
SolidWorks 2006 API 1

Human Centered CAD Laboratory

2009-04-161

About
 The Goal
 The goal of this course is to introduce you the SolidWorks

2006 Application Programming Interface(API). Using the
SolidWorks API is a great way to automate routines. Just
about everything a user leverages through the user
interface is available in the API.

 Course Design Philosophy
 This course is designed around a process or task based

approach to training. Rather than focus on individual
features and functions, a process-based training course
emphasizes the process and procedures you follow to
complete a particular task.

2

Getting Started
 For foreign students
 SolidWorks can be run in English mode.
 How to change the SolidWorks language Option

 ‘도구’->’옵션’->’시스템옵션’->’일반’->’영어사용’

3

Getting Started – cont’
 For foreign students
 The VISUAL BASIC .NET Editor will be seen in Korean

mode on Microsoft Windows XP Korean edition.
 You can solve this problem by changing some system

language options of Windows XP.
 First, click ‘시작’ button in the lower-left corner of

Windows XP, then select ‘제어판’.
 Click ‘국가및언어옵션’ , then select ‘고급’ tap.
 In ‘유니코드를지원하지않는프로그램용언어’ , change

the language from ‘한국어’ to ‘영어(미국)’.
 In next page, the entire process will be shown.

4

Getting Started – cont’

5

Getting Started – cont’
 Cautions
 If you changed the Windows non-unicode program

language option, you should pay attention to the names of
objects in SolidWorks.

 If you use SolidWorks in English Mode, you had better to
modify objects’ names in English.

 You must change followings in English if you changed the
non-unicode program language option.

6

Getting Started – cont’
 A few things to note
 File types

 In Solidworks , the macro files we will create are of type:
SW VBA Macros (*.swp)

 In Visual Basic .NET, these files may be necessary:
Project Files (*. Vbp), Class Files (*. cls),
Resource Files(*.res), Dynamic-Link Library(*.dll)

 Option Explicit
 It is strongly recommended that you use the Option Explicit

statement in all Visual Basic development. This forces
declaration of all variables before use. By doing this, Visual
Basic allows you to use error and type checking when
debugging applications.

7

Getting Started – cont’
 A few things to note
 How to set the Option Explicit function in VB Editor

 ‘Tools’ -> ‘Options’ -> ‘Editor’ -> ‘Code Settings’ -> ‘Require
variable Declaration’

8

Getting Started – cont’
 Variables
 Variables are used to store temporary values during the

execution of an application. Variables are made up of two
parts : Name and Data Type. You declare a variable with
the Dim statement, supplying a name for the variable:
Dim variablename [As data type]
The optional, As data type, clause in the Dim statement
allows you to define the data type or object type of the
variable. Examples are:
 Dim swApp AS object ‘Generic object
 Dim swApp AS sldworks.sldworks ‘Specific object
 Dim dvarArray(2) AS Double ‘Set of 3 doubles

9

Getting Started – cont’
 Solidworks Constants – swconst.bas
 For Solidworks API development, you should always add

the Solidworks constant file to each project or macro. In
visual basic, select Project, Add Module, and under the
Existing tab, browse to the location for this file(it is
installed Solidworks):
<install directory>\Solidworks\samples\appcomm
\swconst.bas
This file provides definitions to use with Solidworks API
functions.
When you make your macro file by macro-recording
method which is used in this course, you don’t need to
mind this work.

10

Getting Started – cont’
 SolidWorks 2006 Type Library
 Visual Basic programs are enhanced by creating objects

with specific Type Library interface types, rather than the
generic object type. In order to do leverage this, we add a
reference to the SolidWorks 2006 Type Library. As a
convenience, the macro recorder will do this for you by
default.

 To make sure the reference is
made, in VBA, click Tools,
References and the option for
SolidWorks 2006 Type Library
should be checked.

11

Getting Started – cont’
 SolidWorks 2006 Type Library(cont’)
 If it is not checked, browse to its location (installed with

SolidWorks):
<install directory>\SolidWorks\sldworks.tlb

 This file contains the exposed objects, properties, and
methods that are available for Solid Works automation.
When the type library is referenced, a drop down list after
the dot (.) separator (behavior known as IntelliSense) will
display SolidWorks objects, properties and methods that
the programmer can use .

