
1SNU

IDB Lab.

Ch11. Skip Lists and Hashing
(for Dictionary)

© copyright 2006 SNU IDB Lab.

Data Structures 2
SNU

IDB Lab.

Bird’s-Eye View (0)
� Chapter 9: Stack

� A kind of Linear list & LIFO(last-in-first-out) structure

� Insertion and removal from one end

� Chapter 10: Queue
� A kind of Linear list & FIFO(first-in-first-out) structure

� Insertion and deletion occur at different ends of the linear list

� Chapter 11: Skip Lists & Hashing
� Chains augmented with additional forward pointers

� Popular technique for random access to records

Data Structures 3
SNU

IDB Lab.

Bird’s-Eye View (1)
� Define the concept of Dictionary

� Skip list for Dictionary

� Chains augmented with additional forward pointers

� Employ a randomization technique
� To determine

� Which chain nodes are to be augmented

� How many additional pointers are to be placed in the node

� To search, insert, remove element: O(log n) time

� Hashing for Dictionary

� Usage of randomization to search, insert, remove elements at 0(1) time

� Hashing Application
� Text compression: Lampel-Ziv-Welch algorithm

� Text decompression

Data Structures 4
SNU

IDB Lab.

Bird’s-Eye View (2)

� Dictionary Implementation

� Skip lists is better than hashing when frequently outputting all
elements in sorted order or search by element rank

� Hashing in Java

� java.util.HashTable, java.util.HashMap, and java.util.Hashset

Excepted

θθθθ(1)θθθθ(1)θθθθ(1)θθθθ(n)θθθθ(n)θθθθ(n)Hash tables

θθθθ(log n)θθθθ(log n)θθθθ(log n)θθθθ(n)θθθθ(n)θθθθ(n)Skip lists

θθθθ(n)θθθθ(n)θθθθ(n)θθθθ(n)θθθθ(n)θθθθ(n)Sorted chain

θθθθ(n)θθθθ(n)θθθθ(log n)θθθθ(n)θθθθ(n)θθθθ(log n)Sorted array

RemoveInsertSearchRemovedInsertSearch

Worst CaseMethod

Data Structures 5
SNU

IDB Lab.

Table of Contents

� Definition: Dictionary

� Linear List Representation

� Skip Lists Representation

� Hash Table Representation

� Hashing concepts

� Collision Solutions

� Hashing Application

� Text Compression

Data Structures 6
SNU

IDB Lab.

Dictionary (1)

� A collection of pairs of the form (k,e)

� k : a key

� e : the element associates with the key k

� Pairs have different keys

� Operations

� Get the element associated with a specified key

� Insert or put an element with a specified key

� Delete or remove an element with a specified key

� Intuitively, dictionary is a mini database

Artificial
Intelligence

ai

Data Structureds

Data Basedb

ElementKey

Data Structures 7
SNU

IDB Lab.

Dictionary (2)

� A dictionary with duplicates

� Keys are not required to be distinct

� Need to have a rule to eliminate the ambiguity

� Get operation

� Get any element or Get all elements

� Remove operation

� Remove the element specified by user or arbitrarily any one element

� Sequential access

� Elements are retrieved 1 by 1 in an ascending order of keys

Data Structures 8
SNU

IDB Lab.

The Abstract Data Type: Dictionary

AbstractDataType Dictionary {

instances
collection of elements with distinct keys

operations
get(k) : return the element with key k;

put(k, x) : put the element x whose key is k into the dictionary

and return the old element associated with k;

remove(k) : remove the element with key k and return it;

}

Data Structures 9
SNU

IDB Lab.

The interface: Dictionary

public interface Dictionary {

public Object get(Object key) ;

public Object put(Object key, Object theElement) ;

public Object remove(Object key) ;

}

Data Structures 10
SNU

IDB Lab.

Table of Contents

� Definition: Dictionary

� Linear List Representation

� Skip Lists Representation

� Hash Table Representation

� Hashing Application

� Text Compression

Data Structures 11
SNU

IDB Lab.

Dictionary by Linear List
� Interface LinearList {

isEmpty(); size(); get(index); indexOf(x);
remove(index); add(theIndex, x); output(); }

� Interface Dictionary {
get(Object key) ;
public Object put(Object key, Object theElement) ;
public Object remove(Object key) ; }

� L = (e0, e1, e2, ….. , en-1)
� Each ei is a pair (key, element)
� The ei s are in ascending order of key

� 2 kinds of representations
� The class SortedArrayList as array-based
� The class SortedChain as linked

Data Structures 12
SNU

IDB Lab.

Array-based Dictionary

� The class SortedArrayList for array-based dictionary

� Time complexity of operations
� Get : O(log n)

� by binary search

� Insert : O(log n) + O(n)
� by binary search & move at most n elements to right

� Remove : O(log n) + O(n)
� by binary search & move at most n elements to left

A B C D E

Data Structures 13
SNU

IDB Lab.

Linked-List based Dictionary

� The class SortedChain for linked-list based dictionary

� Time complexity of operations
� Get : O(n)

� Insert : O(n) + O(1) (put at proper place)

� Remove : O(n)

� No binary search in a sorted chain!

A B C D E
null

firstNode

Data Structures 14
SNU

IDB Lab.

get() in SortedChain for Dictionary (1)

public Object get (Object theKey) {
SortedChainNode currentNode = firstNode;

// search for match with theKey
while (currentNode != null && currentNode.key.compareTo(theKey) < 0)

currentNode = currentNode.next;

// verify match
if (currentNode != null && currentNode.key.equals(theKey))
return currentNode.element;

// no match
return null;

}

Data Structures 15
SNU

IDB Lab.

put() in SortedChain for Dictionary: (2)

/** insert an element with the specified key
* overwrite old element if there is already an element with the given key
* @ return old element (if any) with key theKey */
public Object put (Object theKey, Object theElement) {

SortedChainNode p = firstNode, tp = null; // tp trails p
// move tp so that theElement can be inserted after tp
while (p != null && p.key.compareTo(theKey) < 0) {

tp = p; p = p.next; }// check if there is a matching element
if (p != null && p.key.equals(theKey)) { // replace old element

Object elementToReturn = p.element;
p.element = theElement;
return elementToReturn; }

// no match, set up node for theElement
SortedChainNode q = new SortedChainNode (theKey, theElement, p);
if (tp == null) firstNode = q; // insert node just after tp
else tp.next = q;
size++;
return null;

}

Data Structures 16
SNU

IDB Lab.

remove() in SortedChain for Dictionary (3)

/** @return matching element and remove it
* @return null if no matching element */

public Object remove(Object theKey) {

SortedChainNode p = firstNode, tp = null; // tp trails p
while (p != null && p.key.compareTo(theKey) < 0) // search for match with theKey

{ tp = p; p = p.next; }
// verify match

if (p != null && p.key.equals(theKey)) { // found a match

Object e = p.element; // the matching element

// remove p from the chain

if (tp == null) firstNode = p.next; // p is first node

else tp.next = p.next;

size--;

return e; } //end of if

return null; // no matching element to remove
} //end of remove()

Data Structures 17
SNU

IDB Lab.

