
Parasolid 3

Human Centered CAD Laboratory

2009-04-301

Contents
 Preview Forms of PK Interfaces

 Creating Bodies

 Boolean Operations

 Profiling

 Blending

2

Preview Forms of PK interfaces
 PK classes
 Usually, names are of the form, ‘PK_XXXX_XXXX_t’.

 PK functions
 PK_ <OBJECT>_ <text> (received arguments,…,

returned arguments)
 PK option structures
 Option structure : “_o_t”
 Initialize of Option structure : “_o_t” “_o_m”

3

Preview Forms of PK interfaces
 Freeing memory used by return structures
 Some return structures have code supplied to free the

space pointed to by the structure. For a return structure
whose name is of the form:
 PK_<something>_r_t

 then the freeing code is:
 PK_<something>_r_f

4

 Source Files

 Each directory has two files for each practice

How To ?

5

How To ?
 Replace

 Replace the files in source folder with those in each
example folder and “Rebuild Solution”

6

Reference
 Documentation on the Web
 http://cad.snu.ac.kr/parasolid
 code_example directory

7

Primitives – Creating Bodies
 Wire body
 Sheet body
 Solid body

8

Primitives – Creating Wire body
 Step 1~3

9

PK_CURVE_make_wire_body_2 (

--- received arguments ---

int n_curves, --- number of curves (ie, length arrays)

const PK_CURVE_t curves[], --- curves to create a wire body

const PK_INTERVAL_t bounds[], --- bounds of each curve

const PK_CURVE_make_wire_body_o_t *options, --- options structure

--- returned arguments ---

PK_BODY_t *const body, --- the created wire body

int *const n_new_edges, --- number of new edges

PK_EDGE_t **const new_edges, --- new edges

int **const edge_index --- pos in original array

)

PK_CURVE_make_wire_body_2 (

--- received arguments ---

int n_curves, --- number of curves (ie, length arrays)

const PK_CURVE_t curves[], --- curves to create a wire body

const PK_INTERVAL_t bounds[], --- bounds of each curve

const PK_CURVE_make_wire_body_o_t *options, --- options structure

--- returned arguments ---

PK_BODY_t *const body, --- the created wire body

int *const n_new_edges, --- number of new edges

PK_EDGE_t **const new_edges, --- new edges

int **const edge_index --- pos in original array

)

1. Create a line and use it to make a wire body
2. Create a circle and minimum body and imprint

the circle on the minimum body
3. Create a ellipse and use it to make a wire body

Primitives – Creating Sheet body
 Step4~7

10

4. Create a circle
5. Create a plane
6. Create a rectangle
7. Create a polygon

PK_BODY_create_sheet_circle (

--- received arguments ---

double radius, --- radius of circle (>0)

const PK_AXIS2_sf_t *basis_set, --- position and orientation
(may be NULL)

--- returned arguments ---

PK_BODY_t *const body --- sheet body returned

)

PK_BODY_create_sheet_planar

PK_BODY_create_sheet_rectangle

PK_BODY_create_sheet_polygon

PK_BODY_create_sheet_circle (

--- received arguments ---

double radius, --- radius of circle (>0)

const PK_AXIS2_sf_t *basis_set, --- position and orientation
(may be NULL)

--- returned arguments ---

PK_BODY_t *const body --- sheet body returned

)

PK_BODY_create_sheet_planar

PK_BODY_create_sheet_rectangle

PK_BODY_create_sheet_polygon

Primitives – Solid body
 Step 8~13

11

8. Create a block
9. Create a cylinder
10. Create a cone

11. Create a sphere
12. Create a torus
13. Create a prism

PK_BODY_create_solid_block (
--- received arguments ---
double x, --- block extent in local x direction (>0)
double y, --- block extent in local y direction (>0)
double z, --- block extent in local z direction (>0)
const PK_AXIS2_sf_t *basis_set, --- position and
orientation (may be NULL)
--- returned arguments ---
PK_BODY_t *const body --- solid body returned
)

PK_BODY_create_solid_sphere
PK_BODY_create_solid_torus
PK_BODY_create_solid_cyl
PK_BODY_create_solid_cone
PK_BODY_create_solid_prism

PK_BODY_create_solid_block (
--- received arguments ---
double x, --- block extent in local x direction (>0)
double y, --- block extent in local y direction (>0)
double z, --- block extent in local z direction (>0)
const PK_AXIS2_sf_t *basis_set, --- position and
orientation (may be NULL)
--- returned arguments ---
PK_BODY_t *const body --- solid body returned
)

PK_BODY_create_solid_sphere
PK_BODY_create_solid_torus
PK_BODY_create_solid_cyl
PK_BODY_create_solid_cone
PK_BODY_create_solid_prism

Boolean

12

Target & Tool
The target is modified by the tool, and the tool is deleted at the end of the operation.