12

Getting Started – cont’
 Early vs. Late Binding
 Binding is simply a verification process that Visual Basic

uses to search through an object-type library (in our case,
the SolidWorks 2006 Type Library) make sure an object
exists, and that any properties or methods used with it are
correctly specified. There are two types of binding:

 Late Binding

 It is best to use early binding because it makes your code
more efficient and your application faster!

13

Dim swApp As Object
Dim swModel As Object

Sub main()
Set swApp = Application.SldWorks
Set swModel = swApp.ActiveDoc

End Sub

Dim swApp As SldWorks.SldWorks
Dim swModel As SldWorks.ModelDoc2

Sub main()
Set swApp = Application.SldWorks
Set swModel = swApp.ActiveDoc

End Sub

 Early Binding

Using the Macro Recorder
 Macro Recording
 You can record operations performed with the SolidWorks

user interface and replay them using SolidWorks macros.
A macro contains calls to the Application Programming
Interface(API) that are equivalent to operations performed
in the user interface. A macro can record mouse clicks,
menu choices and keystrokes.

 Macro Toolbar
 The macro toolbar contains shortcuts to the macro

recording commands. You can also access these
commands from the Tools, Macro menu.

14

Using the Macro Recorder – cont’
 Macro Toolbar(cont')
 By default, the Macro toolbar

is turned off. To create and use
your macros, it is best to view
and dock the macro toolbar
at the top of the SolidWorks
Window. From the View menu,
select Toolbars, Macro.

15

Using the Macro Recorder – cont’
 First try to make an own macro

1. Start Solidworks and create new part.
2. View Macro toolbar and click ‘Record’ button.
3. Select the Front plane.

16

Using the Macro Recorder – cont’
 First try to make an own macro(cont')

4. Click Sketch and click Circle .
- Use an approximate radius of 40 millimeters, then enter the

exact value of 40mm in the PropertyManager.

17

Using the Macro Recorder – cont’
 First try to make an own macro(cont')

5. Click Extruded Boss/Base .
- Drag the extrude path approximately 15 mm, then enter the

exact value of 15mm in the PropertyManager. Click OK.

6. Click ‘Stop’
18

Using the Macro Recorder – cont’
 First try to make an own macro(cont')

7. ‘Save’ macro.
- In the Save As dialog, save the macro as Macro1.swp.

8. Delete all features.
- Remove the extruded base and sketch created previously.

9. Click ‘Play’ .
- Select Macro1.swp from the previous step.

19

Using the Macro Recorder – cont’
 Automation Review
 Click1 : Select a plane.
 Click2 : Insert sketch command.
 Click3 : Create circle command.
 Click4 : Center of circle
 Click5 : Approximate 40mm radius of circle.
 Keyboard Entry1 – Exact radius : 40 mm.
 Click6 : OK button
 Click7 : Extruded boss/base function
 Click8 : Approximate 15mm depth of extrusion
 Keyboard Entry2 – Exact depth : 15mm.
 Click9 : OK button.

20

Using the Macro Recorder – cont’
 Visual Basic for Applications editor
 Click the ‘Edit’ button from the Macro toolbar.
 Select Macro1.swp.

21

Using the Macro Recorder – cont’
 Understanding How Macro Code Works
 Variable Declaration

 The macro recorder declares(or dimensions) a number of
variables by default. You can comment out or delete variables
not utilized in the entry point procedure.

22

Option Explicit
'******************************
'* Macro
'******************************
Dim swApp As Object
Dim Part As Object
Dim SelMgr As Object
Dim boolstatus As Boolean
Dim longstatus As Long, longwarnings As Long
Dim Feature As Object

Using the Macro Recorder – cont’
 Understanding How Macro Code Works

 Entry Point Procedure
 This is the beginning of our functionality. Every macro must

establish an entry point procedure.

 SolidWorks Application Object
 This line of code will start an instance of SolidWorks or connect

to a running instance of SolidWorks. Without it, your program
will not run.

 SolidWorks Documentation Object
 In order for us to work within the application, top-level document

objects are accessed and made active. This allows the ability to
program document specific functionality.