Table of Contents

� Dictionary

� Linear List Representation

� Skip Lists Representation

� Hash Table Representation

� Application – Text Compression

Data Structures 18
SNU

IDB Lab.

The Ideal Skip-List (1)

� In n-element dictionary which is a sorted chain, to search any element ei

� N element comparisons are needed

� The number of comparisons can be reduced to n/2 + 1 with help of
middle point

� Compare with the middle point

� If ei < middle point, search only the left half

� Else, search only the right half

� Adding some more data structure for a middle point can save
the number of comparisons!

� YES, Simulate the binary searching in a sorted chain with some more
data structure

Data Structures 19
SNU

IDB Lab.

The Ideal Skip-List (2)
� Example : Consider the seven-element sorted chain

At most 4 element comparisons by compare & skip

At most 7 element comparisons

Data Structures 20
SNU

IDB Lab.

The Ideal Skip-List (3)
� Example(Cont.)

� By keeping pointers to the middle elements of each half, we can
keep on reducing the number of element comparisons

� For example, the search value is 30

Level 0

Level 1

Level 2

compare & skip

Data Structures 21
SNU

IDB Lab.

The Ideal Skip-List (4)
� Skip List

� The level 0 chain includes all N elements

� The level i chain

� Includes every 2i th element

� Comprises a subset of the elements in the level i –1 chain

� N / 2i elements are located in the level i

� Legend: An element is a level i element iff it is in the chains for
level 0 through i duplicately and not on the level i+1 chain

� A regular skip list structure is the previous figure (c)

� but we cannot maintain the ideal structure when insertion/deletion
occur without doing 0(n) work

Data Structures 22
SNU

IDB Lab.

Insert in Skip-list
� Example(Cont.) : Consider the insert for an element 77

At most 3 element comparisons

The element 77 may be in level 0
or level 1 or level 2 � which one?

Data Structures 23
SNU

IDB Lab.

Delete in SkipList

1. Search for 77
2. The encountered pointers are the level 2 in “40” and the level 1,0 in “75”
3. Level 0,1 pointers are to be changed to point to the element after 77

delete 77

Data Structures 24
SNU

IDB Lab.

� We want to keep having the ideal skip-list structure, but
� We better attempt to approximate the regular skip list structure
� Assigning a proper level to the new element is an important issue!

� Properties of SkipList (When p elements are assigned to the next level)
� Probability that the new element is assigned at level 0: p0 = 1
� Probability that the new element is assigned at level 1: p1 = 1/2
� Probability that the new element is assigned at level i: pi = (½)i

� For a general p, the num of chain levels = ⌊⌊⌊⌊log1/p n⌋⌋⌋⌋+1
� The level i chain comprises every (1/p) th element of the level i –1 chain

Assigning Levels in SkipList (1)

Data Structures 25
SNU

IDB Lab.

Assigning Levels in SkipList (2)

� One way: Level assigning by a uniform random number(URN) generator
� URN generates real number R such that 0≤≤≤≤ R ≤≤≤≤ 1
� The Probability that the new element is assigned at level 1: P
� The probability of “the element on the level i –1 is also on level i”: P

� Level assigning process by URN when inserting an element
� If R is ≤≤≤≤ p, assign the new element on the level 1 chain
� If the new R is ≤≤≤≤ p, assign the new element on the level 2 chain
� Until the new R > p, continue this process

� Shortcomings of URN
� Assigned level number may be greater than log1/p N

� To prevent this possibility, set an upper limit

� Sometimes alter the level assignment of element

� If the new element was assigned the level 9 and there are no level 3, 4,

… , 8 elements prior to and following the insertion

Data Structures 26
SNU

IDB Lab.

Assigning Levels in SkipList (3)

� An alternative way of assigning level

� Divide the range of values that the URN outputs into several segments

� The 1st segment ⊆ 1 - 1/p of the range

� 1/p of the whole elements go to the next level

� The 2nd segment ⊆ 1/p X (1 – 1/p) of the range

� And so on

� If the random number in the i th segment, the inserted element is a level i –
1 element

1st segment 2nd 3rd 4th …

Data Structures 27
SNU

IDB Lab.

The class SkipNode of SkipList
� Head node : fields for the maximum num of level chains

protected static class SkipNode {
//data members
protected Comparable key;
protected Object element;
protected SkipNode [] next;
//constructor
protected SkipNode(Object theKey, Object theElement, int size) {

key = (Comparable) theKey;
element = theElement;
next = new SkipNode[size]; //size = i + 1 for level i node

}
}

Data Structures 28
SNU

IDB Lab.

Data members of SkipList

protected float prob; // probability used to decide level number
protected int maxLevel; // max permissible chain level
protected int levels; // max current nonempty chain
protected int size; // current number of elements
protected ComparabletailKey; // a large key
protected SkipNode headNode; // head node
protected SkipNode tailNode; // tail node
protected SkipNode [] last; // last node seen on each level
protected Random r; // needed for random numbers

Data Structures 29
SNU

IDB Lab.

Interface Comparable (1)
� Java.lang.Comparable
� The Comparable interface imposes a total ordering on the objects of

each classthat implements it
� The ordering is referred to as the class's natural ordering
� The class's compareTo method is referred to as its natural comparison

method

� Lists (and arrays) of objects that implement this interface can be
sorted automaticallyby Collections.sort(and Arrays.sort)
� Objects that implement this interface can be used as keys in a sorted

elements in a sorted set, without the need to specify a comparator

Data Structures 30
SNU

IDB Lab.