Global Booleans (PK_BODY_boolean_2)
Comparison of all face pairs from the target and tool bodies

The functions without options
PK_BODY_unite_bodies
PK_BODY_subtract_bodies
PK_BODY_intersect_bodies

Boolean – Boolean operations
 Step 1 - Create a block and a cylinder

13

PK_SESSION_ask_curr_partition (

--- returned arguments ---

PK_PARTITION_t *const partition --- current partition

)

PK_SESSION_ask_curr_partition (

--- returned arguments ---

PK_PARTITION_t *const partition --- current partition

)

PK_PMARK_goto (

--- received arguments ---

PK_PMARK_t pmark, --- pmark to go to

--- returned arguments ---

……

)

PK_PMARK_goto (

--- received arguments ---

PK_PMARK_t pmark, --- pmark to go to

--- returned arguments ---

……

)

PK_PARTITION_make_pmark (

--- received arguments ---

PK_PARTITION_t partition, --- partition

--- returned arguments ---

PK_PMARK_t *const pmark --- partition mark

)

PK_PARTITION_make_pmark (

--- received arguments ---

PK_PARTITION_t partition, --- partition

--- returned arguments ---

PK_PMARK_t *const pmark --- partition mark

)

Boolean – Boolean operations
 Step 2 - Unite the two bodies

14

PK_BODY_boolean_2 (

--- received arguments ---

PK_BODY_t target, --- body to receive message

int n_tools, --- number of tool bodies

const PK_BODY_t tools[], --- tool bodies

const PK_BODY_boolean_o_t *options, --- boolean options

--- returned arguments ---

PK_TOPOL_track_r_t *const tracking, --- tracking information

PK_boolean_r_t *const results --- boolean results

)

PK_BODY_boolean_2 (

--- received arguments ---

PK_BODY_t target, --- body to receive message

int n_tools, --- number of tool bodies

const PK_BODY_t tools[], --- tool bodies

const PK_BODY_boolean_o_t *options, --- boolean options

--- returned arguments ---

PK_TOPOL_track_r_t *const tracking, --- tracking information

PK_boolean_r_t *const results --- boolean results

)

Boolean – Boolean operations
 Step 3 - Rollback

15

PK_PMARK_goto (

--- received arguments ---

PK_PMARK_t pmark, --- pmark to go to

--- returned arguments ---

int *const n_new,

PK_ENTITY_t **const new_entities, --- entities created by
roll operation

int *const n_mod,

PK_ENTITY_t **const mod_entities, --- entities modified
by roll operation

int *const n_del,

int **const del_entities --- entities deleted by roll
operation

)

PK_PMARK_goto (

--- received arguments ---

PK_PMARK_t pmark, --- pmark to go to

--- returned arguments ---

int *const n_new,

PK_ENTITY_t **const new_entities, --- entities created by
roll operation

int *const n_mod,

PK_ENTITY_t **const mod_entities, --- entities modified
by roll operation

int *const n_del,

int **const del_entities --- entities deleted by roll
operation

)

Boolean – Boolean operations
 Step 4 - Subtract the bodies

16

PK_BODY_boolean_o_m(opts);

opts.function = PK_boolean_subtract_c;

PK_BODY_boolean_2(block, 1, &cylinder, &opts, &tracking, &results);

Boolean – Disjoint target
 Step 5, 6 - Rollback and intersect the bodies

17

PK_BODY_boolean_o_m(opts);

opts.function = PK_boolean_intersect_c;

PK_BODY_boolean_2(block, 1, &cylinder, &opts, &tracking, &results);

Boolean – Disjoint target
 Step 7 - Delete the cylinder and create a bigger cylinder

18

Boolean – Disjoint target
 Step 8 - Subtract the bodies, creating a disjoint result

19

PK_BODY_boolean_o_m(opts);

opts.function = PK_boolean_subtract_c;

opts.allow_disjoint = PK_LOGICAL_true;

PK_BODY_boolean_2(block, 1, &cylinder, &opts, &tracking, &results);

Boolean – Fence options and sheet punching
 Step 9 - Delete the block and create a sheet

