Ch11. Skip Lists and Hashing

!'_ (for Dictionary)

© copyright 2006 SNU IDB Lab.

‘_L Bird’s-Eye View (0)

= Chapter 9: Stack
= A kind of Linear list & LIFO(last-in-first-out) structure
= Insertion and removal from one end

= Chapter 10: Queue
= A kind of Linear list & FIFO(first-in-first-out) structure
= Insertion and deletion occur at different ends of the linear list

= Chapter 11: Skip Lists & Hashing
» Chains augmented with additional forward pointers
= Popular technique for random access to records

SNU
Data Structures 2 IDB Lab.

Bird's-Eye View (1)

= Deftine the concept of Dictionary
= Skip list for Dictionary
« Chains augmented with additional forward pointers

=« Employ a randomization technique

= To determine
Which chain nodes are to be augmented
How many additional pointers are to be placed in the node

= To search, insert, remove element: O(log n) time

= Hashing for Dictionary
= Usage of randomization to search, insert, remove elements at 0(1) time
= Hashing Application
= Text compression: Lampel-Ziv-Welch algorithm

= Text decompression

SNU
Data Structures 3 IDB Lab.

i Bird’s-Eye View (2)

= Dictionary Implementation

Method Worst Case Excepted
Search Insert | Removed | Search Insert Remove
Sorted array 0(log n) o(n) o(n) | 6(log n) o(n) o(n)
Sorted chain o(n) o(n) o(n) o(n) o(n) o(n)
Skip lists o(n) o(n) O(n)| 6(logn)| B(logn)| 6(logn)
Hash tables o(n) o(n) o(n) 0(1) 0(1) 0(1)

= Skip lists is better than hashing when frequently outputting all

elements in sorted order or search by element rank

= Hashing in Java

= java.util.HashTable, java.util.HashMap, and java.util.Hashset

Data Structures

4

SNU
IDB Lab.

i Table of Contents

= Definition: Dictionary
= Linear List Representation
= SKkip Lists Representation

= Hash Table Representation
=« Hashing concepts
= Collision Solutions

= Hashing Application
= Text Compression

SNU
Data Structures 5 IDB Lab.

i Dictionary (1)

Key | Element
= A collection of pairs of the form (4, ¢€)
= k:akey db | Data Base
= e : the element associates with the key k
= Pairs have different keys ds | Data Structure
_ ai Artificial
= Operations Intelligence

= Get the element associated with a specified key
= Insert or put an element with a specified key
= Delete or remove an element with a specified key

= Intuitively, dictionary is a mini database

Data Structures 6

SNU
IDB Lab.

i Dictionary (2)

= A dictionary with duplicates
= Keys are not required to be distinct

= Need to have a rule to eliminate the ambiguity
= Get operation
Get any element or Get all elements
= Remove operation
Remove the element specified by user or arbitrarily any one element

= Sequential access
= Elements are retrieved 1 by 1 in an ascending order of keys

SNU
Data Structures 7 IDB Lab.

The Abstract Data Type: Dictionary

AbstractDataType Dictionary {
instances
collection of elements with distinct keys
operations
get(k) : return the element with key k;
put(k, x) : put the element x whose key is k into the dictionary
and return the old element associated with k;
remove(k) : remove the element with key k and return it;

SNU
Data Structures 8 IDB Lab.

‘L The interface: Dictionary

public interface Dictionary {

pub
pub
pub

Data Structures

icO
icO
ic O

pject get(Object key) ;
pject put(Object key, Object theElement) ;

vject remove(Object key) ;

SNU
IDB Lab.

i Table of Contents

= Definition: Dictionary
s Linear List Representation
= SKkip Lists Representation
= Hash Table Representation

= Hashing Application
= Text Compression

SNU
Data Structures 10 IDB Lab.

i Dictionary by Linear List

Interface LinearList {

ISEmpty(); size(); get(index); indexOf(x);
remove(index); add(thelndex, x); output(); }

= Interface Dictionary {
get(Object key) ;
public Object put(Object key, Object theElement) ;
public Object remove(Object key) ; }

s L=(e,€e,8y, ... ; €n-1)
= Each g is a pair (key, element)
= The ¢;s are in ascending order of key

= 2 kinds of representations
= The class SortedArraylist as array-based
= The class SortedChain as linked

SNU
Data Structures 11 IDB Lab.

iArray-based Dictionary

= The class SortedArrayList for array-based dictionary

A

B

C

D

E

= Time complexity of operations
= Get : O(log n)
by binary search
= Insert : O(log n) + O(n)
by binary search & move at most n elements to right
= Remove : O(log n) + O(n)
by binary search & move at most n elements to left

Data Structures

12

SNU
IDB Lab.

‘_L Linked-List based Dictionary

= The class SortedChain for linked-list based dictionary

firstNode

_— — s

= Time complexity of operations
= Get: O(n)
= Insert: O(n) + O(1) (put at proper place)
= Remove : O(n)

= No binary search in a sorted chain! SNU

Data Structures 13 IDB Lab.

iget() in SortedChain for Dictionary (1)

public Object get (Object theKey) {
SortedChainNode currentNode = firstNode:

I/ search for match with theKey

while (currentNode != null && currentNode.key.compaio(theKey) < 0)
currentNode = currentNode.next;

// verify match

if (currentNode != null && currentNode.key.equaltey))
return currentNode.element;

/[no match

return null;

J SNU
Data Structures 14 IDB Lab.

put() in SortedChain for Dictionary: (2)

rt an element with the specified key
* overwrite old element if there is already an edgrtnwith the given key
* @ return old element (if any) with key theKey */
public Object put (Object theKey, Object theElemént