Interface Comparable (2)
� The compareTo(Object o)method

� The sole member of the Comparable interface, and not a member of Object

� Compares this object with the specified object for order

� Returns a negative integer, zero, or a positive integer as this object is less than,
equal to, or greater than the specified object

public class MyInteger implements Comparable{
private int value;
public MyInteger (int theValue) {value = theValue;}
public intcompareTo(Object o){
int x = ((MyInteger)o).value;
if (value < x) return -1;
if (value == x) return 0;
return 1;

}
}

Data Structures 31
SNU

IDB Lab.

constructor() of SkipList

/* * create an empty skip list : 0(maxlevel)
* largekey: used as key in tail node * all elements must have a smaller key than “largekey”

* maxElements: largest no of elements to be stored in the dictionary
* theProb: probability that element on one level is also on the next level */

public SkipList (Comparable largeKey, int maxElements, float theProb) {
prob = theProb;

maxLevel = (int) Math.round(Math.log(maxElements) / Math.log(1/prob)) - 1;

tailKey = largeKey; // size and levels have default initial value 0

// create head & tail nodes and last array

headNode = new SkipNode (null, null, maxLevel + 1);

tailNode = new SkipNode (tailKey, null, 0);

last = new SkipNode [maxLevel + 1];

// headNode points to tailNode at all levels initially

for (int i = 0; i <= maxLevel; i++) headNode.next[i] = tailNode;

r = new Random(); // initialize random number generator

}

Data Structures 32
SNU

IDB Lab.

get() of SkipList
/** @return element with specified key & @return null if no matching element */
public Object get(Object theKey) {

if (tailKey.compareTo(theKey) <= 0) return null; // not possible

// position p just before possible node with theKey
SkipNode p = headNode;
for (int i = levels; i >= 0; i--) // go down levels

while (p.next[i].key.compareTo(theKey) < 0) p = p.next[i]; // follow pointers

// check if next node has theKey
if (p.next[0].key.equals(theKey)) return p.next[0].element;

return null; // no matching element

} //end of get() function

Data Structures 33
SNU

IDB Lab.

level() of SkipList
� The method put() will first invoke level() to assign a level number and

search() to search the skip list

� level() is using a random number generator

/** @return a random level number <= maxLevel */
int level() {

int lev = 0;
while (r.nextFloat() <= prob)

lev++;
return (lev <= maxLevel) ? lev : maxLevel;

}

Data Structures 34
SNU

IDB Lab.

search() of SkipList

/** search for theKey saving last nodes seen at each level in the array
* last @return node that might contain theKey */

SkipNode search(Object theKey) {
// position p just before possible node with theKey
SkipNode p = headNode;

for (int i = levels; i >= 0; i--){
while (p.next[i].key.compareTo(theKey) < 0)

p = p.next[i];

last[i] = p; // last level i node seen: a set of pointers last[2], last[1], last[0]
}
return (p.next[0]);

}

Data Structures 35
SNU

IDB Lab.

put() of SkipList (1)
/** insert an element with the specified key
* overwrite old element if there is already an element with the given key
* @return old element (if any) with key theKey
* @throws IllegalArgumentException when theKey >= largeKey = tailKey */

public Object put(Object theKey, Object theElement) {

if (tailKey.compareTo(theKey) <= 0) // key too large

throw new IllegalArgumentException("key is too large");

// see if element with theKey already present

SkipNode p = search(theKey);

if (p.key.equals(theKey)) { // update p.element

Object elementToReturn = p.element;

p.element = theElement;

return elementToReturn;

} // not present, determine level for new node

Data Structures 36
SNU

IDB Lab.

put() of SkipList (2)

int lev = level(); // level of new node
// fix lev to be less than levels + 1
if (lev > levels) {

lev = ++levels;
last[lev] = headNode;

} // get and insert a new node just after p
SkipNode y = new SkipNode (theKey, theElement, lev + 1);

// insert the new element into level i chain
for (int i = 0; i <= lev; i++) {
y.next[i] = last[i].next[i];
last[i].next[i] = y;
}
size++;
return null;

}

Data Structures 37
SNU

IDB Lab.

remove() of SkipList
/** @return matching element and remove it

* @return null if no matching element */
public Object remove(Object theKey) {
if (tailKey.compareTo(theKey) <= 0) /* too large */ return null;

// see if matching element present
SkipNode p = search(theKey);
if (!p.key.equals(theKey)) /* not present */ return null;

for (int i = 0; i <= levels && last[i].next[i] == p; i++) // delete node from skip list
last[i].next[i] = p.next[i];

while (levels > 0 && headNode.next[levels] == tailNode) // update Levels
levels--;

size--;
return p.element;

} //end of remove() function

Data Structures 38
SNU

IDB Lab.

Other Issues of SkipList
� The codes of other methods are similar to those of the class Chain

� size() / isEmpty() / elements() / iterator()

� The SkipList iterator iterator()

� Can provide sequential access in sorted order in θ(1) time per element accessed

� Complexity
� get(), put(), remove()

� O(n + maxLevel) where n is the number of elements

� Space complexity
� Worst case space: O(n * MaxLevel) for pointers
� On the average, the expected number of pointers

n∑i p
i = n (1 + p + p2 ..) = n* 1/(1 - p)

Data Structures 39
SNU

IDB Lab.

Table of Contents

� Dictionaries

� Linear List Representation

� Skip Lists Representation

� Hash Table Representation

� Hashing Application

� Text Compression

Data Structures 40
SNU

IDB Lab.

Hash Table Representation
� Hashing Concepts
� Pitfalls of Hashing
� Good Hash Functions
� Collision Resolutions

� Linear probing
� Random probing
� Hashing with Chaining

Data Structures 41
SNU

IDB Lab.

Hashing Concepts (1)
� Use hash table to store dictionary pairs

� Use a hash function f()

� Map keys into index in a hash table

� Element e has a key k and is stored in table[f(k)]

� Complexity

� To initialize an empty dictionary

� O(b) time where b is the number of positions

� To perform get(), put(), and remove() operation

� ΘΘΘΘ(1) time

Data Structures 42
SNU

IDB Lab.

A Simple Hashing Scheme

LOWELL’s
home

address

K=LOWELL

h(K)

Address

Address Record

key 1
2
3
4

0

5
6

... ...

LOWELL . . .
4

Data Structures 43
SNU

IDB Lab.

Hashing Concepts (2)

� If the range in key is so large, maintaining a table for each possible key
value in key range is impractical

� Example : Consider the student records dictionary

� There are 100 students

� Key field is student ID with Range [100000, 999999] of Key

(ex: 234966, 887654,….)

