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Types of curve equations

» Parametric equation
x=x(t), y=y(t), z=z(1)
Ex) x=Rcos0, y=Rsin6, z=0 (0<6<2n)
» Implicit nonparametric
x*+y°—R° =0, z=0
F(Xx,y, z)=0, G(x, Yy, z)=0
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Intersection of two surfaces
Ambiguous independent parameters

» Explicit nonparametric
y:i'\/Rz—xz, Z:()

Should choose proper neighboring point during curve
generation
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Conic curves

» Curves obtained by intersecting a cone with a plane

» Circle (circular arc), ellipse, hyperbola, parabola

Ex) Circle (circular arc)
Circle in xy-plane with center (X, y.) and radius R
X = RcosO + x.
y = Rsin0 + vy,
z =0
» Points on the circle are generated by incrementing 6
by AB from 0, points are connected by line segments

» Equation of a circle lying on an arbitrary plane can be
derived by transformation



Conic curves — cont’
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Hyberbola
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Hermite curves

» Parametric eq. is preferred in CAD systems

Polynomial form of degree 3 is preferred :
C2 continuity is guaranteed when two curves are connected

SPw)=[x(m)v(u)z(u)]=a +a u+a u +a u (1)
(0 <u <1):algebraiceq.

» Impossible to predict the shape change from change
in coefficients = not intuitive

Bad for interactive manipulation



Hermite curves — cont’

» Apply Boundary conditions to replace algebraic
coefficients

» Use Pm)a Pm’ P«’»’ P(:) = Substitute in Eq(1)
P,P,P, P
P, =P =a B
P =P =a +a +a +a,
P =P =a - @)
P =P =a +2a +3a



Hermite curves — cont’

» Solve fora , a, a_, ain Eq (2)

)= Po
a =P,
a,=-3P, +3P, -ZP(; - Pl'

a, =2P,-2P, +P.-P/

— (3)




Hermite curves — cont’
» Substitute (3) into (1)

P

1P

P(u) = [1—3u2 +2u’ 3u-2u" u-2u+u  —u +u’ p
P

coefficientt

I

Hermite curve  equation

» It is possible to predict the curve shape change from
the change in Po, P1, Po’, P+’ to some extent



Hermite curves — cont’
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Effect of P, and P," on curve shape
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Hermite curves — cont’
P 13w +2u’, 3u” 2w, u—-2ut+u, —u’+u’

determine the curve shape by blending the effects of
Po, P1, Po’, P/— blending function
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Bezier curves

» It is difficult to realize a curve in one’s mind by
changing size and direction of P,’, P, in Hermite

curves

» Bezier curves
Invented by Bezier at Renault
Use polygon that enclose a curve approximately

Control polygon, control point
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Bezier curves — cont’

» Passes through 1st and last vertex of control polygon

» Tangent vector at the starting point is in the direction of
18t segment of control polygon

» Tangent vector at the ending point is in the direction of
the last segment
Useful feature for smooth connection of two Bezier curves

» The n-th derivative at starting or ending point is
determined by the first or last (n+1) vertices of control

polygon
» Bezier curve resides completely inside its convex hull
Useful property for efficient calculation of intersection points
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Bezier curves — cont’




Bezier curves — cont’

P(u):i(l,ljui(l—u)“Pl (0<u<l)
= 1

T Control Point

Pu)=(1 _”)Po +uP . Straight line from PO to P1 satisfies the desired
qualities including convex hull property

Pw)=(1-u)'P +2(1-u)uP +u’P,

= (I-u) +2(0-wu+u’ =1 P(u)

satisfies the desired qualities T
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Bezier curves — cont’

» Highest termis ;" for the curve defined by (n+1) control
points
Polynomial of degree n
» Degree of curve is determined by number of control points
» Large number of control points are needed to represent a
curve of complex shape — high degree is necessary.
Heavy computation, oscillation
Better to connect multiple Bezier curves

» Global modification property (not local modification)
Difficult to result a curve of desired shape by modifying portions
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Blending functions in Bezier curve

'\

for degree 3
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Bezier curves — cont’

Bezier Curve does NOT have local modification property
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Derivative vectors

- —1
dr(t) _ ny. (n . jtl(l —t)""a
i=0 I

where a =P -P i=0,1,---,n-1
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i i=0 !

dt i—0

let j=i-1

dr(” Z( +1)( th(l—t)”“Pﬁl—i(n—i)(':)t"(l—f)”1P




Derivative vectors — cont’

n | (j+Dn! B idn—D!__nn—l
itl) (D= j=-1 jlm—j-D!

oo )0t fo-1
i '(n—-0) il(n—-i-1)! i

. dl‘(t)_ I AN
T —nz(;( i ]t(l )" a, (a)

(i+1)(

» Derivatives at the starting and the ending points

r(0)=nx(P,-P,)
r(l) =nx(P,-P, )
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Derivative vectors — cont’

» Control polygon determines tangent vectors
at the ends

» Differentiating (a) in the same way gives

2 n-2 - 2
dr(t) _ n(n—l)Z(n . )tl(l—t)“lbl
i=0 l

dr”

where b =a_ —a (i=0,--,n-2)
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Elevation of a degree

» Conversion of Bezier curve of degree n into degree
(n+1), i.e. derivation of (n+1) control points into (n+2)
control points

r(t)= Zn:(r.ljfi(l_t)nil)i = {PoaPla"'Pn}

i=0 \ !

Express  r(t)=tr(¢)+{—-1t)r(¢)
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Elevation of a degree — cont’

m—1) (m—1)! Kk m! _k((m
k-1) (k-D'm-k)! mkl(m—k) mlk

sotr(t) = i (’Z}k(l_t)mk %Pk_l (a)

k=0
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Elevation of a degree — cont’

(I-0)r() = Z (r.ljfi(l -0)"""'P,
i=0 \ !

let k=i, m=n+1

(1-0)r(t) = mzl (mk_ ljtk(l -H)" P,
m—1)  (m-1)!  m-—k m! m—k(m
k _k'(m—k—l)'_ m k'(m—k)!_ m \ k

(=) = mz( jt (-t " =kp

0 m

Z( jt a-n " e )
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Elevation of a degree — cont’

From (a) & (b)
tr(l‘) N (1_ t)r(t) _ ”ZJri (l/l;‘ ljtk(l_ t)n+1—k(kPk—1 + (n +1-— k)Pk j (C)

n+1

» Control points of the Bezier curve of degree (n+1)
can be derived from (c) as below

b b

{P, P +nP 2P +(n-1)P, nPnﬁ+Pn’]?}

n+1 ~ n+1 n+1
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de Casteljau algorithm

The Value of curve at t of Bezier Curve

r(u) :gPiBw (u) 1s P’ ascalculated below.
P =(1-t)P"+¢t P

r=1,---,n

i=0,---,n—r

P =P

For Cubic Bezier
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de Casteljau algorithm — cont’

P=(1-)P +¢t P_
PP=(1-0)P +t P
Fo P =(1-0)P +1 P’
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de Casteljau algorithm — cont’
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