimensional Model?

6

Wireframe Modeling System
 User inputs characteristic points and curves
 Good for simple visualization
 Ambiguous situations may occur
 Impossible to automatically calculate mass

properties, NC tool paths, and finite elements

7

Ambiguous wireframe models

8

Surface Modeling System
 Surface information in addition to wireframe model
 Usually user specify the curves on a surface, then

system stores the surface equation
 Adjacency information between surfaces are not

stored in general
 Intersection calculation is needed to derive the

boundary curves
 Some surface modeling systems store boundary

curves also

9

Surface Modeling System – cont’
 Point set
 Curve net
 Curve movement (Sweeping, Skinning)
 Good for aesthetic evaluation, Styling CAD
 Input for NC tool path generation
 Good for modeling object bounded by complicated

surfaces

10

Modeling of automobile body by surface
modeling system

11

Calculation and verification of NC tool paths

12

Solid Modeling System
 Adjacency information between faces, and inside-

outside information of each face are stored in
addition

 Volume inside modeled object is defined
 Volumetric operations are possible
 Automatic generation of solid elements for FEA
 Automatic generation of tool paths for rough cut

13

Solid Modeling System – cont’
 Partial modeling is not allowed, complete solid model

should be made
 More modeling tasks
 Many convenient modeling commands are provided
 Face adjacency, in-out information, etc. are generated by

the system

14

Non-manifold Modeling System
 Accommodate all different levels of geometric model
 Wireframe model : Wireframe modeling system
 Surface model : Surface modeling system
 Solid model : Solid modeling system

 Models of mixed dimension, incomplete models are
allowed (support design process, analysis model)

15

Non-manifold Modeling System

16

 Retrieves a solid of a
simple shape

 Primitives are stored
by the procedures how
they are created.

 Parameters specifying
the size are passed to
the corresponding
procedure as
arguments.

17

Modeling Functions
(1) Primitives Creation

Modeling Functions
(2) Boolean operation

 Primitive solid is assumed to be a set of points
 Boolean operation is performed between the point

sets
 The result is the solid composed of the points

resulting from the set operation.

18

Modeling Functions
(2) Boolean operation

19

Modeling Functions
(2) Boolean operation

 Boolean operation may result an invalid solid
 Non-manifold modeling systems can handle Boolean

operations between objects of mixed dimension.

20

Example of Boolean operation to be avoided

21

BA 

A

B

A  BA∩B

Example of modeling in CSG approach

22

Modeling Functions
(3) Sweeping

 Planar closed domain is translated or revolved to
form a solid

 When the planar shape is not closed, the result is a
surface
 Used in surface modeling system

23

Modeling Functions
(3) Sweeping – Example.1

 Example of translation sweeping

24

Modeling Functions
(3) Sweeping – Example.2

 Example of rotational sweeping

25

Generator
surface

Swept
solid

Axis of revolution

Modeling Functions
(4) Skinning

 Form a closed volume by creating a skin surface
over pre-specified cross sectional planar curves

 If two end faces corresponding to the two end cross
sections are not added, the result would be a surface
 Used in surface modeling system

26

27

Modeling Functions
(4) Skinning (Lofting) - Example

Modeling Functions
(5) Blending

 Sharp edge or sharp vertex is replaced by a smooth
curved surface

 Normal vector is continuous across the surfaces
meeting at the original sharp edge or vertex

28

Modeling Functions
(5) Blending – Example

29

Edge rounding Edge filleting Vertex rounding

complex intersecting blends

Modeling Functions
(6) Lifting

30

 Pull a portion or whole face of a solid

Example of lifting

Modeling Functions
(6) Lifting

31

 Face lifting

Modeling Functions
(6) Lifting

 When a portion of a face is lifted, the face should be
split beforehand
 Add a splitting edge
 Update face connectivity
 Update edge adjacency, …