� Suppose hash function f(k) = k – 100000

� The length of table is 900,000: table[0, 899999]

� It doesn’t make sense to use a table with 900,000 for only 100 students

� If we want to have a table with 100 slots, we need to have a hashing
function which maps student IDs into table entry numbers (0..99).

Data Structures 44
SNU

IDB Lab.

Hashing Concepts (3)

� Buckets : Each position of the table
� The number of buckets = the table length D

� Index of hash table entries: 0 ~~ D – 1

� The Division-based Hash Function: f(k) = k % D

� Home bucket : f(k) for the element whose key is k
� If D =11, key =3, then the home bucket address is f(3) = (3 % 11) = 3

� The no of slots in the bucket = the no of elements that a bucket holds
� If there are 3 slots in a bucket, only upto 3 elements can be stored in a bucket

Data Structures 45
SNU

IDB Lab.

Pitfalls of Hashing (1)

� A collisionoccurs whenever two different keys have the same home buckets
� To resolve, there are linear probing, random probing, chaining, etc
� Example : D =11, each bucket has one slot

� An overflowoccurs when there is no room left in the home bucket

Table[] 0 1 2 3 4 5 6 7 8 9

80 40 65

(a)

Enter 58 then f(58) = 58 % 11 =3

Table[] 0 1 2 3 4 5 6 7 8 9

80 40 65

58

10

10

Data Structures 46
SNU

IDB Lab.

� Consider a primary key consisting of a string of 12 letters and a table with
100,000 slots.

� Since 2612 >> 105, So synonyms (collisions) are inevitable!

� If M = number of records, N = number of available slots,
P(k) = probability of k records hashing to the same slot

then P(k) = where f is the loading factor M/N

� As f � 1, we know that p(0) �1/e and p(1) � 1/e.
The other (1 - 1/e) of the records must hash into (1 -2/e) of the slots, for an
average of 2.4 slot. So many synonyms!!

Pitfall of Hashing (2)

M
K

1
N x 1

N
1- ~~

ek*k!

fk

Data Structures 47
SNU

IDB Lab.

Good Hash Functions

� A uniform hash functiondistributes the approximately same number of keys
from the key range per bucket

� For every key range [0, r], if r > 1 and d > 1 , f(k) = k % d is a uniform hash
function if some buckets get ⌊⌊⌊⌊r/d⌋⌋⌋⌋keysand other buckets get ⌈⌈⌈⌈r/d⌉⌉⌉⌉keys

� The ideal choiced is a prime number or has no prime factors less than 20

� Convert nonintegral keys to integers for use by a division hash function
� Integral type: int, long, char
� Nonintegral type: string, double

� Object.hashCode()of Java returns an integer
� S.hashCode() where s may be a String, Double, etc

Data Structures 48
SNU

IDB Lab.

“Integer to String” Method

// Convert a string into a unique integer

public static int integer (String s) {
int length = s.length(); //number of characters in s
int answer = 0;
if(length % 2 == 1) { //length is odd
answer = s.charAt(length – 1);
length--;

}
//length is now even

for(int i = 0 ; i < length; i+=2) { //do two characters at a time

answer += s.charAt(i);
answer += ((int) s.charAt(i + 1)) << 16; //shifting by 16 bits
}

return (answer < 0) ? – answer : answer;
}

Data Structures 49
SNU

IDB Lab.

Collision Resolutions

� Linear Probing

� Random Probing

� Hashing with Chaining

� Rehashing

� ….

Data Structures 50
SNU

IDB Lab.

search() in Linear Probing

� Linear probing: search the table for the next available bucket
sequentiallyin case of collisions
� Regard the table as circular list

� search(k) {

Compute f(k);
Look at the table[f(k)];
If the element in table[f(k)] has the key k, return the bucket address table[f(k)]
Otherwisesearch the next available bucket in a circular manner

}

� Search() is always ahead of get(), put(), remove()

Data Structures 51
SNU

IDB Lab.

put() in Linear Probing (1)

� Example, enter 58, 24, 35, 98 in order with k % 11

Table[] 0 1 2 3 4 5 6 7 8 9

80 40 65

Table[] 0 1 2 3 4 5 6 7 8 9

80 40 65

58

Table[] 0 1 2 3 4 5 6 7 8 9

80 40 65

Enter 58 into the next available slot

58

10

10

10

Data Structures 52
SNU

IDB Lab.

put() in Linear Probing (2)

� Example: enter 58, 24, 35, 98 in order with k % 11

Table[] 0 1 2 3 4 5 6 7 8 9

80 40 6558

Enter 24

24

Table[] 0 1 2 3 4 5 6 7 8 9

80 40 655824

35

Table[] 0 1 2 3 4 5 6 7 8 9

80 40 655824 35

10

10

10

Enter 35

Data Structures 53
SNU

IDB Lab.

put() in Linear Probing (3)

� Example: enter 58, 24, 35, 98 in order with k % 11

� At some point we need to double the array

Table[] 0 1 2 3 4 5 6 7 8 9

80 40 6558

Enter 98

24 35

…

11 12 13….. 20 22

98

10

Data Structures 54
SNU

IDB Lab.

get() in Linear Probing

� Search(k) will return an address B with the following manner

Compute f(k);

Look at the table[f(k)];

If the element in table[f(k)] has the key k,

return the bucket address table[f(k)]

Otherwise

search the next available bucket in a circular manner

� Then return table[B].element

Data Structures 55
SNU

IDB Lab.

remove() in Linear Probing

� Several elements must be movedafter removing an element
� So, remove()should check the natural address of many elements

� Search steps for elements to move
� Begin just after the bucket vacated by the removed element

{ Proceed to successive buckets;
Check the natural address of the element;
If the bucket is the home bucket for the element, move the element;
until

� either reach to an empty bucket
� or return to the bucket from which the deletion took place

}

Data Structures 56
SNU

IDB Lab.

HashTable with Linear Probing (1)

� HashEntry is for the pairs stored in a bucket
protected static class HashEntry {

// data members
protected Object key;
protected Object element;
// constructors
private HashEntry() {}
private HashEntry(Object theKey, Object theElement) {

key = theKey;
element = theElement; }

}
� The hash table structure

� If the number of slots per bucket = 1, 1D array table[b]of type HashEntry
� If the number of slots per bucket more than 1,

� 2D array table[b][s]of type HashEntry
� 1D array of type bucket having (key, element)pairs

Data Structures 57
SNU

IDB Lab.