SortedChainNode p = firstNode, tp = null;tp trails p

I/ move tp so that theElement can be inserted gfter t

while (p !'= null && p.key.compareTo(theKey) < 0) {

tp=p; p = p.next; }// check if there is a matching element
if (p !'= null && p.key.equals(theKey)) {// replace old element
Object elementToReturn = p.element;

p.element = theElement;

return elementToReturn; }
// no match, set up node for theElement

SortedChainNode g = new SortedChainNode (theKey,|émeé&nt, p);
if (tp == null) firstNode = g// insert node just after tp

else tp.next = q;

Size++;

return null;

/*

% SNU
Data Structures 15 IDB Lab.

remove() In SortedChain for Dictionary (3)

[** @return matching element and remove it
* @return null if no matching element */

public Object remove(Object theKey) {

SortedChainNode p = firstNode, tp = nulll/ tp trails p
while (p '= null && p.key.compareTo(theKey) < @) search for match with theKey
{ tp=p; p=p.next}
// verify match
if (p '= null && p.key.equals(theKey)) { // found a match
Object e = p.element; // the matching element
// remove p from the chain
if (tp == null) firstNode = p.next; // p is first node
else tp.next = p.next;
size--;
return e; } //end of if

return null; // no matching element to remove
} //end of remove()

SNU
Data Structures 16 IDB Lab.

i Table of Contents

= Dictionary

= Linear List Representation

= SKip Lists Representation

= Hash Table Representation

= Application — Text Compression

SNU
Data Structures 17 IDB Lab.

i The Ideal Skip-List (1)

= In n-element dictionary which is a sorted chain, to search any element e,
= N element comparisons are needed

= The number of comparisons can be reduced to n/2 + 1 with help of
middle point
= Compare with the middle point
= If e < middle point, search only the left half
= Else, search only the right half

= Adding some more data structure for a middle point can save
the number of comparisons!

= YES, Simulate the binary searching in a sorted chain with some more
data structure

SNU
Data Structures 18 IDB Lab.

The Ideal Skip-List (2)

= Example : Consider the seven-element sorted chain

— 2 20 24 e 3| a4 = 631 el 75| Bl =

(a) A sorted chain with head and tail nodes

headNode taillNoda

| i

[- T

2 200 =24 = 3£l| 410} a3} a7 5 =SR] =

\ (b) Pointer to middle added

SNU
Data Structures 19 IDB Lab.

The Ideal Skip-List (3)

= Example(Cont.)

= By keeping pointers to the middle elements of each half, we can
keep on reducing the number of element comparisons

Level 2

Level 1

Level O

—

—

—

o

a

o

A

B

=
_;(L@:m l

_;{m

=19 -

80

(¢) Pointers to every second node added

=« For example, the search value is 30

Data Structures

20

SNU
IDB Lab.

The Ideal Skip-List (4)

= SKkip List
= The level 0 chain includes all N elements
= The level i chain
= Includes every 2'th element
= Comprises a subset of the elements in the level i —1 chain
= N/ 2 elements are located in the level i

= Legend: An element is a level i element iff it is in the chains for
level 0 through i duplicately and not on the level i+1 chain
= A regular skip list structure is the previous figure (c)

= but we cannot maintain the ideal structure when insertion/deletion
occur without doing 0(n) work

SNU
Data Structures 21 IDB Lab.

Insert in Skip-list

2 ple(Cont.) : Consider the insert for an element 77
= : o
o = i Ir o
— sl 2| =e{2d] = 3| = el {75 ——Ib- B0 ==

(d) Last pointers encountered when searching for 77

At most 3 element comparisons
=g =g
el 2| =24 == 30| —==idid el ()| =l 75| L= 77| = i) =S

(e) 77 inserted
The element 77 may be in level 0 SNU

Data Structures or level 1 or level 2 = which one? IDB Lab.

i Delete in SkipList

delete 77
1.
2.
3.

Search for 77
The encountered pointers are the level 2 in “40” and the level 1,0 in “75”
Level 0,1 pointers are to be changed to point to the element after 77

- -
— — " /:.‘—\ -
— 20 —+|_24 ——:I-F“:J — =4 - () —ﬁ a(lﬁ =0 =

— ==t 200

Data Structures

-

30

40

=) ==

23

|y

=0

=7
=7
=

SNU
IDB Lab.

iAssigning Levels in SkipList (1)

= We want to keep having the ideal skip-list structure, but
= We better attempt to approximate the regular skip list structure
= Assigning a proper level to the new element is an important issue!

= Properties of SkipList (When p elements are assigned to the next level)
= Probability that the new element is assigned at level 0: p° =1
= Probability that the new element is assigned at level 1: p! = 1/2
= Probability that the new element is assigned at level i: p' = (12)'

= For a general p, the num of chain levels = llog,, n | +1
= The level i chain comprises every (1/p) th element of the level i —1 chain

SNU
Data Structures 24 IDB Lab.

i Assigning Levels in SkipList (2)

= One way: Level assigning by a uniform random number(URN) generator
= URN generates real number R suchthat0< R < 1
= The Probability that the new element is assigned at level 1: P
= The probability of “the element on the level i —1 is also on level i": P
= Level assigning process by URN when inserting an element
= IfRis < p, assign the new element on the level 1 chain
« Ifthe new R is < p, assign the new element on the level 2 chain
= Until the new R > p, continue this process

= Shortcomings of URN
= Assigned level number may be greater than log,,, N

= To prevent this possibility, set an upper limit
= Sometimes alter the level assignment of element

= If the new element was assigned the level 9 and there are no level 3, 4,

..., 8 elements prior to and following the insertion SNU
Data Structures 25 IDB Lab.

i Assigning Levels in SkipList (3)

= An alternative way of assigning level
= Divide the range of values that the URN outputs into several segments

= The 1st segment & 1 - 1/p of the range
1/p of the whole elements go to the next level

= The 2nd segment < 1/p X (1 - 1/p) of the range
= And so on

= If the random number in the /th segment, the inserted element is a level /—
1 element

SNU
Data Structures 26 IDB Lab.