 Euler operators will handle these tasks

32

Modeling Functions
(6) Lifting

33

 Self interference caused by lifting

Modeling Functions
(7) Tweaking

 Vertex Tweaking  Edge Tweaking

34

35

Modification by vertex moving

Modification by edge replacement

Modeling Functions
(7) Tweaking

Modeling Functions
(8) Boundary Modeling

36

 Add, delete, modify entities such as vertices, edges,
and faces directly

Modeling Functions
(8) Boundary Modeling

 Very tedious operation
 Boundary modeling functions are mainly used to

create only up to two dimensional shapes which are
used for sweeping or skinning

 Can be effectively applied to modify a shape of an
existing solid
 Tweaking operation

37

Modeling Functions
(9) Feature based modeling

 Let designers model a solid by the shape units
familiar to them

 The resulting solid carries the information on the
existence of these shape units in addition to the
elementary shape entities such as vertices, edges,
faces, etc.

38

Modeling Functions
(9) Feature based modeling

 E.g.
 ‘ Make a hole of a certain size at a certain place ’
 ‘ Make a chamfer of a certain size at a certain place ’

 Existence of hole and chamfer is added to model information

 Set of features varies depending upon the frequent
applications of the system

39

Modeling Functions
(9) Feature based modeling

 Popular feature
chamfer, hole, fillet, slot, pocket, …

manufacturing features

These features can be matched to
a specific machining process

40

Modeling Functions
(9) Feature based modeling

41

Example of modeling using “slot” and “hole” features

Example modeling using machining features

42

(a) Chamfering

(c) Pocket (d) Fillet

(b) Hole

Modeling Functions
(9) Feature based modeling

 Any feature based modeling system cannot provide
all the features necessary for all the specific
applications

 The desirable set of features is different between
applications

 Many systems provide feature definition language so
that any specific feature can be defined

 When they are defined, they are parameterized as
the primitives

43

Modeling Functions
(10) Parametric Modeling

 Model a shape by using the geometric constraints
and the dimension data

 Geometric constraints describe the relation between
shape elements

 Dimensional data include dimensions and relations
between the dimensions

44

Modeling Functions
(10) Parametric Modeling

 Input two dimensional shape roughly
 Input geometric constraints and dimension data
 Reconstruct the two dimensional shape
 Create 3D shape by sweeping or swinging

45

Modeling Functions
(10) Parametric Modeling

46



Data structure of solid model
 CSG Representation storing CSG tree
 Store procedure Boolean operation in tree structure

 Boundary Representation (B-Rep)
 Data structure vertex, edge, face tables
 Data structure using half edge
 Data structure using Winged-edge

47

Data structure of solid model – cont’
 Data structure storing decomposition model
 Octree representation
 Voxel representation
 Cell decomposition model
 Similar to finite element

48

CSG tree
 Stores the procedure in which Boolean operations

are applied

49

Example of CSG tree

P0

P1

P2

P0

P1

P2

Implementation of CSG tree structure in C
language
struct operator {

int op_type, /* union, intersection or difference operator */

L_type; /* left node type: 0=operator, 1=primitive */

R_type /* right node type: 0=operator, 1=primitive */

void *L_ptr; /* left node */

R_ptr; / right node */

p_ptr; / parent node */

}

struct primitive {

int prim_type; /* type of primitive */

double pos_x, pos_y, pos_z; /* position of instance */

double ori_x, ori_y, ori_z; /* orientation of instance */

void *attribute; /* the value of dimensions of the primitive */

}

50

CSG tree representation– advantages
 Compact data, Easy to maintain
 Represent only valid object
 Possible to be converted to B-Rep
 Many applications can be integrated
 Model can be easily changed by changing parameter

values of primitives

51

CSG tree representation – disadvantages
 Allows only Boolean operations
 Shapes to be modeled are limited
 Impossible to modify locally
 Significant computation is required for boundary

evaluation
→ bad for interactive display

 Trends are to store B-Rep and Feature tree together

52

Modification of solid by changing parameters

53

B-Rep(Boundary Representation)
 Shape is expressed by its bounding entities such as

faces, edges, and vertices
 Bounding entities and their connectivity are stored in

graph structure
→ Graph-based model

54

B-Rep Structure – cont’

55

Body

Face

Edge

Vertex Vertex

List of faces

List of
edges

End vertices

< Topology >< Geometry >

Surface Eqn.