23

Sub main()

Set swApp = Application.SldWorks

Set Part = swApp.ActiveDoc

Using the Macro Recorder – cont’
 Understanding How Macro Code Works
 SolidWorks API Calls

 An API call allows the macro to perform certain tasks. This is
where we see our recorded steps taking shape:
 Selecting an plane / Inserting a sketch
 Creating a circle / Extruding a feature

 Procedure End
24

Set SelMgr = Part.SelectionManager
boolstatus = Part.Extension.SelectByID2("Front", "PLANE", 0, 0, 0, False, 0, Nothing, 0)
Part.InsertSketch2 True
Part.ClearSelection2 True
Part.CreateCircle 0, 0, 0, 0.0317373, -0.0224536, 0
Part.ShowNamedView2 "*Trimetric", 8
Part.ClearSelection2 True
boolstatus = Part.Extension.SelectByID2("Arc1", "SKETCHSEGMENT", 0, 0, 0, False, 0, Nothing, 0)
Part.FeatureManager.FeatureExtrusion2 True, False, False, 0, 0, 0.015, 0.01, False, False, False,
False, 0.01745329251994, 0.01745329251994, False, False, False, False, 1, 1, 1, 0, 0, False
Part.SelectionManager.EnableContourSelection = 0

End Sub

Using the Macro Recorder – cont’
 Understanding How to Call Methods

1. The SldWorks object(declared swApp by default), the
highest level object in the SolidWorks API, is accessed
by implementing the following lines :

2. The document object, PartDoc(Part) is accessed by
implementing the following lines which calls a property
on the application object:

25

Dim swApp As Object
Set swApp = Application.SldWorks

Dim Part As Object
Set Part = swApp.ActiveDoc

Using the Macro Recorder – cont’
 Understanding How to Call Methods(cont')

3. Once the application and document objects are set,
events, properties and methods on those objects are
called. To access these functions the object name is
written first, separated by a period, and followed by the
full name of the API call:

Some APIs require additional parameters :

26

Part.InsertSketch2 True

Part.CreateCircle 0, 0, 0, 0.0317373,
-0.0224536, 0

Using the Macro Recorder – cont’
 Understanding How to Call Methods(cont')
 Some APIs require additional objects :

 Some APIs utilize return values
(called retval in the API help file) :

27

Part.FeatureManager.FeatureExtrusion2 True, False,
False, 0, 0, 0.015, 0.01, False, False, False, False, 0.01
745329251994, 0.01745329251994, False, False, False,
False, 1, 1, 1, 0, 0, False

Dim boolstatus As Boolean
boolstatus = Part.Extension.SelectByID2("Arc1",
"SKETCHSEGMENT", 0, 0, 0, False, 0, Nothing, 0)

Using the Macro Recorder – cont’
 Passing Parameters
 FeatureManager::FeatureExtrusion

 Parameter details:
 Let’s see SolidWorks 2006 API Help
 Click Help -> SolidWorks API Help Topics
 The file is also located in:

<install directory>\SolidWorks\lang
\apihelp.chm

28

pFeat = FeatureManager.FeatureExtrusion2 (sd, flip, dir, t1, t2,
d1, d2, dchk1, dchk2, ddir1, ddir2, dang1, dang2, offsetReverse1,
offsetReverse2, translateSurface1, translateSurface2, merge,
useFeatScope, useAutoSelect, t0, startOffset, flipStartOffset)

Using the Macro Recorder – cont’
 Cleaning Up native macro code
 Lines in red can be deleted(unnecessary).
 Lines in blue can be modified(better API calls exist).

29

Option Explicit
' **
' C:\DOCUME~1\sontg\LOCALS~1\Temp\swx2380\Macro1.swb - macro recorded on 04/14/08 by HCCL
' **
Dim swApp As Object
Dim Part As Object
Dim SelMgr As Object
Dim boolstatus As Boolean
Dim longstatus As Long, longwarnings As Long
Dim Feature As Object
Sub main()

Set swApp = Application.SldWorks
Set Part = swApp.ActiveDoc
Set SelMgr = Part.SelectionManager
boolstatus = Part.Extension.SelectByID2("Front", "PLANE", 0, 0, 0, False, 0, Nothing, 0)
Part.InsertSketch2 True
Part.ClearSelection2 True
Part.CreateCircle 0, 0, 0, 0.0317373, -0.0224536, 0
Part.ShowNamedView2 "*Trimetric", 8
Part.ClearSelection2 True
boolstatus = Part.Extension.SelectByID2("Arc1", "SKETCHSEGMENT", 0, 0, 0, False, 0, Nothing, 0)
Part.FeatureManager.FeatureExtrusion2 True, False, False, 0, 0, 0.015, 0.01, False, False, False, False, 0.01745329251994,
0.01745329251994, False, False, False, False, 1, 1, 1, 0, 0, False
Part.SelectionManager.EnableContourSelection = 0