The class SkipNode of SkipList

Head node : fields for the maximum num of level chains

protected static class SkipNode {
//data members
protected Comparable key;,
protected Object element;
protected SkipNode [] next;
//constructor
protected SkipNode(Object theKey, Object theElemansize) {
key = (Comparable) theKey;
element = theElement;
next = new SkipNode[sizelisize =i + 1 for level i node
}
}

SNU
Data Structures 27 IDB Lab.

i Data members of SkipList

protected float prob; // probability used to decide level number
protected int maxLevel, // max permissible chain level

protected int levels; // max current nonempty chain

protected int size; // current number of elements

protectedComparabldgailkey; // a large key

protected SkipNode headNode}/ head node

protected SkipNode tailNode; // tail node

protected SkipNode [] last; // last node seen on each level
protected Random r; // needed for random numbers

SNU
Data Structures 28 IDB Lab.

Interface Comparable (1)

o Jlang.Comparable

= The Comparable interfacenposes a total ordering on the objects of
each clasthat implements it
= The ordering is referred to as the class's naturaromgl

= The class's compareTo method is referred to as itsahatmparison
method

= Lists (and arrays) of objects that implement thisnface can be
sorted automaticallipy Collections.sor(and Arrays.sort)

= Objects that implement this interface can be usé@gsin a sorted
elements in a sorted set, without the need to spaatmparator

SNU
Data Structures 29 IDB Lab.

Interface Comparable (2)

o ecompareTo(Object anethod
= The sole member of the Comparable interface, and nember of Object
= Compares this object with the specified object faleo

= Returns a negative integer, zero, or a positive @rtag this object is less than,
equal to, or greater than the specified object

public class MyInteger implement@mparablg

private int value;
public MyInteger (int theValue) {value = theValue;}
public intcompareT@Object 0){

int x = (MylInteger)o).value;

if (value < x) return -1;

if (value == x) return O;

return 1;

}

}
SNU
Data Structures 30 IDB Lab.

constructor() of SkipList

[* * create an empty skip list : O(maxlevel)
* largekey: used as key in tail node * all elemrmgés must have a smaller key than “largekey”

* maxElements: largest no of elements to be stored in the dictioma

* theProb: probability that element on one level isalso on the next level */
public SkipList (Comparable largeKey, int maxElements float theProb) {
prob = theProb;

maxLevel = (int) Math.round(Math.log(maxElements) /Math.log(1/prob)) - 1;

tailKey = largeKey; // size and levels have default initial value 0
/| create head & tail nodes and last array
headNode = new SkipNode (null, null, maxLevel + 1);
tailNode = new SkipNode (tailKey, null, 0);
last = new SkipNode [maxLevel + 1];
// headNode points to tailNode at all levels initially
for (inti = 0; i <= maxLevel; i++) headNode.next[i] = tailNode;
r = new Random(); // initialize random number generator

b e SNU
Data Structures 31 IDB Lab.

‘_L get() of SkipList

[** @return element with specified key & @returnlinino matching element */
public Object get(Object theKey) {
if (tailkey.compareTo(theKey) <= 0) return nullf not possible

I/ position p just before possible node with theKey
SkipNode p = headNode;
for (inti = levels; 1 >=0; I--) // go down levels
while (p.next[i].key.compareTo(theKey) < 0) p = @xti]; // follow pointers

/] check if next node has theKey
if (p.next[0].key.equals(theKey)) return p.next[0].element;
return null; // no matching element

} //end of get() function

J SNU
Data Structures 32 IDB Lab.

level() of SkipList

o e method put() will first invoke level() to assign a level number and
search() to search the skip list

= level() is using a random number generator

[** @return a random level number <= maxLevel */
intlevel() {
int lev = 0;
while (r.nextFloat() <= prob)
lev++;
return (lev <= maxLevel) ? lev : maxLevel;

}

SNU
Data Structures 33 IDB Lab.

i search() of SkipList

[** search for theKey saving last nodes seen at éaadk in the array
* last @return node that might contain theKey */
SkipNode search(Object theKey) {
/] position p just before possible node with theKey
SkipNode p = headNode;

for (inti=levels; 1 >=0; i--){
while (p.next[i].key.compareTo(theKey) < 0)

p = p.next[i];
last[i] = p; // last level i node seen: a set of pointers |dsk3t[1], last[O]
}
return (p.next[0]);
}

SNU
Data Structures 34 IDB Lab.

‘_L put() of SkipList (1)

[** insert an element with the specified key
* overwrite old element if there is already an elerant with the given key
* @return old element (if any) with key theKey
* @throws lllegalArgumentException when theKey >= laigeKey = tailkey */

public Object put(Object theKey, Object theElement) {
if (tailKkey.compareTo(theKey) <=0) // key too large

throw new lllegalArgumentException("key is too large");

/] see if element with theKey already present
SkipNode p = search(theKey);
if (p.key.equals(theKey)) { // update p.element

Object elementToReturn = p.element;

p-element = theElement;

return elementToReturn;
} // not present, determine level for new node

SNU
Data Structures 35 IDB Lab.

i put() of SkipList (2)

int lev = level();// level of new node
/I fix lev to be less than levels + 1
if (lev > levels) {

lev = ++levels;

last[lev] = headNode;

} // get and insert a new node just after p
SkipNode y = new SkipNode (theKey, theElement, lev + 1);

// insert the new element into level i chain
for(inti=0;i<=lev;i++){
y.next[i] = last[i].next[i];
last[i].next[i] = vy;
}.
size++;
return null;