Curve Eqn.

X,Y,Z
Position

Topology vs. Geometry

B-Rep – advantages
 Boundary data are stored explicitly and enables

quick interactive response
 Topology information can be easily derived
 Supports various modeling commands (local

operations in addition to Boolean)

56

B-Rep – disadvantages
 Complicated data structure with a large amount of

data
 Invalid solid may result

57

Table-based structure for storing B-Rep

58

Face table Edge table Vertex table

Face Edges Edge Vertices Vertex Coordinates
F1 E1, E5, E6 E1 V1, V2 V1 x1, y1, z1
F2 E2, E6, E7 E2 V2, V3 V2 x2, y2, z2
F3 E3, E7, E8 E3 V3, V4 V3 x3, y3, z3
F4 E4, E8, E5 E4 V4, V1 V4 x4, y4, z4
F5 E1, E2, E3, E4 E5 V1, V5 V5 x5, y5, z5
 E6 V2, V5 V6 x6, y6, z6
 E7 V3, V5
 E8 V4, V5

Things to be cosidered
 Balance between structure compactness and

effectiveness in data retrieval
 Basically used for polyhedron models
 For objects with curved surfaces and curved edges,

information on surface equations are stored in the
Face table, information on curve equations are
stored in the Edge table

 If there are faces with holes, the current Face table
cannot be used

59

Treatment of face with multiple boundaries

60

Adding bridge-edge is one way to
handle hole

B-Rep – Things to be considered
 Length of edge table in the Face table varies

→ Loss of memory usage
 Deriving adjacency among Vertex, Edge, Face

requires a heavy search

Ex) Which faces share a given edge?
Which edges share a given vertex?

61

Half Edge Data Structure
 Varying length of edge list in the Face table can be

solved by linked list

62

F1

E5 E6 E1

F2

E2 E6 E7

Doubly linked list for face F1

Doubly linked list for face F2

Half Edge Data Structure – cont’
 Every face points to any one edge, every edge

points to its next edge
→ The number of edges bounding a face has no effect

 The next edge of edge E6 changes depending on
the face being considered

→ Data for F2 are deleted when data for F3 is stored

 Each edge is split into two halves, and each split
edge is used for each Face

→ half edge
63

Half edges of the example solid

64

F1

h9 h12 h2

F2

h4 h11 h14

Doubly linked list using half edges

Half Edge Data Structure – cont’
 Face with holes has a peripheral boundary and

several inner boundary
→ Attach the inner boundaries to the peripheral

boundary using bridge-edges
→ Introduce the Loop concept

65

Treatment of a face with holes using loops

66

F1

L1 L2 L3

h9 h11 h13 h15

h1 h3 h5 h7

Half Edge Data Structure – cont’
 Assign opposite directions for peripheral boundary

and inner boundary
→ Inside of face always exists on the left-hand side as

one proceed along the boundary
→ Inside and outside of face is specified

67

Half Edge Data Structure – cont’
 For connectivity among vertex, edge, face

Edge Half edge Vertex

he1 he2 Starting vertex he

 Ex) Which loops share a given edge?
Which edges share a given vertex?