End Sub

Using the Macro Recorder – cont’
 Cleaning Up native macro code(cont’)
 Never be satisfied with results the SolidWorks macro

recorder returns. Always look to improve and clean up
your code. We can use the online API help file in
SolidWorks to search out new, improved or just alternative
API calls for our needs.

 There is another way to create a circle. CreateCircle
requires six parameters: xc, yc, zc, xp, yp, zp. This
method creates a circle based on a center point and a
point on the circle. That is not exactly what we performed
with the user interface.

 We can replace this function by CreateCircleByRadius2,
and only requires these parameters: xc, yc, zc, radius.

30

Using the Macro Recorder – cont’
 Adding Forms to a Macro

 One of the easiest ways to get someone
launch your code is to add a form
(called userforms in VBA) to the macro.

 Where to Find it
 In VBA, click Insert, UserForm.
 In VBA, within the Project Explorer

window, right-click the macro and
select Insert, UserForm.

 The VBA Toolbox is displayed along with the form by
default. If it does not appear click View, Toolbox.

31

Using the Macro Recorder – cont’
 Add form to macro.
 In VBA, click Insert, UserForm.

 Edit form properties.
 With the form highlighted,

enter the following property values:

32

UserForm1:
(Name): frmMacro1a
Caption: Cylinders
ShowModal: False
Startup Position: 2 - centerScreen

Using the Macro Recorder – cont’
 Add controls to form.
 From the toolbox, drag and drop one label and five

command buttons onto the form. Use the following as a
guide for each control:

33

CommandButton1:
(Name): cmd100mm
Caption: 100 mm

CommandButton2:
(Name): cmd500mm
Caption: 500 mm

CommandButton3:
(Name): cmd1m
Caption: 1 m

CommandButton4:
(Name): cmd5m
Caption: 5 m

CommandButton5:
(Name): cmdExit
Caption: Exit

Using the Macro Recorder – cont’
 Add click event to each button.
 Double-click each button control to set up an empty click

event procedure. The VBA editor automatically adds the
necessary entry point and end to each event.

34

Private sub cmd100mm_Click()
End sub

Private sub cmd500mm_Click()
End sub

Private sub cmd1m_Click()
End sub

Private sub cmd5m_click()
End sub

Private sub cmdExit Click()
End sub

Using the Macro Recorder – cont’
 Move code from module to buttons
 At this point the entire macro file should contain one

module and one form. We want to keep both, but move
code to different locations.

 Cut everything within the module leaving only an empty
entry point procedure (Sub main End Sub). Paste the
code in the click event for each command button (except
the Exit button).

 Look closely at the code below. Only one parameter
(shown in bold) is changed to account for the different
extrusion depths of each button.

35

Using the Macro Recorder – cont’
 Move code from module to buttons(cont’)

36

Option Explicit

Private Sub cmd100mm_Click()
Dim swApp As Object
Dim Part As Object
Dim boolstatus As Boolean

'connect to solidworks
Set swApp = Application.SldWorks
Set Part = swApp.ActiveDoc

'Create a cylinder on the front plane
boolstatus = Part.Extension.SelectByID("Front", "PLANE", 0, _
0, 0, False, 0, Nothing)
Part.InsertSketch2 True
Part.CreateCircleByRadius2 0, 0, 0, 0.04
Part.FeatureManager.FeatureExtrusion2 True, False, False, 0, 0, _
0.1, 0.01, False, False, False, False, 0.01745329251994, 0.01745329251994, _
False, False, False, False, 1, 1, 1, 0, 0, False

End Sub

Using the Macro Recorder – cont’
 Move code from module to buttons(cont’)

Program the Exit button to allow the user to terminate the macro.

