
Introduction of Parasolid
Basic Concepts & Functionalities

Human Centered CAD Laboratory

1 2009-04-23

What are the lectures about?

Contents
 Introduction of Parasolid
 Feature of Parasolid
 Functionality of Parasolid
 Application Demo

Requirements
 Background knowledge of CAD,OpenGL,C++
 For details please refer to Parasolid Online Documentati

on

Online Document

Web Address
 http://cad.snu.ac.kr/parasolid

Document about
 Description about Parasolid
 Explanation of PK Function
 Code Example based on Parasolid

What’s Parasolid (1)

Geometric Modelers

 PARASOLID， Unigraphics Solutions Inc:
Unigraphics, IDEAS, SolidEdge, Solidworks

 ACIS，Spatial Technology: AutoCAD，CADKEY，Mec
hanical Desktop，Bravo

 CAS.CADE，MDTV(Matra Datavision): Euclid-IS, QU
ANTUM

What’s Parasolid (2)

 Parasolid: an exact boundary representation
(B-rep) geometric modeler

 Build and manipulate solid objects
 Calculate mass property (mass center, inertia)
 Output objects in various ways
 Store objects in files on disk, and retrieve them later
 Clash detection

 Kernel Features
 Hardware independent-Windows NT, UNIX, Linux
 OS, GUI independent
 Written in C

Parasolid Interfaces

Interfaces between
Parasolid and application

PK Interface
- The main interface of Parasolid
- They are the means by which application
models and manipulates objects and
controls the functioning of the modeler.

Downward interface
- They are called by the modeler to
perform data-intensive or system type
operations.
- Frustrum, Graphical Output (GO)

PK Interface(1)

 PK interface
The PK Interface (usually referred to as the PK) is a library of functions that

provide access to Parasolid.
 Four categories

Part construction
Functions for building, modifying, and combining parts

Enquiry
Functions for returning information about the properties of parts, computing
mass properties, geometric information, or rendering information.

Kernel management
Functions for managing the characteristics of the kernel, such as rollback
information, frustrum functions, session parameters, and so on.

Part management
Functions for loading and saving part files, and for managing attributes.

PK Interface(2)

 Getting started with the PK interface
- Call PK_SESSION_start to start a kernel session
- Call PK_SESSION_stop to stop the kernel session.

 Classes of PK interface functions
PK interface functions fall into the following sub-classes:
CLASS---Navigating the class hierarchy
SESSION---Session management
ERROR---Error handling
MEMORY---Memory management
PARTITION, PMARK, MARK, DELTA---Rollback mechanism

PK Interface(3)
 PK function form: PK_<OBJECT>_<text>

- <OBJECT> the entity class that the function operates on. BODY,FAC
E and so on.
- <text> a verb/noun combination that describes the operation.

create, make, delete for example.
- Example: PK_BODY_create_solid_block

Arguments to PK functions:
- Simple values, arrays, and structures.
- Using an options structure for options.

Error handling
- Return value PK_ERROR_no_errors means being successful
- Error handle methods: registering an error handler or do yourself by
checking the return value of each function

PK Interface(4)

PK_BODY_create_solid_block
(--- received arguments ---
double x, --- block extent in local x direction (>0)
double y, --- block extent in local y direction (>0)
double z, --- block extent in local z direction (>0)
const PK_AXIS2_sf_t *basis_set, --- position and orientation
--- returned arguments ---
PK_BODY_t *const body --- solid body returned
)

 PK function Example

Downward Interfaces (frustrum)

The frustrum
- The Frustrum is a set of functions which must be written by the
application programmer. They are called by Parasolid to perform the
following tasks

 Frustrum control

 File (part data) handling: Saving and retrieving Parasolid part
files and other data.

 Memory management : Allocating memory for internal
calculations and data structure storage.