68

Half Edge Data Structure (represented by C)
struct solid

{

Id solidno ; /* solid identifier */

Face *sfaces ; /* pointer to list of face */

Edge *sedges ; /* pointer to list of edges */

Vertex *sverts ; /* pointer to list of vertices */

Solid *nexts ; /* pointer to next solid */

Solid *prevs ; /* pointer to previous solid */

} ;

struct face

{

Id faceno ; /* face identifier */

Solid *fsolid ; /* back pointer to solid */

Loop *flout ; /* pointer to outer loop */

Loop *floops ; /* pointer to list of loops */

vector feq ; /* face equation */

Face *nextf ; /* pointer to next face */

Face *prevf ; /* pointer to previous face */

} ;

69

Half Edge Data Structure (represented by C)
– cont’
struct loop

{

HalfEdge *ledg ; /* ptr to ring of halfedges */

Face *lface ; /* back pointer to face */

Loop *nextl ; /* pointer to next loop */

Loop *prevl ; /* pointer to previous loop */

} ;

struct edge

{

HalfEdge *he1 ; /* pointer to right halfedge */

HalfEdge *he2 ; /* pointer to left halfedge */

Edge *nexte ; /* pointer to next edge */

Edge *preve ; /* pointer to previous edge */

} ;

70

Half Edge Data Structure (represented by C)
– cont’
struct halfedge

{

Edge *edg ; /* pointer to parent edge */

Vertex *vtx ; /* pointer to starting vertex */

Loop *wloop ; /* back pointer to loop */

Halfedge *nxt ; /* pointer to next halfedge */

Halfedge *prev ; /* pointer to previous halfedge */

} ;

struct vertex

{

Id *vertexno ; /* vertex identifier */

HalfEdge *vedge ; /* pointer to a halfedge */

vector *vcoord ; /* vertex coordinates */

Vertex *nextv ; /* pointer to next vertex */

Vertex *prevv ; /* pointer to previous vertex */

} ;

71

Half Edge Data Structure (represented by C)
– cont’
union nodes

{

Solid s ;

Face f ;

Loop l ;

HalfEdge h ;

Vertex v ;

Edge e ;

} ;

72

Example of finding an adjacency information
between edges and vertices

73

V1

h1

h2

prev_h1

new_h2

Winged Edge Data Structure
 Half edge data structure
 Face is the agent to provide the connectivity

 Winged edge data structure
 Edge is the agent to provide the connectivity
 Edge list of faces are derived when needed
 Proposed by Baumgart in 1974
 Extended by Braid in 1979

 Loop concept is introduced to handle faces with holes

74

Definition of winged edges

75

V1

E3

V2

E1

E2

E4 E5

F1
F2

L1 L2

Winged Edge Data Structure – cont’
 E2, E3, E4, E5: Winged edges of E1

 Four winged edges stored with specific names
→ connectivity defined explicitly

 Every edge is assigned direction

76

Connections between vertices, edges, and
faces

77

Edge

Next Vertex

Previous Vertex

Left-arm Edge

Left-leg Edge

Left Loop

Right-arm Edge

Right-leg Edge

Right Loop

Loop

Edge

Vertex

Edge

Winged Edge Data Structure – cont’
 Neighboring faces of an edge have specific names

 F1 Left face
 F2 Right face

78

Winged Edge Data Structure – cont’
 Loop is used to handle faces with holes

L1 ← E1 → L2

Left loop Right Loop

79

Face

Loop 1 Loop 2 Loop n

Winged Edge Data Structure – cont’
 Every Loop points to any one edge
 Edge list of a loop can be derived by tracing winged

edges
 Connectivity between edges and vertices are also

stored

80

Edge

Previous
vertex

Next
vertex

Vertex

Edge

Winged Edge Data Structure
(represented by C)
typedef struct snu_body Body;

typedef struct snu_shell Shell;

typedef struct snu_face Face;

typedef struct snu_loop Loop;

typedef struct snu_edge Edge;

typedef struct snu_vertex Vertex;

typedef struct snu_surface Surface;

typedef struct snu_curve Curve;

typedef struct snu_point Point;

struct snu_body

{

int id; /*body indentifier*/

Body *next; /*pointer to next body */

Shell *shell; /*pointer to shell*/

Char *name; /*pointer to body name */

};