SNU
Data Structures 36 IDB Lab.

remove() of SkipList

[** @return matching element and remove it

* @return null iIf no matching element */
public Object remove(Object theKey) {
if (tailkey.compareTo(theKey) <= 0J too large */ return null;

Il see if matching element present
SkipNode p = search(theKey);
if (Ip.key.equals(theKey))* not present */ return null;

for (inti = 0; i <= levels && last[i].next[i] == p; i++) // delete node from skip list
last[i].next[i] = p.next[i];

while (levels > 0 && headNode.next[levels] == tailNode) // update Levels
levels--;

size--;

return p.element;

} //end of remove() function
J SNU
Data Structures 37 IDB Lab.

i Other Issues of SkipList

= The codes of other methods are similar to those of the class Chain
=« Size() / isEmpty() / elements() / iterator()

= The SkipList iterator iterator()
= Can provide sequential access in sorted order in 6(1) time per element accessed

= Complexity

= get(), put(), remove()
= O(n + maxLevel) where n is the number of elements

= Space complexity
= Worst case space: O(n * MaxLevel) for pointers
= On the average, the expected number of pointers
n>.p=n(l+p+p?..)=n*1/(1-p)

SNU
Data Structures 38 IDB Lab.

i Table of Contents

= Dictionaries
= Linear List Representation
= Skip Lists Representation
= Hash Table Representation

= Hashing Application
= Text Compression

SNU
Data Structures 39 IDB Lab.

i Hash Table Representation

= Hashing Concepts
= Pitfalls of Hashing
= Good Hash Functions

= Collision Resolutions
= Linear probing
= Random probing
= Hashing with Chaining

SNU
Data Structures 40 IDB Lab.

i Hashing Concepts (1)

= Use hash table to store dictionary pairs
= Use a hash function f()
= Map keys into index in a hash table
= Element e has a key k and is stored in table[/(k)]
= Complexity
= To initialize an empty dictionary
= O(b) time where b is the number of positions
= To perform get(), put(), and remove() operation
= O(1) time

Data Structures 41

SNU
IDB Lab.

‘_L A Simple Hashing Scheme

Address Record

0

K=LOWELL 5

3

IrAddress — 4 |LOWELL ...
4 5

6 LOWELL'S
h(K) : : home
' address

SNU
Data Structures 42 IDB Lab.

i Hashing Concepts (2)

If the range in key is so large, maintaining a table for each possible key
value in key range is impractical

= Example : Consider the student records dictionary
= There are 100 students
= Key field is student ID with Range [100000, 999999] of Key
(ex: 234966, 887654,....)
= Suppose hash function f(k) = k — 100000
= The length of table is 900,000: table[0, 899999]

= It doesn’t make sense to use a table with 900,000 for only 100 students

= If we want to have a table with 100 slots, we need to have a hashing

function which maps student IDs into table entry numbers (0..99).

SNU
Data Structures 43 IDB Lab.

i Hashing Concepts (3)

= Buckets : Each position of the table
= The number of buckets = the table length D

= Index of hash table entries: 0 ~~ D-1

= The Division-based Hash Function: f(k) = k % D

= Home bucket : f(k) for the element whose key is k
« If D =11, key =3, then the home bucket address is f(3) = (3 % 11) = 3

= The no of slots in the bucket = the no of elements that a bucket holds
« If there are 3 slots in a bucket, only upto 3 elements can be stored in a bucket

SNU
Data Structures 44 IDB Lab.

Pitfalls of Hashing (1)

= A collisionoccurs whenever two different keys have the same lhotieets
= To resolve, there ateear probing, random probing, chaining, etc
= Example : D =11, each bucket has one slot

Tabl e[]

(a)

Tabl e[]

= An overflow occurs when there is no room left in the home bucket

Data Structures

80

40

65

0

1

Enter 58

2 3 4 5 6 7 8
then f(58) = 58 % 11 =3

L

9

10

Vv

80

40

65

0

1

2 3 4 5 6 7 8

45

9

10

SNU
IDB Lab.

i Pitfall of Hashing (2)

= Consider a primary key consisting of a string ofdtfers and a table with
100,000 slots.

= Since 262>> 1> So synonyms (collisions) are inevitable!

= If M =number of records, N = number of availablets,
P(k) = probability of k records hashing to the sarmoe sl

) RREa)= et
then P(k) = 3 \N/X‘\ N |~ oo where f is the loading factor M/N
= Asf->1, weknowthat p(0p1l/e and p(1)y> 1/e.

The other (1 - 1/e) of the records must hash inta2(&) of the slots, for an
average of 2.4 slot. So many synonyms!!

SNU
Data Structures 46 IDB Lab.

i Good Hash Functions

A uniform hash functioistributes the approximately same number of keys
from the key range per bucket

= Forevery key range [O, r], ifr> 1 and d > 1k)f€ k % d is a uniform hash
function if some buckets geIIr/d | keysand other buckets geftr/d] keys

= The ideal choicel is a prime number or hasno prime factors less than 20

= Convert nonintegral keys to integers for use by asdivi hash function
= Integral type int, long, char
= Nonintegral typestring, double

= Object.hashCode@f Java returns an integer
= S.hashCode() where s may be a String, Double, etc

SNU
Data Structures 47 IDB Lab.