 Graphical output

- Before start a session for using Parasolid Kernel, registering the
frustrum

Downward Interfaces (frustrum)

Frustrum Functions you may need to provide:
FSTART: initialize the Frustrum

FMALLO: allocate a contiguous region of virtual memory

FMFREE: free a region of virtual memory (from FMALLO)

FFOPRD/FFOPWR: open all guises of Frustrum file

FFREAD/FFWRIT:read from/write to a file where permitted

FFCLOS:close a Frustrum file

FABORT:tidy up/longjump following aborted operation

FTMKEY:key name server required by TESTFR

FSTOP:close down the Frustrum

Downward Interfaces (GO)

Parasolid

Graphical information
GO Graphic

library

Graphical Output (GO): required for displaying models

Rendering Function to produce line data
PK_GEOM_render_line PK_TOPOL_render_line

PK_TOPOL_render_facet

GO Functions
GOOPSG: Open a hierarchical segment.
GOSGMT: Output a single-level segment.
GOCLSG: Close a hierarchical segment.

 Filename extensions
text-based: .*_t
binary-based: .*_b (recommended)

 File type (FAT)
Transmit (Part): .x_t , .x_b
Schema: .s_t,.s_b
Journal: .j_t, .j_b
Snapshot: .n_t .n_b
Partition: .p_t , .p_b

File type & File extension

Entities in Parasolid

Entities are grouped into three main types.

Topological Entities (1)

Topological Entities---comprise all the entities that con
stitute the structure or skeleton of a model

1. Body
Acorn: An isolated vertex.
Wire: Connected edges.

(manifold)
Sheet: Connected faces.

(manifold)
Solid: A solid region.
General

2. Region
- Subset of 3-d space
- A body always has an

infinite void region,
all regions in a body
comprises the whole
of 3D space.

Topological Entities (2)

3. Shell
Can be regarded as a bo
undary of a region

4. Face
A subset of a surface

5. Loop
- A connected component of a face boundary.
- The direction of the loop is such that the face is locally on the left of

the loop, when seen from above the face and looking in the directi
on of the loop.

Loop

Edge

Vertex

Face

Fins

Face
normal

Topological Entities (3)

6. Fin---represents the oriented use of an edge by a loop

7. Edge---An edge is a bounded piece of a single curve A wir
eframe --- no fins

A laminar --- one fin
A manifold --- two fins
A general edge --- more than 2 fins

8.Vertex---A vertex represents a point in space

Manifold Body (1)

Wire
- ‘One dimensional’
- A set of simply-connected

edges
- No more than two edges at any

vertex
- One void region, one shell

Valid Not Vali
d

Valid

Minimal body
- ‘Zero dimensional’
- A point in space
- One void region, shell, loop, vertex
- Created from a point using

PK_POINT_make_minimum_body

Acorn
- The same as Minimal bodies excep

t they can have multiple vertices

Manifold Body (2)

Solid
- ‘Three dimensional’
- Occupies a continuous, finite

volume
- At least two regions

- one solid region
- any number of void regions
- one void region is infinite

Sheet
- ‘Two dimensional’
- Set of (simply) connected faces

(at least one face)
- Zero thickness
- No more than 2 faces at any edge
- Can be ‘open’ or ‘closed’
- One or two void regions and one

or two shells

General Body

1. Cellular body - general body partitioned by an internal face
2. Mixed Dimension body
3. Non-manifold body - the edge between two bosses is non-manifold
4. Disjoint body - consisting of four disconnected pieces

manifold bodies

default type, Acorn body, wire body, sheet body, solid body

general bodies

Geometrical Entities
Orphan geometry

Orphan geometry is geometry not attached
to any topological entity

Entity related
Tag

- Identifier of a particular entity within a session.
- Being unique in one session
- Integer PK functions use as pointer to an entity
- Lifetime: while the entity it refers to still exists
- Is created only within the kernel and can only be got from

the kernel

PK_AXIS2_sf_t basis_set;
PK_BODY_t cyl;
ecode = PK_BODY_create_solid_cyl(2, 20, &basis_set, &cyl);

tagtag

Parasolid Functionality
Model representation

• Geometry & Topology
• General Topology
• Tolerant modeling
Creation & editing
• Primitives
• Lofting & sweeping
• Blending
• Hole Filling
• Booleans & patterning
• Offset, hollow, thicken
• Face Change
• Model Simplification
• Tapering