HashTable with Linear Probing (2)

public class HashTable {
// data members of HashTable
protected int divisor; // hash function divisor
protected HashEntry [] table; // hash table array, one record slot for one hash bucket
protected int size; // number of elements in table

// constructor
public HashTable(int theDivisor){

divisor = theDivisor;
// allocate hash table array
table = new HashEntry [divisor];

}

}

Data Structures 58
SNU

IDB Lab.

search() with Linear Probing

private int search (Object theKey) {
// home bucket
int i = Math.abs(theKey.hashCode()) % divisor;
int j = i; // start at home bucket
do {

if (table[j] == null || table[j].key.equals(theKey))
return j;

j = (j + 1) % divisor; // next bucket
} while (j != i); // returned to home bucket?

return j; // table full
}

Data Structures 59
SNU

IDB Lab.

get() with Linear Probing

/** @return element with specified key
* @return null if no matching element */

public Object get (Object theKey) { // search the table
int b = search(theKey);

// see if a match was found at table[b]
if (table[b] == null || !table[b].key.equals(theKey))

return null; // no match

return table[b].element; // matching element
}

Data Structures 60
SNU

IDB Lab.

put() with Linear Probing

/* * insert an element with the specified key; overwrite old element if the old one has the given key
* @throws IllegalArgumentException when the table is full
* @return old element (if any) with key theKey */

public Object put (Object theKey, Object theElement) {
// search the table for a matching element
int b = search(theKey);
if (table[b] == null) { // check if matching element found
// no matching element and table not full

table[b] = new HashEntry(theKey, theElement);
size++;
return null; }

else { // check if duplicate or table full
if (table[b].key.equals(theKey)) {
// duplicate, change table[b].element & return the old one
Object elementToReturn = table[b].element;
table[b].element = theElement;
return elementToReturn; }
else /* table is full*/ throw new IllegalArgumentException("table is full");

} //end of else
}

Data Structures 61
SNU

IDB Lab.

Analysis of Linear Probing

� 2 variables for average performance when n is large

� Un = the average number of buckets examined during an unsuccessful search

� Sn = the average number of buckets examined during an successful search

� The smaller Un & Sn, the better

� For linear probing

� Un ~ ½ (1+1/(1-)2)

� Sn ~ ½ (1 + 1/(1 –))

� Where the loading factor = n / b (n = no of elements, b = no of buckets)

� Better try to keep ≤ 0.75

� The number of buckets should be 33% bigger than the number of elements

α
~

~
α

α

α

Data Structures 62
SNU

IDB Lab.

Random Probing

� When an overflow occurs, search for a free bucket in a random manner

� Assign a new bucket address from a psudo-random number generator for
the new element when collision happens

� Input for the psudo-random number generator is the current address

� Linear Probing

� Jump to the next position by “1”

� Random Probing

� Jump to the next position by a random number

Data Structures 63
SNU

IDB Lab.

Analysis of Random Probing (1)

� Probability theory
� Let p be the probability that a certain event occurs

� The expected number of independent trials needed for that event
to occur is 1/p

� The formula for Un is derived as follows
� When the loading density is = n/b

� the probability that any bucket is occupied is also same

� The probability(p) that a bucket is empty = 1-

� The expected number of buckets examined

� Un ~ 1/p = 1/(1 –)

α

~

α

α

skip

Data Structures 64
SNU

IDB Lab.

Analysis of Random Probing (2)

� The formula for Sn is derived as follows

� When the ith element is inserted,

� the item is inserted into the empty bucket where the unsuccessful
search terminates

� The loading factor = (i -1) / b

� The expected number of buckets examined for searching the ith element

� 1 / (1 – ((i-1) / b))

skip

Data Structures 65
SNU

IDB Lab.

Analysis of Random Probing (3)

� The formula for Sn is derived as follows

� When the number of examined buckets is concerned,

� Linear probing incurs a performance penalty relative to random probing

(remember Sn ~ ½ (1 + 1/(1 –)))

� When = 0.9, linear probing needs 50.5 bucket searches while
random probing needs 10 bucket searches

)1(log
1

1
1

11

1

α
α

−−==
−−

≈ ∑
=

e

n

i
n

b

in
S

~

α

α

skip

Data Structures 66
SNU

IDB Lab.

Analysis of Random Probing (4)

� Why do we not use random probing?

� Computing the next random number (random probing) takes more
time than examining several buckets (linear probing)

� Random probing searches the table in a random fashion, it pays a
run time penalty because of the cache effect

� If the loading factor is close to 1, random probing is better, but
linear probing is popular otherwise.

skip

Data Structures 67
SNU

IDB Lab.

Choosing a Divisor D (1)
� f(k) = k % D and = n/b

� Can determine D & b using the formulas Un & Sn

� Determine the largest

� Obtain the smallest permissible value for b from n and

� Find the smallest integer for D
� that is at least as large as this value of b

� that is a prime or has no factors smaller than 20

� Example: Suppose we want Un <= 50.5, Sn<= 4 & 1000 elements in linear probing

� From Un = ½(1+1/(1-)2), we get <= 0.9

� From Sn = ½(1 + 1/(1 –)), we get 4 >= 0.5 + 1/(2(1-))

� Thus, we require <= min{0.9, 6/7} = 6/7 = n / b (where n = 1000)

� Hence b should be at least n/ = 1167 which is a suitable value for Dα

α
α α

α
α

α

α

α

Data Structures 68
SNU

IDB Lab.

Choosing a Divisor D (2)

� Another simple way to compute D

� L: the maximum amount of space available for the hash table

� Find the largest D ≤≤≤≤ L that is either a prime or has no factor smaller than 20

� Ex: Suppose 530 buckets in the hash table, 529 would be good for D & b

� 23* 23 = 529

� Finding a prime number which is less than a very big
number is a difficult task?

Data Structures 69
SNU

IDB Lab.

Hashing with chains
� The class HashChain maintain chains of elements that have the same home bucket

� Each bucket has space for just a pointer “first node”
� All elements are kept on chains in ascending order (SortedChainNode)
� table[0:divisor-1] is a type of SortedChainclass

Data Structures 70
SNU

IDB Lab.