20

Boolean – Fence options and sheet punching
 Step 10 - Subtract the sheet using "back fence" option

21

PK_BODY_boolean_o_m(opts);
opts.function = PK_boolean_subtract_c;
opts.fence = PK_boolean_fence_back_c;

PK_BODY_boolean_2(cylinder, 1, &rectangle, &opts, &tracking, &results);

Boolean - Merge imprinted
 Step 11 - Delete sheet and create a second cylinder

22

Boolean - Merge imprinted
 Step 12 - Unite, merging imprinted edges

23

PK_BODY_boolean_o_m(opts);

opts.merge_imprinted = PK_LOGICAL_true;

PK_BODY_boolean_2(cylinder, 1, &cylinder_2, &opts, &tracking, &results);

Profiling
 Extrude
 Loft
 Spin
 Sweep

24

Profiling – Extrude
 Step 1 - Create a wire body

25

Profiling – Extrude
 Step 2 - Extrude the wire to a sheet

26

PK_BODY_extrude (

--- received arguments ---

PK_BODY_t profile, --- minimum, wire or sheet profile --- to extrude

PK_VECTOR1_t path, --- direction of linear extrusion

const PK_BODY_extrude_o_t *options, --- options structure

--- returned arguments ---

PK_BODY_t *const body, --- resulting extruded body

PK_TOPOL_track_r_t *const tracking, --- tracking information

PK_TOPOL_local_r_t *const results --- status information

)

PK_BODY_extrude (

--- received arguments ---

PK_BODY_t profile, --- minimum, wire or sheet profile --- to extrude

PK_VECTOR1_t path, --- direction of linear extrusion

const PK_BODY_extrude_o_t *options, --- options structure

--- returned arguments ---

PK_BODY_t *const body, --- resulting extruded body

PK_TOPOL_track_r_t *const tracking, --- tracking information

PK_TOPOL_local_r_t *const results --- status information

)

Profiling – Extrude
 Step 3 - Extrude the sheet to a block

27

Profiling – Extrude
 Step 4 - Create three sheet rectangles

28

Profiling – Extrude
 Step 5 - Extrude each rect. to the top face of the solid

29

PK_BODY_extrude_o_m(extrude_opts);
extrude_opts.end_bound.bound = PK_bound_face_c ;
extrude_opts.end_bound.entity = face;

PK_BODY_extrude(sheet_rectangle[0], path, &extrude_opts, &extruded_body, &tracking, &results);

Profiling – Extrude
 Step 6 - Create a sheet circle

30

PK_BODY_unite_bodies (

--- received arguments ---

PK_BODY_t target, --- Body to receive message

int n_tools, --- Number of tool bodies

const PK_BODY_t tools[], --- Tool bodies

--- returned arguments ---

int *const n_bodies, --- Number of resultant bodies

PK_BODY_t **const bodies --- Resultant bodies

)

PK_BODY_unite_bodies (

--- received arguments ---

PK_BODY_t target, --- Body to receive message

int n_tools, --- Number of tool bodies

const PK_BODY_t tools[], --- Tool bodies

--- returned arguments ---

int *const n_bodies, --- Number of resultant bodies

PK_BODY_t **const bodies --- Resultant bodies

)

Profiling – Extrude
 Step 7 - Extrude circle to 3rd division of body

31

PK_BODY_extrude_o_m(extrude_opts);
extrude_opts.end_bound.bound = PK_bound_body_c ;
extrude_opts.end_bound.entity = united_body[0];
extrude_opts.end_bound.nth_division = 3;

PK_BODY_extrude(circle, path, &extrude_opts, &extruded_body, &tracking, &results);

Profiling – Extrude
 Step 8 - Create a second circle

32

Profiling – Extrude
 Step 9 - Extrude circle between 1st and 4th divisions

33

PK_BODY_extrude_o_m(extrude_opts);

extrude_opts.start_bound.bound = PK_bound_body_c ;
extrude_opts.start_bound.entity = united_body[0];
extrude_opts.start_bound.nth_division = 1;
extrude_opts.end_bound.bound = PK_bound_body_c ;
extrude_opts.end_bound.entity = united_body[0];
extrude_opts.end_bound.nth_division = 3;

PK_BODY_extrude(circle, path, &extrude_opts,
&extruded_body, &tracking, &results);

Profiling – Extrude
 Step 10 - Create a rectangle

34

Profiling – Extrude
 Step 11 - Extrude rectangle to body

35

path.coord[0] = -0.70710678118654752440084436210485;
path.coord[1] = -0.70710678118654752440084436210485;
path.coord[2] = 0.;