“Integer to String” Method

// Convert a string into a unique integer
public static int integer (String s) {
int length = s.length()/number of characters in s
int answer = 0;
if(length % 2 == 1) {//length is odd
answer = s.charAt(length — 1);
length--;
}

/ /length is now even

for(inti = 0; i < length; i+=2) { //do two characters at a time
answer += s.charAt(i);
answer += ((int) s.charAt(i + 1)) << 16; //shifting by 16 bits

bs
return (answer < 0) ? —answer : answer;j

SNU
Data Structures 48 IDB Lab.

i Collision Resolutions

_Inear Probing

= Random Probing

= Hashing with Chaining
= Rehashing

SNU
Data Structures 49 IDB Lab.

search() in Linear Probing

= Linear probing: search the table for the next add bucket
sequentiallyin case of collisions
= Regard the table as circular list

= search(k){

Compute f(k);

Look at the table[f(k)];

If the element in table[f(k)] has the keyrkturn the bucket address table[f(k)]
Otherwisesearch the next available bucket in a circular manne

}

= Search() is always ahead of get(), put(), remove()

SNU
Data Structures 50 IDB Lab.

put() in Linear Probing (1)

ample, enter 58, 24, 35, 98 in order with k % 11

80 40 65|
Tabl e[] 0 1 2 3 4.5 6 7 8 9 10

80 40 65
Tabl e[] 0 1 2 3 4 5 6 7 8 9 10

Enter 58 into the next available slot

50 |68) 40 | |65
Tabl e[] 0 1 2 3 4 5 6 7 8 9 10
SNU

Data Structures 51 IDB Lab.

i put() in Linear Probing (2)

= Example: enter 58, 24, 35, 98 in order with k % 11

Enter 24
24180 | 58 40 65
Tabl e[] O 1 2 3 4 5 6 7 9 10
Enter 35

24 80|58 40 65
Table[] 0 1 2 3 4 5 6 7 8 9 jq

24 | 80 58@9 40 65
Tabl e[] 0O 1 2 3 4 5 6 7 8 9 10 SNU

Data Structures 52 IDB Lab.

put() in Linear Probing (3)

= Example: enter 58, 24, 35, 98 in order with k % 11

Tabl e[]

Enter 98
24|80| 58| 35 40 65 (| 98
0O 1 2 3 4 5 6 7 8 910

= At some point we need to double the array

Data Structures

53

11 12 13

20 22

SNU
IDB Lab.

i get() in Linear Probing

= Search(k) will return an address B with the following manner

Compute f(k);
Look at the table[f(k)];
If the element in table[f(k)] has the key k,
return the bucket address table[f(k)]
Otherwise
search the next available bucket in a circular manne

= Then return table[B].element

SNU
Data Structures 54 IDB Lab.

remove() in Linear Probing

= Several elementsiust be moveafter removing an element
= S0, remove(should check the natural address of many elements

= Search steps for elements to move
= Begin just after the bucket vacated by the remoVvetent

{ Proceed to successive buckKets

Check the natural address of the element;
If the bucket is the home bucket for the elementeartbe element;

until
either reach to an empty bucket
or return to the bucket from which the deletion tok place

SNU
Data Structures 55 IDB Lab.

HashTable with Linear Probing (1)

= HashEntry is for the pairs stored in a bucket
protected static class HashEntry {
// data members
protected Object key;
protected Object element;
// constructors
private HashEntry() {}
private HashEntry(Object theKey, Object theElemént)
key = theKey;
element = theElement; }

}

The hash table structure
= If the number of slots per bucket = 1, 1D arr@yle[b]of typeHashEntry
= If the number of slots per bucket more than 1,
« 2D arraytable[b][s]of typeHashEntry
Data Structures 1D array of type bucket havir{eys, elementpairs f.;'BU._ab_

HashTable with Linear Probing (2)

public class HashTable {
/l data members of HashTable

protected int divisor; // hash function divisor
protected HashEntry [] table; // hash table array, one record slot for one hasiket
protected int size; /I number of elements in table

Il constructor

public HashTable(int theDivisor){
divisor = theDivisor;
/[allocate hash table array
table = new HashEntry [divisor];

}

J SNU
Data Structures 57 IDB Lab.

search() with Linear Probing

private int search (Object theKey) {
// home bucket
int i = Math.abs(theKey.hashCode()) % divisor;
intj=1; //start at home bucket
do {
if (table[j] == null || tablelj].key.equals(theKeay)
return |j;
] =(+ 1) % divisor; // next bucket
} while (j '=1); // returned to home bucket?

return j; // table full

}

SNU
Data Structures 58 IDB Lab.

‘L get() with Linear Probing

[** @return element with specified key
* @return null if no matching element */

public Object get (Object theKey) /fsearch the table
int b = search(theKey);

// see if a match was found at table[b]
if (table[b] == null || 'table[b].key.equals(theKgy
return null; // no match

return table[b].element)/ matching element

}

Data Structures 59

SNU
IDB Lab.

put() with Linear Probing

[* *insert an element with the specified key; ovavrite old element if the old one has the given key
* @throws lllegalArgumentException when the table isfull
* @return old element (if any) with key theKey */

public Object put (Object theKey, Object theElemént
I/ search the table for a matching element

int b = search(theKey);
if (table[b] == null) { // check if matching element found
// no matching element and table not full
table[b] = new HashEntry(theKey, theElement);
size++;
return null; }
else { // check if duplicate or table full
if (table[b].key.equals(theKey)) {
/] duplicate, change table[b].element & return the old one
Object elementToReturn = table[b].element;
table[b].element = theElement;
return elementToReturn; }

else /* table is full*/ throw new IllegalArgumentException("table is full");

} //end of else
b e SNU
Data Structures 60 IDB Lab.

iAnaIysis of Linear Probing

= 2 variables for average performance when n is large
= U, = the average number of buckets examined during an unsuccessful search
= S, = the average number of buckets examined during an successful search
= The smaller U &S, the better

= For linear probing
= U ™15 (1+1/(1- A))
= S o (1+1/(1-Q))
= Where the loading factor @ =n/b (n = no of elements, b = no of buckets)

= Bettertrytokeep A < 0.75
= The number of buckets should be 33% bigger than the number of elements

SNU

Data Structures 61 IDB Lab.