Enquiries

• Data structure enquiries
• Mass properties
• Closest Approach
• Clashing & Containment
Rendering & Selection

• Wire frame, hidden line
• Faceting
Application support

• Attributes
• Session & partitioned rollback
Data import/export

• XT format
• Trimmed surface & B-rep support

Creating Manifold Bodies (1)

Four ways to create a manifold body
 make a primitive body from raw data
 make a body from geometry
 make a body from topology
 make a body from an existing body

Creating Manifold Bodies (2)
 Creating a primitive body from raw data

- A series of PK functions can be used to generate all the topology and geo
metry required for block, cone, cylinder, prism, sphere, torus
- examples: PK_BODY_create_solid_block, PK_BODY_create_sheet_circl
e

 Making a body from geometry
- The PK functions also are available to create a body from existing geomet
ry
- Example: PK_SURF_make_sheet_body

 Making a body from topology
- Some local operations can create a body from existing topology
- Example: PK_FACE_make_sheet_body

Creating Manifold Bodies (3)

 Making a Body from an Existing Body
- copy body

PK_ENTITY_copy

- Extracting manifold bodies from a general body
For example, this could be used when a boolean operation has return
ed a general body containing manifold components
PK_BODY_make_manifold_bodies.

Simple to Complex body (1)

Several operations can be used to generate a more co
mplex type of body

 Sweep and spin
 Imprint
 Thicken
 Change region type
 Add rubber face
 Pierce

Simple to Complex body (2)
Sweep and spin

change the type of the body
PK_<ENTITY>_sweep, PK_<ENTITY>_spin

Original & resultant entities:
minimum bodies - wire bodies
wire bodies - sheet body
sheet bodies - solid body
faces of solid bodies - an extension to the solid

curve
imprint

create
minimum body

Spin

Simple to Complex body (3)
Imprint

PK_BODY_imprint_curve, PK_FACE_imprint_curve
PK_REGION_imprint_curve

- to create new faces
- to create a profile

curve
imprint

create
minimum body

curve
imprint

curve
imprint

(face created)fill
surface

extrude

Simple to Complex body (4)

Thicken
thickens a sheet body into a solid body
PK_BODY_thicken

Change region type
PK_REGION_make_solid : 3D space defined by sheet body

PK_REGION_make_void : solid convert to sheet body

Simple to Complex body (5)

Add rubber face:
PK_EDGE_make_faces_from_wire
be used to attach rubber faces to loops of wireframe edges in a wire b
ody, thereby creating a sheet body.

Pierce
PK_FACE_delete_from_sheet_body
be used to create a solid with holes through it from a profile.

Simple to Complex body (6)

Boolean Operation
Union
Intersection
Subtraction

Inquiries (1)

Class Structure
- PK_ENTITY_is, PK_ENTITY_is_<object>
- PK_ENTITY_ask_class

Data Connections
- Topological Relationships
- Topological/Geometric Relationships
- Session management relationships

Data Relationships
- PK_FACE_ask_oriented_surf

Inquiries (2)

Topological
- PK_REGION_is_solid
- PK_BODY_ask_type
- PK_SHELL_find_sign

Geometric
- PK_CURVE_eval ; returns points and derivatives
- PK_SURF_eval_with_normal ; returns surface normal
- PK_SURF_ask_param ; returns parameters of surface

Inquiries (3)

Mass Properties
- PK_TOPOL_eval_mass_props

Edge

Face

Wire Body

Sheet Body

Solid Body

Assembly

Length

Perimeter, Area, CofG

Length, Mass

Circumference, Surface area, Mass, CofG

Surface Area, Mass, CofG, Moments of In
ertia

Application Demo

T H A N K
Y O U