PK_BODY_extrude_o_m(extrude_opts);
extrude_opts.end_bound.bound = PK_bound_body_c ;
extrude_opts.end_bound.entity = united_body[0];

PK_BODY_extrude(rectangle, path, &extrude_opts,
&extruded_body, &tracking, &results);

Profiling – Loft ; Simple Loft
 Step 1 - Receive two planar sheets

36

PK_PART_find_entity_by_ident (

--- received arguments ---

PK_PART_t part, --- part in which to search for entity

PK_CLASS_t class, --- class of entity

int identifier, --- identifier of entity

--- returned arguments ---

PK_ENTITY_t *const entity --- entity (may be NULL)

)

PK_PART_find_entity_by_ident (

--- received arguments ---

PK_PART_t part, --- part in which to search for entity

PK_CLASS_t class, --- class of entity

int identifier, --- identifier of entity

--- returned arguments ---

PK_ENTITY_t *const entity --- entity (may be NULL)

)

Profiling – Loft ; Simple Loft
 Step 2 - Create solid block by lofting between them

37

PK_BODY_make_lofted_body (

--- received arguments ---

int n_profiles, --- number of profiles

const PK_BODY_t profiles[], --- profiles to loft

const PK_VERTEX_t start_vertices[],--- start vertices

const PK_BODY_make_lofted_body_o_t *options, ---
options on lofting

--- returned arguments ---

PK_BODY_tracked_loft_r_t *const lofted_body --- result
lofted body

)

PK_BODY_make_lofted_body (

--- received arguments ---

int n_profiles, --- number of profiles

const PK_BODY_t profiles[], --- profiles to loft

const PK_VERTEX_t start_vertices[],--- start vertices

const PK_BODY_make_lofted_body_o_t *options, ---
options on lofting

--- returned arguments ---

PK_BODY_tracked_loft_r_t *const lofted_body --- result
lofted body

)

Profiling – Loft ; with Guide Wire
 Step 3 - Roll back and read in guide wire

38

PK_PART_receive (

--- received arguments ---

const char *key, --- key string

const PK_PART_receive_o_t *options, --- receive options

--- returned arguments ---

int *const n_parts, --- number of parts received

PK_PART_t **const parts --- parts received

)

PK_PART_receive (

--- received arguments ---

const char *key, --- key string

const PK_PART_receive_o_t *options, --- receive options

--- returned arguments ---

int *const n_parts, --- number of parts received

PK_PART_t **const parts --- parts received

)

Read and load existing file

Profiling – Loft ; with Guide Wire
 Step 4 - Perform loft using guide wire to constrain shape

39

loft_opts.n_guide_wires = 1;
loft_opts.guide_wires = &guide_body;

PK_BODY_make_lofted_body(2, profiles, vertices,
&loft_opts, &loft_track);

Profiling – Spin
 Step 1

40

Profiling – Spin
 Step 1 - Create a point and a minimum body

- Spin minimum body to create wire circle

41

PK_BODY_spin (

--- received arguments ---

PK_BODY_t body, --- minimum, wire or sheet body

const PK_AXIS1_sf_t *axis, --- spin axis

double angle, --- spin angle

PK_LOGICAL_t local_check, --- whether local checking will be done

--- returned arguments ---

int *const n_laterals, --- number of laterals

PK_TOPOL_t **const laterals, --- new edges of faces

PK_TOPOL_t **const bases, --- entities swept into laterals

PK_local_check_t *const check_result ---result of local check

)

PK_BODY_spin (

--- received arguments ---

PK_BODY_t body, --- minimum, wire or sheet body

const PK_AXIS1_sf_t *axis, --- spin axis

double angle, --- spin angle

PK_LOGICAL_t local_check, --- whether local checking will be done

--- returned arguments ---

int *const n_laterals, --- number of laterals

PK_TOPOL_t **const laterals, --- new edges of faces

PK_TOPOL_t **const bases, --- entities swept into laterals

PK_local_check_t *const check_result ---result of local check

)

Profiling – Spin
 Step 2 - Receive a wire body

42

Profiling – Spin
 Step 3 -Spin wire body to create sheet body

43

axis2.location.coord[0] = -10;
axis2.location.coord[1] = 0;
axis2.location.coord[2] = 0;

axis2.axis.coord[0] = 0;
axis2.axis.coord[1] = -1;
axis2.axis.coord[2] = 0;