Random Probing

= When an overflow occurs, search for a free bucket in a random manner

= Assign a new bucket address from a psudo-random number generator for
the new element when collision happens

= Input for the psudo-random number generator is the current address

= Linear Probing
= Jump to the next position by “1”
= Random Probing
= Jump to the next position by a random number

J SNU
Data Structures 62 IDB Lab.

skip

Analysis of Random Probing (1)

= Probability theory

= Let p be the probability that a certain event occurs
= The expected humber of independent trials needed for that event

to occur is 1/p

= The formula for U, is derived as follows
= When the loading density is & = n/b
= the probability that any bucket is occupied is also same

= The probability(p) that a bucket is empty = 1- &

= The expected number of buckets examined

« Uolp=1/(1-Q)

Data Structures

63

SNU
IDB Lab.

skip
Analysis of Random Probing (2)

= The formula for S, is derived as follows

= When the ith element is inserted,

= the item is inserted into the empty bucket where the unsuccessful
search terminates

= Theloading factor=(i-1)/ b
= The expected number of buckets examined for searching the ith element

- 1/(1-(@-1)/b))

SNU
Data Structures 64 IDB Lab.

skip

i Analysis of Random Probing (3)

= The formula for S, is derived as follows

1 & 1 1
S, = — : == - —Io
: n;l_l_l ——log

b

1-a)

e

= When the number of examined buckets is concerned,

= Linear probing incurs a performance penalty relative to random probing
(rememberS, & 2 (1+ 1/(1-a)))

= When & = 0.9, linear probing needs 50.5 bucket searches while
random probing needs 10 bucket searches

SNU
Data Structures 65 IDB Lab.

skip
iAnaIysis of Random Probing (4)

= Why do we not use random probing?

= Computing the next random number (random probing) takes more
time than examining several buckets (linear probing)

= Random probing searches the table in a random fashion, it pays a
run time penalty because of the cache effect

» If the loading factor is close to 1, random probing is better, but
linear probing is popular otherwise.

SNU
Data Structures 66 IDB Lab.

Choosing a Divisor D (1)

g =k%D and Q = n/b
= Can determine D & b using the formulas U, & S,
= Determine the largest &
= Obtain the smallest permissible value for b from 7 and a

= Find the smallest integer for D
« thatis at least as large as this value of b
« that is a prime or has no factors smaller than 20

= Example: Suppose we want U, <= 50.5, S <=4 & 1000 elements in linear probing
« From U, = %2(1+1/(1- ¢)?), we geta <= 0.9
= FromS, =1 +1/1-a)), weget4 >= 0.5+ 1/(2(1-Q))
= Thus, we require @ <= min{0.9, 6/7} = 6/7 =n /b (wheren = 1000)
= Hence b should be at least n/Q& = 1167 which is a suitable value for D

SNU
Data Structures 67 IDB Lab.

i Choosing a Divisor D (2)

= Another simple way to compute D
= L: the maximum amount of space available for the hash table
= Find the largest D < L that is either a prime or has no factor smaller than 20

= EX: Suppose 530 buckets in the hash table, 529 would be good for D & b
= 23*% 23 =529

= Finding a prime number which is less than a very big
number is a difficult task?

SNU
Data Structures 68 IDB Lab.

Hashing with chains

N class HashChain maintain chains of elementdthatthe same home bucket

= Each bucket has space fost a pointer “first node”
= All elements are kept on chains in ascending aofflertedChainNode)
= table[O:divisor-1]is a type dbortedChairclass

a1l =

A
A

[1T] |1

[Z] |l

L]

i 1 1 B e

[h o B IS R e

L i

rial 1

l &

Sh

i1 1 L

Data Structures

69

SNU
IDB Lab.

‘L Remember SortedChain Class

firstNode

AW
Al -H-N:

= fable

= table[1l
= table[1l
= table[1l

Data Structures

] SortedChain;

.get() =» SortedChain.get()
put() = SortedChain.put()
remove()=>» SortedChain.remove()

SNU
70 IDB Lab.

i get() in HashChain

** The class HashChain implements a dictionary
using 1D array table[o:n] of sorted chains

table[].get()
. Compute the home bucket, k%D, for the key
. Search the chain to which this bucket points

[** @return element with specified key
* @return null if no matching element */
public Object get (Object theKey) {

return table[Math.abs(theKey.hashCode())% diviget[theKey);
}

SNU
Data Structures 71 IDB Lab.

put() in HashChain

table[].put()
. Verify that the table does not already have ameit with the same key

[** insert an element with the specified key
* overwrite old element if the element has the gikey
* @return old element (if any) with key theKey */
public Object put(Object theKey, Object theElemégnt)
I/ home bucket
int b = Math.abs(theKey.hashCode()) % divisor;
Object elementToReturn = table[b].put(theKey, thetdat);
if (elementToReturn == null) size+#,new key
return elementToReturn;

J SNU
Data Structures 72 IDB Lab.

remove() in HashChain

table[].remove()

- Access the home bucket chain
. Search this chain for an element with given key
: Delete the element

[** @return matching element and remove it
* @return null if no matching element */
public Object remove(Object theKey) {
Object x = table[Math.abs(theKey.hashCode()) %stifliremove(theKey);
if (x '= null) size--;
return x;

}

J SNU
Data Structures 73 IDB Lab.

i HashChain with a tail node (1)

= table[].get(k): go to the next element If this e@rhis less than the
given key and the next pointer is not null

= Adding a tail node to the end of each chain carravg performance
slightly

= Putthe largest key into the tail node

= The tail node can eliminate most the checks agautiktthat are
used in the codes for the methodssarftedChain
« table[].get(k):(currentNode !'= NULL)

= The constaninteger.MAX VALUE

SNU
Data Structures 74 IDB Lab.

i—lashChain with a tail node (2)

= Example of hash table with tail nodes

¥

| 1 = = 55 G a| = [null
{0 mal l

==l 1

i6 CST Y == null

==l 1

| & 49 82 = [null

Data Structures

== denotes large key

75

SNU
IDB Lab.