Remember SortedChain Class

� table[] SortedChain;

� table[1].get() � SortedChain.get()

� table[1].put() � SortedChain.put()

� table[1].remove() � SortedChain.remove()

A B C D E
null

firstNode

Data Structures 71
SNU

IDB Lab.

get() in HashChain

** The class HashChain implements a dictionary
using 1D array table[o:n] of sorted chains

table[].get()
: Compute the home bucket, k%D, for the key
: Search the chain to which this bucket points

/** @return element with specified key
* @return null if no matching element */

public Object get (Object theKey) {

return table[Math.abs(theKey.hashCode())% divisor].get(theKey);
}

Data Structures 72
SNU

IDB Lab.

put() in HashChain

table[].put()
: Verify that the table does not already have an element with the same key

/** insert an element with the specified key
* overwrite old element if the element has the given key
* @return old element (if any) with key theKey */

public Object put(Object theKey, Object theElement) {
// home bucket
int b = Math.abs(theKey.hashCode()) % divisor;
Object elementToReturn = table[b].put(theKey, theElement);
if (elementToReturn == null) size++; // new key
return elementToReturn;

}

Data Structures 73
SNU

IDB Lab.

remove() in HashChain

table[].remove()
: Access the home bucket chain
: Search this chain for an element with given key
: Delete the element

/** @return matching element and remove it
* @return null if no matching element */

public Object remove(Object theKey) {

Object x = table[Math.abs(theKey.hashCode()) % divisor].remove(theKey);

if (x != null) size--;

return x;

}

Data Structures 74
SNU

IDB Lab.

HashChain with a tail node (1)

� table[].get(k): go to the next element if this element is less than the
given key and the next pointer is not null

� Adding a tail node to the end of each chain can improve performance
slightly
� Put the largest key into the tail node
� The tail node can eliminate most the checks against null that are

used in the codes for the methods of SortedChain
� table[].get(k):(currentNode != NULL)

� The constant Integer.MAX_VALUE

Data Structures 75
SNU

IDB Lab.

HashChain with a tail node (2)

� Example of hash table with tail nodes

Data Structures 76
SNU

IDB Lab.

Chaining vs. Linear Probing (1)

� Space requirements
� Linear Probing ≤≤≤≤ Chaining

� Time complexities
� The derivation of Un of Chaining

� For an i-node chain, i+1 possibilities for the range in which the search key
falls

� If each of these possibilities happens with equal probability, the average
number of nodes that get examined in an unsuccessful search is

(1/i+1)(i+∑i
j=1 j) = (i(i+3))/2(i+1) when i ≥≥≥≥ 1

� On average, the expected length of a chain = n/b = @,

we substitute i with alpha when alpha ≥≥≥≥ 1

Then, Un = (@(@ + 3)) / 2(@ + 1) in Chaining

� Remember Un = ½(1+1/(1- @)2) in linear hashing

Data Structures 77
SNU

IDB Lab.

Chaining vs. Linear Probing (2)

� The derivation of Sn in Chaining

� When ith identifier is inserted, have to examine 1+(i-1)/b nodes

� If each of n identifiers is searched for with equal probability,

Sn = 1/n (∑n
i=1{1+(i-1)/b}) � 1+(@ /2) in Chaining

� Remember Sn = ½(1 + 1/(1 – @)) in linear probing

� Comparing the above formulas, “chaining” generally examines a smaller
number of buckets than “linear and random probing”

Data Structures 78
SNU

IDB Lab.

Hashing vs. Skip Lists (1)
� Both utilize a randomization process

� Skip Lists: assign a level to an element at insertion
� Hashing: assign a bucket to randomly distribute the bucket assignments

for the different elements being inserted

� Average case operations: skip list (O(logN)) vs. hashing (O(1))

� Worst case operations

D + n for pointersΘ(n)Hashing

maxLevel * (n+1) for pointersΘ(n+maxLevel)Skip lists

Space complexityTime complexity

Data Structures 79
SNU

IDB Lab.

Hashing vs. Skip Lists (2)
� To output the elements in ascending order of value

� Skip List : Linear time by going down the level 0 chain

� Chained Hash Table :

θθθθ(D) (to collect) +

O(nlogD) (to combine the chains in ascending order of key)

� Other operations such as get or remove the element with largest or
smallest value

� A hash table is more expensive than a skip list

Data Structures 80
SNU

IDB Lab.

Table of Contents

� Definition: Dictionary

� Linear List Representation

� Skip Lists Representation

� Hash Table Representation

� Hashing Application

� Text Compression

Data Structures 81
SNU

IDB Lab.

Table of Contents

� Hashing Application – Text Compression

� LZW Compression

� Implementation of LZW Compression

� LZW Decompression

� Implementation of LZW Decompression

� Performance Evaluation

Data Structures 82
SNU

IDB Lab.

LZW Compression (1)

� Character : one of the standard 256 ASCII characters which 1byte each

� LZW compression method (Lampel-Ziv-Welch algorithm)
� Maps strings of text characters into numeric codes
� The mapping is stored in a dictionary

� Each dictionary entry has key and code
� Key : the character string represented by code

� The LZW compressor repeatedly do this LZW rule
� Find the longest prefix “p” of the unencoded part of S that is in the dictionary
� Output its code
� If there is a next character c in S, pc is assigned the next code
� If pc is not in the dictionary, insert pc into the dictionary

� The dictionary in LZW compressor can be implemented with a hashchain
� But it is somehow difficult to think LZW compression as Hashing application!

Data Structures 83
SNU

IDB Lab.

LZW Compression (2)
� For example, S = aaabbbbbbaabaaba is to be compressed

Data Structures 84
SNU

IDB Lab.

LZW Compression (3)

� String S is encoded as the string 0214537 and the code table disappears!

� Similarly the code table is reconstructed during decompression

7

Data Structures 85
SNU

IDB Lab.

Table of Contents

� Application – Text Compression

� LZW Compression

� Implementation of LZW Compression

� LZW Decompression

� Implementation of LZW Decompression

� Performance Evaluation

Data Structures 86
SNU

IDB Lab.

The class Compress

Class Compress {

Methods :
setFiles() : open the input and output files
output () : output a byte of the compressed file
compress() : read bytes of the input file and

determine their output code
main() : a main method

}

Data Structures 87
SNU

IDB Lab.

Establish Input / Output Streams (1)

� Input: a text file

� Output: a binary file (compress file)

� If the input file name is input_File,

� then the output file name is to be input_File.zzz

� Program: Compress.java

� Compile: javac Compress.java

� Command line

� java Compress input_File

Data Structures 88
SNU

IDB Lab.