PK_BODY_spin(wire_body,&axis2,3.14,PK_LOGICAL_true,&n_laterals,&laterals,&bases,&check_result);

Profiling – Spin
 Step 4 - Create a sheet body

44

Profiling – Spin
 Step 5 - Spin sheet body to create solid body

45

Profiling – Spin
 Step 6 - Receive a solid body and identify a face on

solid body

46

PK_PART_find_entity_by_ident (*parts, PK_CLASS_face, 89, &face_to_spin);

Profiling – Spin
 Step 7 - Spin face on solid body

47

PK_FACE_spin (

--- received arguments ---

int n_faces, --- number of faces

const PK_FACE_t faces[], --- faces

const PK_AXIS1_sf_t *axis, --- spin axis

double angle, --- spin angle

PK_LOGICAL_t local_check, --- whether local checking will

be done

--- returned arguments ---

int *const n_laterals, --- number of laterals

PK_FACE_t **const laterals, --- new faces (may be NULL)

PK_EDGE_t **const bases, --- edges swept into laterals

(may be NULL)

PK_local_check_t *const check_result --- result of local check

)

PK_FACE_spin (

--- received arguments ---

int n_faces, --- number of faces

const PK_FACE_t faces[], --- faces

const PK_AXIS1_sf_t *axis, --- spin axis

double angle, --- spin angle

PK_LOGICAL_t local_check, --- whether local checking will

be done

--- returned arguments ---

int *const n_laterals, --- number of laterals

PK_FACE_t **const laterals, --- new faces (may be NULL)

PK_EDGE_t **const bases, --- edges swept into laterals

(may be NULL)

PK_local_check_t *const check_result --- result of local check

)

Profiling – Sweep
 Step 1 - Create a wire profile

48

Profiling – Sweep
 Step 2 - Sweep profile along a path

49

PK_BODY_sweep (

--- received arguments ---

PK_BODY_t body, --- minimum, wire or sheet body

PK_VECTOR_t path, --- translation vector

PK_LOGICAL_t local_check, --- whether local checking
will be done

--- returned arguments ---

int *const n_laterals, --- number of laterals

PK_TOPOL_t **const laterals, --- new edges or faces
(may be NULL)

PK_TOPOL_t **const bases, --- entities swept into laterals
(may be NULL)

PK_local_check_t *const check_result --- result of local
check

)

PK_BODY_sweep (

--- received arguments ---

PK_BODY_t body, --- minimum, wire or sheet body

PK_VECTOR_t path, --- translation vector

PK_LOGICAL_t local_check, --- whether local checking
will be done

--- returned arguments ---

int *const n_laterals, --- number of laterals

PK_TOPOL_t **const laterals, --- new edges or faces
(may be NULL)

PK_TOPOL_t **const bases, --- entities swept into laterals
(may be NULL)

PK_local_check_t *const check_result --- result of local
check

)

Profiling – Sweep
 Step 3 - Create a sheet rectangle profile

50

Profiling – Sweep
 Step 4 - Sweep profile, applying a twist

51

PK_BODY_sweep_law_t twist;

values[0] = 0.;
values[1] = 25;

PK_BODY_ask_vertices(path_body, &n_vertices, &vertices);
twist.law_type = PK_BODY_sweep_law_discrete_c;
twist.law_set.n_vertices = 2;
twist.law_set.vertices = vertices;
twist.law_set.values = values;

PK_BODY_make_swept_body_o_m(sweep_opts);
sweep_opts.twist = twist;

PK_BODY_make_swept_body(profile_body, path_body,
PK_ENTITY_null, &sweep_opts, &swept_res);

Profiling – Sweep
 Step 5 - Create a wire path and a rectangular sheet

profile

52

Profiling – Sweep
 Step 6 - Sweep profile along path, applying both scale

and twist

53

PK_BODY_make_swept_body_o_m(sweep_opts);

sweep_opts.twist.law_type = PK_BODY_sweep_law_discrete_c;

sweep_opts.scale.law_type = PK_BODY_sweep_law_discrete_c;

sweep_opts.scale_type = PK_BODY_sweep_scale_posn_c;