Chaining vs. Linear Probing (1)

= Space requirements
= Linear Probing < Chaining

= Time complexities

= The derivation of U, of Chaining

= For an i-node chain, i+1 possibilities for the range in which the search key
falls

= If each of these possibilities happens with equal probability, the average
number of nodes that get examined in an unsuccessful search is

(1/i+1)(i+21., §) = (i(i+3))/2(i+1) when i = 1
= On average, the expected length of a chain = n/b = @,
we substitute i with alpha when alpha = 1
Then, U, =(@(@+3))/2(@ + 1) in Chaining
= Remember U, = 2(1+1/(1- @)?) in linear hashing

SNU
Data Structures 76 IDB Lab.

Chaining vs. Linear Probing (2)

= The derivation of S, in Chaining
» When ith identifier is inserted, have to examine 1+(i-1)/b nodes

» If each of n identifiers is searched for with equal probability,
S, =1/n (2"_{1+(i-1)/b}) = 1+(@ /2) in Chaining
= Remember S = "2(1 + 1/(1 — @)) in linear probing

= Comparing the above formulas, "chaining” generally examines a smaller
number of buckets than “linear and random probing”

SNU
Data Structures Va4 IDB Lab.

Hashing vs. Skip Lists (1)

g utilize a randomization process
= Skip Lists: assign a level to an element at insertion
= Hashing: assign a bucket to randomly distribute the bucket assignments

for the different elements being inserted

= Average case operations: skip list (O(logN)) vs. hashing (O(1))

= Worst case operations

Time complexity

Space complexity

Skip lists

®(n+maxLevel)

maxLevel * (n+1) for pointers

Hashing

®(n)

D + n for pointers

Data Structures

/8

SNU
IDB Lab.

Hashing vs. Skip Lists (2)

= 10 output the elements in ascending order of value
= Skip List : Linear time by going down the level 0 chain
= Chained Hash Table :
0(D) (to collect) +
O(nlogD) (to combine the chains in ascending order of key)

= Other operations such as get or remove the element with largest or
smallest value

= A hash table is more expensive than a skip list

SNU
Data Structures 79 IDB Lab.

i Table of Contents

= Definition: Dictionary

= Linear List Representation
= SKkip Lists Representation

= Hash Table Representation

= Hashing Application
= [ext Compression

SNU
Data Structures 80 IDB Lab.

i Table of Contents

= Hashing Application — Text Compression
« LZW Compression
« Implementation of LZW Compression
« LZW Decompression
« Implementation of LZW Decompression
» Performance Evaluation

SNU
Data Structures 81 IDB Lab.

i L ZW Compression (1)

Character : one of the standard 256 ASCII characters which 1byte each

LZW compression method (Lampel-Ziv-Welch algorithm)
= Maps strings of text characters into numeric codes

= The mapping is stored in a dictionary
= Each dictionary entry has key and code
= Key : the character string represented by code

= The LZW compressor repeatedly do this LZW rule
= Find the longest prefix "p” of the unencoded part of S that is in the dictionary
= Output its code
« If there is a next character cin S, pcis assigned the next code

« If pcis not in the dictionary, insert pc into the dictionary

= The dictionary in LZW compressor can be implemented with a hashchain

» But it is somehow difficult to think LZW compression as Hashing appgicagtion!
Data Structures 82 IDB Lab.

LZW Compression (2)

= For example, S = aaabbbbbbaabaaba is to be compressed

code [U] 1
key |a | b

paabbhhhhaahaaha

compressed string = null
{a) initial configuration

[| 2 A
a | b |aa|aab

aaabbbbbbhaabaaba

|
compressed string = (2
{c) aaa has been compressed

Data Structures

ooy Z
a | b |aa
npahhbbbhaahaﬂba

compressed string = 0
(b} a has been compressed

(] | i A | 4
a | b [aa laab|bb

aaabbbbbbaabaaba

compressed string = 021
(d) aaab has been compressed

SNU
83 IDB Lab.

LZW Compression (3)

] I 2|l al4a4l3 ol 2|l a1 4|3 &

a | b [aa [aab] bb |bBbb a | b | aa [aab]| bb |[bBbHbbhba
aaabbhbbbaabaabal aaabbbbbbiaabaakba
compressed string = 0214 compressed string = 02145

{e) anabbb has been compressed {f) aaabbbbbb has been compressed
of T 1213142] & i

a b | aa [aab] bb LﬁEﬁl‘.n bbhbalaaba

aaabbbbbbaalaabal

compressed string = 021453 7
(2) aaabbbbbbaab has been compressed

= String S is encoded as the string 0214537 and the code table disappears!
= Similarly the code table is reconstructed during decompression nu

Data Structures 84 IDB Lab.

i Table of Contents

= Application — Text Compression
« LZW Compression
» Implementation of LZW Compression
« LZW Decompression
« Implementation of LZW Decompression
« Performance Evaluation

SNU
Data Structures 85 IDB Lab.

i The class Compress

Class Compress {

Methods :
setFiles() : open the input and output files
output () : output a byte of the compressed file
compress() : read bytes of the input file and
determine their output code
main() : a main method

SNU
Data Structures 86 IDB Lab.

i Establish Input / Output Streams (1)

= Input: a text file
= Output: a binary file (compress file)

= If the input file name is input_File,
= then the output file name is to be input_File.zzz

= Program: Compress.java
= Compile: javac Compress.java

= Command line
« java Compress input_File

SNU
Data Structures 87 IDB Lab.