Establish Input / Output Streams (2)

/** create input and output streams */

private static void setFiles (String [] argv) throws IOException {

String inputFile, outputFile;

// see if file name provided

if (argv.length >= 2) inputFile = argv[1];

else { // input file name not provided, ask for it

System.out.println("Enter name of file to compress");

MyInputStream keyboard = new MyInputStream();

inputFile = keyboard.readString(); }
// Establish input and output streams with input buffering each disk access brings
// in a buffer load of data rather than a single byte
in = new BufferedInputStream (new FileInputStream(inputFile));
outputFile = inputFile + ".zzz";
out = new BufferedOutputStream (new FileOutputStream(outputFile));

}

Data Structures 89
SNU

IDB Lab.

Dictionary in Compress
� Modefined LZW compression dictionary for aaabbbbbbaabaaba

� Code = 12 bits Key = 20 bits = 12 bits (code) + 8 bits (character)

� The dictionary may be represented as a chained hash table

� HashChains h = new HashChains(D);

� Divisor D = 4099

� The dictionary can be an array as shown in Decompress.

Data Structures 90
SNU

IDB Lab.

output() in Compress

/** output 1 byte and save remaining half byte */

private static void output (int pcode) throws IOException {

int c, d;
if (bitsLeftOver) { // half byte remains from before

d = pcode & MASK1; // right BYTE_SIZE bits,MISK1=255
//EXCESS = 4, BYTE_SIZE = 8
c = (leftOver << EXCESS) + (pcode >> BYTE_SIZE);
out.write(c);
out.write(d);
bitsLeftOver = false; } //end of if

else{ // no bits remain from before
leftOver = pcode & MASK2; // right EXCESS bits, MASK2=15
c = pcode >> EXCESS;
out.write(c);
bitsLeftOver = true; }

}

Data Structures 91
SNU

IDB Lab.

compress() in Compress (1)

/** Lempel-Ziv-Welch compressor */
private static void compress() throws IOException {

// define and initialize the code dictionary
HashChains h = new HashChains(D); // HashChain Dictionary!!!!!
for (int i = 0; i < ALPHA; i++) // initialize code table

h.put(new MyInteger(i), new MyInteger(i));
int codesUsed = ALPHA; //ALPHA = 256

// input and compress
int c = in.read(); // first byte of input
if (c != -1) { // input file is not empty

int pcode = c;

Data Structures 92
SNU

IDB Lab.

compress() in Compress (2)

c = in.read(); // second byte
while (c != -1) { / / process byte c until not at the end of file

int k = (pcode << BYTE_SIZE) + c; // see if code for k is in the dictionary
MyInteger e = (MyInteger) h.get(new MyInteger(k));
if (e == null) { /* k is not in the table */ output(pcode);

if (codesUsed < MAX_CODES) // create new code in the dictinary
h.put(new MyInteger((pcode << BYTE_SIZE) + c), new MyInteger(codesUsed++));

pcode = c; }
else pcode = e.intValue();
c = in.read();

} //end of while
output(pcode); // output last code(s)
if (bitsLeftOver) out.write(leftOver << EXCESS);

}
in.close();
out.close();

}

Data Structures 93
SNU

IDB Lab.

Data Members & Methods in Compress

public class Compress { // constants & variables
final static int D = 4099; // hash function divisor
final static int MAX_CODES = 4096; // 2^12
final static int BYTE_SIZE = 8;
final static int EXCESS = 4; // 12 - ByteSize
final static int ALPHA = 256; // 2^ByteSize
final static int MASK1 = 255; // ALPHA - 1
final static int MASK2 = 15; // 2^EXCESS – 1
static int leftOver; // code bits yet to be output
static boolean bitsLeftOver;
static BufferedInputStream in;
static BufferedOutputStream out;
//other methods come here: output(), getCode(), compress()

public static void main(String [] argv)
throws IOException{ setFiles(argv); compress();}

} //end of class Compress

Data Structures 94
SNU

IDB Lab.

Table of Contents

� Application – Text Compression

� LZW Compression

� Implementation of LZW Compression

� LZW Decompression

� Implementation of LZW Decompression

� Performance Evaluation

Data Structures 95
SNU

IDB Lab.

LZW Decompression (1)
� For decompression

� Input the codes one at a time
� Replace them by texts

� Way of the code to text mapping
� The code assigned for single-character texts are entered into the dictionary
� With a given code, search for an entry of dictionary
� Replace the first code in compressed file to a single character
� For all other codes p, consider

� The case that the code p is in the dictionary
� The case that the code p is not in the dictionary

Data Structures 96
SNU

IDB Lab.

LZW Decompression (2)

� Case when code p is in the dictionary
� From dictionary, extract the text text(p)

� text(p) : the corresponding text
� Output it
� If the code that precedes p is q, enter the pair (nextcode, text(q)fc(p))into the directory

� fc(p) : the first character of text(p)

� Case when code p is not in the dictionary
� The code-to-text mapping for p is text(q)fc(q) whereq is the code that precedes p
� Output it
� Enter the pair (nextcode, text(q)fc(q))into the directory

Data Structures 97
SNU

IDB Lab.

LZW Decompression (3)

� For example, decompress the compressed coded 0214537
1. Initialize the dictionary with the pairs (0,a), (1,b)
2. The first code 0 � output the text a
3. Code 2 � It is undefined � previous code 0, so text(2) = text(0)fc(0) = aa

� output text aaand add (2, aa) into the dictionary
4. Code 1 � output text band add (3, text(2)fc(1)) = (3, aab) into the dictionary
5. Code 4 � It is undefined � previous code 1, so text(4) = text(1)fc(1) =bb

� output text bband add (4, bb) into the dictionary
6. Code 5 � It is undefined � previous code 4, so text(5) = text(4)fc(4) = bbb

� output text bbband add (4,bbb) into the dictionary
7. Code 3 � output aaband add (6, text(5)fc(3)) = (6,bbba) into the dictionary
8. Code 7 � It is undefined � previous code 3, so text(7) = text(3)fc(3) = aaba

� add (7,aaba) into the dictionary and output aaba

The decompressed text: a+aa+b+bb+bbb+aab+aaba� aaabbbbbbaabaaba

Data Structures 98
SNU

IDB Lab.

Table of Contents

� Application – Text Compression

� LZW Compression

� Implementation of LZW Compression

� LZW Decompression

� Implementation of LZW Decompression

� Performance Evaluation

Data Structures 99
SNU

IDB Lab.