Blend
 Edge Blending
 Two-Face Blending

54

Blend – Edge Blending
 Step 1 - Receive body with notch

55

Blend – Edge Blending
 Step2 -Create blend with default notch overflow

 Step3 - Rollback

56

PK_EDGE_set_blend_constant (

--- received arguments ---

int n_edges, --- no. of edges to blend

const PK_EDGE_t edges[], --- edges to have blends set

double radius, --- blend radius

const PK_EDGE_set_blend_constant_o_t *options,

--- returned arguments ---

int *const n_blend_edges, --- no. of edges with blends set

PK_EDGE_t **const blend_edges --- edges with blends set

)

PK_EDGE_set_blend_constant (

--- received arguments ---

int n_edges, --- no. of edges to blend

const PK_EDGE_t edges[], --- edges to have blends set

double radius, --- blend radius

const PK_EDGE_set_blend_constant_o_t *options,

--- returned arguments ---

int *const n_blend_edges, --- no. of edges with blends set

PK_EDGE_t **const blend_edges --- edges with blends set

)

Blend – Edge Blending
 Step 4 - Create blend with cliff overflow

57

PK_EDGE_set_blend_chamfer (

--- received arguments ---

int n_edges, --- no. of edges to blend

const PK_EDGE_t edges[], --- edges to have blends set

double range_1, --- range on first face

double range_2, --- range on other face

const PK_FACE_t faces[], --- faces of first range (optional)

const PK_EDGE_set_blend_chamfer_o_t *options, ---
options structure

--- returned arguments ---

int *const n_blend_edges, --- no. of edges with blends set

PK_EDGE_t **const blend_edges --- edges with blends set

)

PK_EDGE_set_blend_chamfer (

--- received arguments ---

int n_edges, --- no. of edges to blend

const PK_EDGE_t edges[], --- edges to have blends set

double range_1, --- range on first face

double range_2, --- range on other face

const PK_FACE_t faces[], --- faces of first range (optional)

const PK_EDGE_set_blend_chamfer_o_t *options, ---
options structure

--- returned arguments ---

int *const n_blend_edges, --- no. of edges with blends set

PK_EDGE_t **const blend_edges --- edges with blends set

)

Blend – Two Face Blending
 Step 1, 2 - Load a block and a plane

58

Blend – Two Face Blending
 Step 3 - Create a constant radius rolling ball blend

59

PK_FACE_make_blend (

--- received arguments ---

int n_left_wall_faces, --- number of faces in left wall

const PK_FACE_t left_wall_faces[], --- faces in left wall

int n_right_wall_faces, --- number of faces in right wall

const PK_FACE_t right_wall_faces[], --- faces in right wall

PK_LOGICAL_t left_sense, --- blend direction from left wall

PK_LOGICAL_t right_sense, --- blend direction --- from right wall

const PK_FACE_make_blend_o_t *options, --- options structure

--- returned arguments ---

int *const n_sheet_bodies, --- number of sheet bodies created

PK_BODY_t **const sheet_bodies, --- sheet bodies

int *const n_blend_faces, --- number of blend faces created

PK_FACE_t **const blend_faces, --- blend faces

PK_TOPOL_array_t **const unders, --- underlying topology of each face

PK_blend_rib_r_t *const ribs, --- ribs returned (if any)

PK_fxf_error_t *const fault --- fault found (if any)

)

PK_FACE_make_blend (

--- received arguments ---

int n_left_wall_faces, --- number of faces in left wall

const PK_FACE_t left_wall_faces[], --- faces in left wall

int n_right_wall_faces, --- number of faces in right wall

const PK_FACE_t right_wall_faces[], --- faces in right wall

PK_LOGICAL_t left_sense, --- blend direction from left wall

PK_LOGICAL_t right_sense, --- blend direction --- from right wall

const PK_FACE_make_blend_o_t *options, --- options structure

--- returned arguments ---

int *const n_sheet_bodies, --- number of sheet bodies created

PK_BODY_t **const sheet_bodies, --- sheet bodies

int *const n_blend_faces, --- number of blend faces created

PK_FACE_t **const blend_faces, --- blend faces

PK_TOPOL_array_t **const unders, --- underlying topology of each face

PK_blend_rib_r_t *const ribs, --- ribs returned (if any)

PK_fxf_error_t *const fault --- fault found (if any)

)

Blend – Two Face Blending
 Step 4 - Rollback

60

Blend – Two Face Blending
 Step 5 - Create a chamfer blend

61

PK_FACE_make_blend_o_m(options);

options.shape.parameter = line;

options.shape.radius = 2.5;

options.shape.xs_shape = PK_blend_xs_shape_chamfer_c;

options.walls = PK_blend_walls_trim_no_c;

The End