37

Part.FeatureManager.FeatureExtrusion2 True, False, False, 0, 0, _
0.5, 0.01, False, False, False, False, 0.01745329251994, 0.01745329251994, _
False, False, False, False, 1, 1, 1, 0, 0, False

Private Sub cmdExit_Click()
End

End Sub

Part.FeatureManager.FeatureExtrusion2 True, False, False, 0, 0, _
1.0, 0.01, False, False, False, False, 0.01745329251994, 0.01745329251994, _
False, False, False, False, 1, 1, 1, 0, 0, False

Part.FeatureManager.FeatureExtrusion2 True, False, False, 0, 0, _
5.0, 0.01, False, False, False, False, 0.01745329251994, 0.01745329251994, _
False, False, False, False, 1, 1, 1, 0, 0, False

Using the Macro Recorder – cont’
 Add code to module.
 Switch back to the module. In order for the macro to run

in SolidWorks, the entry point procedure on the module
needs to show the userform. Enter the following line of
code:

 Save and Run macro.
 Save the macro. With SolidWorks open and a new part

file created, run the macro either from the Macro toolbar
or from the VBA editor.

 Exit macro.
 Click the Exit button to end the macro and return to VBA..

38

Sub main()
frmMacro1a.Show

End Sub

Using the Macro Recorder – cont’
 Add second form.
 Click Insert, UserForm. Enter the following property

values (next page).
 Add user interaction controls to second form.
 To capture input from a user, we add textbox controls that

ask the user to specify the depth and diameter rather than
hard-coding the values.

 Drag and drop the necessary labels, text boxes and com
mand buttons onto frmMacro1b using the followings as a
guide for each control :

39

Using the Macro Recorder – cont’
 Continue…

40

UserForm2:
(Name): frmMacro1b
Caption: Custom cylinder
Startup Postion: 2 - Centerscreen
ShowModal: False

TextBox1:
(Name): txtDiameter
Text: <leave blank>

TextBox2:
(Name): txtDepth
Text: <leave blank>

CommandButton1:
(Name): cmdBuild
Caption: Build

CommandButton2:
(Name): cmdExit
Caption: Exit

Using the Macro Recorder – cont’
 Add code to each button.
 We want each string value in the text boxes to be

converted to a double value for diameter and depth. Make
a copy of the working code you already have from one of
the buttons on frmMacro1a and paste into a click event
for cmdBuild on frmMacro1b. Then make the adjustments
to the code:

41

Option Explicit

Private Sub cmdBuild_Click()
Dim swApp As Object
Dim Part As Object
Dim boolstatuS As Boolean
Dim diameter As Double
Dim depth As Double

diameter = CDbl(txtDiameter.Text) / 1000
depth = CDbl(txtDepth.Text) / 1000
‘Continue on next page …

Using the Macro Recorder – cont’
 Add code to each button.(cont’)

 Also remember to program cmdExit to terminate the
macro

42

'Connect to Solidworks
Set swApp = Application.SldWorks
Set Part = swApp.ActiveDoc

'Create a cylinder on the front plane
boolstatuS = Part.Extension.SelectByID("Front", "PLANE", 0, _
0, 0, False, 0, Nothing)
Part.InsertSketch2 True
Part.CreateCircleByRadius2 0, 0, 0, diameter / 2
Part.FeatureManager.FeatureExtrusion2 True, False, False, 0, 0, _
depth, 0.01, False, False, False, False, 0.01745329251994, 0.01745329251994, _
False, False, False, False, 1, 1, 1, 0, 0, False

End Sub

Private Sub cmdExit_Click()
End

End Sub

Using the Macro Recorder – cont’
 Modify code of module
 In order for macro to show userform frmMacro1b instead

of frmMacro1a, the entry point procedure on the module
needs to show the userform frmMacro1b.

 Save and run macro

 Exit macro
43

Sub main()
frmMacro1b.Show

End Sub

SolidWorks API Object Model
 SolidWorks API Object
 The following diagram is a

general depiction of the
SolidWorks API Object Model

44

SolidWorks API Object Model – cont’
 SldWorks Object(swApp)
 The SldWorks object (declared swApp by default), the

highest level object in SolidWorks, provides access to all
other objects exposed in the API. It is also referred to as
an interface that provides a general set of functions that
allow application level operations. Use the following two
lines of code to connect to the SldWorks object:

 The variable, swApp, is arbitrary and is declared using a
generic type, Object, rather than a specific type, SldWorks.
SldWorks. This is discussed in Early vs. Late Binding.