Dictionary in Decompress (1)
� Implement as the class Decompress

� Decompress.setFiles is similar to Compress.setFiles

� Dictionary Organization
� Store the prefix code and the suffix separately as two integers
� Array dictionary using the class Element

private static class Element {
// data members
private int prefix;
private int suffix;

// constructor
private Element(int thePrefix, int theSuffix) {

prefix = thePrefix;
suffix = theSuffix;

}
}

Data Structures 100
SNU

IDB Lab.

Dictionary in Decompress (2)

/**output the byte sequence that corresponds to code */
private static void output(int code) throws IOException{

size = -1;
while (code >= ALPHA) { // suffix is in the dictionary

s[++size] = h[code].suffix;
code = h[code].prefix;

}
s[++size] = code; // code < ALPHA
// decompressed string is s[size] ... s[0]
for (int i = size; i >= 0; i--)

out.write(s[i]);
}

Data Structures 101
SNU

IDB Lab.

getCode() in Decompress

Reverse the process employed by the method output() in Compress

/** @return next code from compressed file @return -1 if there is no next code */
private static int getCode() throws IOException {

int c = in.read();
if (c == -1) return -1; // no more codes // see if any leftover bits from before
// if yes, concatenate with leftover bits
int code;
if (bitsLeftOver) code = (leftOver << BYTE_SIZE) + c;
else { // no leftover bits, need more bits to complete code

int d = in.read(); // another byte
code = (c << EXCESS) + (d >> EXCESS);
leftOver = d & MASK; // save unused bits

}
bitsLeftOver = !bitsLeftOver;
return code;

}

Data Structures 102
SNU

IDB Lab.

decompress() in Decompress (1)

/** Lempel-Ziv-Welch decompressor */
private static void decompress() throws IOException {

int codesUsed = ALPHA; // codes used so far
s = new int [MAX_CODES];
h = new Element [MAX_CODES];
// input and decompress
int pcode = getCode(), // previous code

ccode; // current code

if (pcode >= 0) { // input file is not empty
s[0] = pcode; // byte for pcode
out.write(s[0]);
size = 0; // s[size] is first character of last string output

Data Structures 103
SNU

IDB Lab.

decompress() in Decompress (2)

do{ ccode = getCode(); // get another code

if (ccode < 0) break; // no more codes

if (ccode < codesUsed) { /* ccode is defined */

output(ccode);

if (codesUsed < MAX_CODES) h[codesUsed++] = new Element(pcode, s[size]);

} else{ // special case, undefined code

h[codesUsed++] = new Element(pcode, s[size]);

output(ccode); }
pcode = ccode;

} while(true);

} //end of if pcode>=0
out.close();
in.close();

} //end of decompress()

Data Structures 104
SNU

IDB Lab.

Data Members & Methods in Decompress

public class Decompress { // constants and variables
final static int MAX_CODES = 4096; // 2^12
final static int BYTE_SIZE = 8;
final static int EXCESS = 4; // 12 - ByteSize
final static int ALPHA = 256; // 2^ByteSize
final static int MASK = 15; // 2^EXCESS – 1
static int [] s; // used to reconstruct text
static int size; // size of reconstructed text
static Element [] h; // array dictionary!!!
static int leftOver; // input bits yet to be output
static boolean bitsLeftOver;
static BufferedInputStream in;
static BufferedOutputStream out;
// other methods defined here : output(), getCode(), decompress(),
public static void main(String [] argv) throws IOException {

setFiles(argv);
decompress(); }

} //end of class Decompress

Data Structures 105
SNU

IDB Lab.

Table of Contents

� Application – Text Compression

� LZW Compression

� Implementation of LZW Compression

� LZW Decompression

� Implementation of LZW Decompression

� Performance Evaluation

Data Structures 106
SNU

IDB Lab.

Performance Evaluation

� Our LZW program : compress a 33772byte ASCII file to 18765 bytes
� Compression ratio = 1.8

� Zip : compress 33772byte ASCII file to 11041 bytes
� Compression ratio = 3.1

� Commercial compression programs couple methods such as LZW
compression and other compression methods

� We should not expect a raw LZW compressor to match the
performance of a commercial compressor

Data Structures 107
SNU

IDB Lab.

Summary (0)

� Chapter 9: Stack
� A kind of Linear list & LIFO(last-in-first-out) structure

� Insertion and removal from one end

� Chapter 10: Queue
� A kind of Linear list & FIFO(first-in-first-out) structure

� Insertion and deletion occur at different ends of the linear list

� Chapter 11: Skip Lists & Hashing
� Chains augmented with additional forward pointers

� Popular technique for random access to records

Data Structures 108
SNU

IDB Lab.

Summary (1)
� Define the concept of Dictionary
� Skip list for Dictionary

� Chains augmented with additional forward pointers
� Employ a randomization technique

� To determine
� Which chain nodes are to be augmented
� How many additional pointers are to be placed in the node

� To search, insert, remove element: O(log n) time

� Hashing for Dictionary
� Usage of randomization to search, insert, remove elements at 0(1) time

� Hashing Application
� Text compression: Lampel-Ziv-Welch algorithm
� Text decompression

Data Structures 109
SNU

IDB Lab.

Summary (2)

� Comparison of performance (Dictionary Implementation)

� Skip lists is better than hashing when frequently outputting all
elements in sorted order or search by element rank

� Hashing in Java:

java.util.HashTable, java.util.HashMap, and java.util.Hashset

Excepted

θθθθ(1)θθθθ(1)θθθθ(1)θθθθ(n)θθθθ(n)θθθθ(n)Hash tables

θθθθ(log n)θθθθ(log n)θθθθ(log n)θθθθ(n)θθθθ(n)θθθθ(n)Skip lists

θθθθ(n)θθθθ(n)θθθθ(n)θθθθ(n)θθθθ(n)θθθθ(n)Sorted chain

θθθθ(n)θθθθ(n)θθθθ(log n)θθθθ(n)θθθθ(n)θθθθ(log n)Sorted array

RemoveInsertSearchRemovedInsertSearch

Worst CaseMethod

Data Structures 110
SNU

IDB Lab.

JDK class: java.util.Hashtable

public interface Hashtable extends Dictionary {

constructors

Hashtable(): Constructs an empty hash table with initial size 11
Hashtable(int cap): Constructs an empty hash table with initial size cap

methods
Object get(Object key): Returns the value to which key is mapped

Object put(Object key, Object value): Maps key to value

}