81

Winged Edge Data Structure
(represented by C) – cont’
struct snu_shell

{

int id; /*shell indentifier*/

Body *body; /*pointer to body */

Shell *next; /*pointer to next shell*/

Face *face; /*pointer to face*/

};

struct snu_face

{

int id; /*face indentifier*/

Shell *shell; /*pointer to shell*/

Face *next; /*pointer to next face*/

Loop *loop; /*pointer to loop*/

Surface *surface; /*pointer to geometry data*/

};

82

Winged Edge Data Structure
(represented by C) – cont’
struct snu_loop

{

int id; /*loop indentifier*/

Face *face; /*pointer to face*/

Loop *next; /*pointer to next loop*/

Edge *edge; /*pointer to edge */

int type ; /*loop type*/

};

83

Winged Edge Data Structure
(represented by C) – cont’
struct snu_edge

{

int id; /*edge indentifier*/

Loop *left_loop; /*pointer to left loop*/

Loop *right_loop; /*pointer to right loop*/

Edge *left_arm; /*pointer to left arm (ccw left edge)*/

Edge *left_leg; /*pointer to left leg (cw left edge)*/

Edge *right_leg; /*pointer to right leg (ccw right edge)*/

Edge *right_arm; /*pointer to right arm (cw right edge)*/

Vertex *tail_vertex; /*pointer to tail vertex (previous vertex)*;/

Vertex *head_vertex; /*pointer to head vertex (next vertex)*/

Curve *curve; /*pointer to geometry data*/

};

struct snu_vertex

{

int id; /*vertex indentifier*/

Edge *edge; /*pointer to edge*/

Point *point; /*pointer to geometry data */

};
84

Winged Edge Data Structure – cont’

85

Decomposition Model Data Structure
 Decomposition model:
 Represent an object as an aggregation of simple objects

such as cubes

86

Voxel model (Exhaustive enumeration)
 Space of interest is represented by a set of cubes

(voxels) after being subdivided by grid planes
 Only the voxels embodied by the object are stored
 Use 3D array C(i, j, k), C(i, j, k) corresponding to the

embodied voxels is set to 1. Others set to 0
 Popular in digital image processing

87

Voxel model – cont’
 Any shape can be represented, approximately at

elast
 Used to model human bones and organs from digital

topography
 Easy to implement mass property calculation and

Boolean operation
 Information on empty space is also available

88

Voxel model – cont’
 Memory requirement varies drastically depending

upon desired resolution
 Used as a secondary representation for computation

convenience

89

Visualization of voxel representation

90

Octree representation
 Only voxels occupying the object space are

subdivided, Extension of Quadtree to 3D

91

Data structure for storing octrees
struct octreeroot

{

float xmin, ymin, zmin; /* space of interest */

float xmax, ymax, zmax;

struct octree *root; /* root of the tree */

};

struct octree

{

char code; /* BLACK, WHITE, GREY */

struct octree *oct[8]; /* pointers to octants, present if
GREY */

};

92

Procedure of octree generation
make_tree(p, t, depth)

primitive *p; /* p = the primitive to be modeled */

octree *t; /* t = node of the octree, initially

the initial tree with one grey node */

int depth; /* initially max. depth of the recursion */

{

int i;

switch(classify(p, t))

{

case WHITE:

t->code = WHITE;

break;

case BLACK:

t->code = BLACK;

break;

93

Procedure of octree generation – cont’
case GREY:

if(depth == 0)

{

t->code = BLACK;

}

else

{

subdivide(t);

for(i = 0; i < 8; i++)

make_tree(p, t->oct[i],
depth-1);

}

break;

}

}

}

/* classify octree node against primitives */

classify(…);

/* divide octree node into eight octants */

subdivide(…);

94

Cell decomposition model

95