 As we progress, it is better practice to use early binding tech
niques when programming with the SolidWorks API.

45

Dim swApp As SldWorks.SldWorks
Set swApp = Application.SldWorks

SolidWorks API Object Model – cont’
 SldWorks Methods and Properties

46

.NewDocument (TemplateName, Papersize, width, Height)

.RevisionNumber ()

.DisplayStatusBar (Onoff)

.SolidworksExplorer ()

.OpenDoc6 (FileName, Type, Options, Config, Errors, Warnings)

.LoadFile3 (FileName, ArgumentString, ImportData)

.CreateNewWindow ()

.Arrangewindows (Style)

.ActiveDoc ()

.ActivateDoc2 (Name, silent, Errors)

.CloseDoc (Name)

.QuitDoc (Name)

.ExitApp ()

.DocumentVisible (visible, Type)

.SendMsgToUser (Message, Icon, Buttons)

SolidWorks API Object Model – cont’
 ModelDoc2 Object
 The ModelDoc2 object (swModel) contains functions that

are common to all three document types: parts,
assemblies and drawings. Use one of the following
methods below on the SldWorks object (also known as
accessors) to connect to the ModelDoc2 object:

47

‘option 1
Dim swModel As sldworks.ModelDoc2
set swModel = swApp.ActiveDoc
‘option 2
Dim swModel As Sldworks.ModelDoc2
set swModel = swApp.NewDocument (TemplateName, Papersize, _ width, Height)
‘option 3
Dim swModel As sldworks.ModelDoc2
Set swModel = swApp.OpenDoc6 (FileName, Type, Options, _
Config, Errors, Warnings)

SolidWorks API Object Model – cont’
 ModelDoc2 Methods and Properties

48

.InsertSketch2 (updateEditRebuild)

.InsertFamilyTableNew ()

.InsertNote (Text)

.SetToolbarvisibility (Toolbar, Visible)

.AddCustomInfo3 (Config, FieldName, FieldType, Fieldvalue)

.CreateCircle2 (xc, yc, zc, xp, xp, xp)

.EditRebuild3 ()

.FeatureManager ()

.InsertFeatureShell (Thickness, Outward)

.SaveAs4 (Name, Version, Options, Errors, Warnings)

.ViewZoomtofit2 ()

SolidWorks API Object Model – cont’
 Documents Objects(Part, Assembly, Drawing)

 Document objects are derived from ModelDoc2, therefore, they have
access to all of the functions residing on the ModelDoc2 object. To
connect to a Document object use one of the ModelDoc2 accessors
and perform an a simple error check to validate the file type.

49

Dim swModel As Sldworks.ModelDoc2
Dim swPart AS SldWorks.PartDoc
Dim swAssy As SldWorks.AssemblyDoc
Dim swDraw As SldWorks.DrawingDoc

set swModel = swApp.ActiveDoc
If (swModel.GetType = swDocPART) Then

Set swPart = swModel
End if
If (swModel.GetType = swDocASSEMBLY) Then

Set swASSy = swModel
End if
If (swModel.GetType = swDocDRAWING) Then

Set swDraw = swModel
End if
If swModel Is Nothing Then

swApp.SendMsgToUser "Open a part, assembly or drawing!"
End if

SolidWorks API Object Model – cont’
 PartDoc Methods and Properties

 AssemblyDoc Methods and Properties

 DrawingDoc Methods and Properties

50

.EditRollback ()

.MaterialPropertyValues ()

.CreateNewBody ()

.MirrorPart ()

.AddComponent4 (CompName, ConfigName, X, Y, Z)

.AddMate3 (MateType, Align, Flip, Distance, dUpperLimit, dLowerLimit,
RatioNumerator, RatioDenominator, Angle, aUpperLimit, aLowerLimit,
PositioningOnly, ErrorStatus)

.InsertNewPart2 (FilePathIn, face_or_Plane_to_select)

.ToolsCheckInterference2 (NoComp, LStComp, Coincident, Comp, Face)

.GetFirstView

.InsertModelAnnotations (option, AllTypes, Types, AllViews)

.NewSheet3 (Name, Size, In, S1, S2, FA, TplName, W, H, PropV)

The End