Establish Input / Output Streams (2)

[** create input and output streams */

private static void setFiles (String [] argv) throl@Exception {
String inputFile, outputFile;
/] see if file name provided
if (argv.length >= 2) inputFile = argv[1];
else {// input file name not provided, ask for it
System.out.printin("Enter name of file to compress")
MylnputStream keyboard = new MylnputStream();

inputFile = keyboard.readString(); }
/l Establish input and output streams with inputdning each disk access brings
/l Iin a buffer load of data rather than a singlesby
in = new BufferedInputStream (new FilelnputStream(tFile));
outputFile = inputFile + ".zzz";
out = new BufferedOutputStream (new FileOutputStr@autputFile));

SNU
Data Structures 88 IDB Lab.

i Dictionary in Compress

Modefined LZW compression dictionary for aaabbbbbbaabaaba
= Code = 12 bits Key = 20 bits = 12 bits (code) + 8 bits (character)

code | O 2 | 3[4 5|6 |T
key |a|(b|Oa|2b|1b | 4b | 5a | 3a

[—

= The dictionary may be represented as a chained hash table

= HashChains h = new HashChains(D);
= Divisor D = 4099

= The dictionary can be an array as shown in Decompress.

SNU
Data Structures 89 IDB Lab.

output() in Compress

yie and save remaining half byte */

private static void output (int pcode) throws IOEpten {

int c, d;

if (bitsLeftOver) { // half byte remains from before
d = pcode & MASKZ;// right BYTE_SIZE bits,MISK1=255
IIEXCESS =4, BYTE_SIZE =8
c = (leftOver << EXCESS) + (pcode >> BYTE_SIZE);
out.write(c);
out.write(d);
bitsLeftOver = false; }//end of if

else{ // no bits remain from before

leftOver = pcode & MASK?2;// right EXCESS bits, MASK2=15
c = pcode >> EXCESS;

out.write(c);

bitsLeftOver = true; }

J SNU
Data étructures 90 IDB Lab.

compress() in Compress (1)

[** Lempel-Ziv-Welch compressor */
private static void compress() throws IOException {
// define and initialize the code dictionary

for (inti=0;1<ALPHA; i++) //Initialize code table
h.put(new Mylnteger(i), new Mylinteger(i));
int codesUsed = ALPHA//ALPHA = 256

/[input and compress
int ¢ = in.read(); /I first byte of input
if (c!'=-1){ // input file is not empty

int pcode = c;

SNU
Data Structures 91 IDB Lab.

compress() in Compress (2)

c ®¥%ead(); // second byte
while (c !I=-1) {// process byte ¢ until not at the end of file
int k = (pcode << BYTE_SIZE) + c;// see if code for k is in the dictionary
Myinteger e = (Mylnteger) h.get(new Myinteger(k));
if (e ==null) {/* kis not in the table */ output(pcode);
if (codesUsed < MAX_CODES)/ create new code in the dictinary
h.put(new Myinteger((pcode << BYTE_SIZE) + c), new Ikigger(codesUsed++));
pcode =c; }
else pcode = e.intValue();
c = in.read();
} /lend of while

output(pcode)// output last code(s)

if (bitsLeftOver) out.write(leftOver << EXCESS);
}
in.close();

out.close();

E SNU
ata Structures 92 IDB Lab.

Data Members & Methods in Compress

public class Compress/f constants & variables

final static int D = 4099; /[hash function divisor
final static int MAX_CODES = 4096; [l 2712

final static int BYTE_SIZE = 8;

final static int EXCESS = 4; /[12 - ByteSize

final static int ALPHA = 256; /Il 2"ByteSize

final static int MASK1 = 255; Il ALPHA - 1

final static int MASK2 = 15; Il 2"EXCESS -1

static int leftOver; I/ code bits yet to be output
static boolean bitsLeftOver;

static BufferedIinputStream in;
static BufferedOutputStream out;
//other methods come here: output(), getCode(press()
public static void main(String [] argv)
throws IOException{ setFiles(argv); compress();}

SNU
bASER. G, ass Compress 93 1D Lab.

i Table of Contents

= Application — Text Compression
« LZW Compression
» Implementation of LZW Compression
« LZW Decompression
« Implementation of LZW Decompression
» Performance Evaluation

SNU
Data Structures 94 IDB Lab.

i LZW Decompression (1)

= For decompression

= Input the codes one at a time
= Replace them by texts

= Way of the code to text mapping
= The code assigned for single-character texts daexazhinto the dictionary
= With a given codesearch for an entry of dictionary
= Replace the first code in compressed file to alsinlgaracter
= For all other codep, consider
= The case that the coges in the dictionary
= The case that the cogeis not in the dictionary

J SNU
Data Structures 95 IDB Lab.

‘_L LZW Decompression (2)

s Casewhen code is in the dictionary

= From dictionary, extract the tetdxt(p)
» text(p) : the corresponding text
= Output it

= If the code that precedpss q, enter the paif nextcode, text(q)fc(p)into the directory
= fc(p) : the first character of text(p)

s Casewhen code is not in the dictionary
= The code-to-text mapping foris text(q)fc(q)whereq is the code that precedes p
= Output it
= Enter the paif nextcode, text(q)fc(q)into the directory

SNU
Data Structures 96 IDB Lab.

i LZW Decompression (3)

= For example, decompress the compressed coded 021453
Initialize the dictionary with the pairs (0,4),b)
2. The first code @ outputthe text a

Code 2 It is undefined> previous code 0, so text(2) = text(0)fc(0) = aa
=>» output text aand add (2, aa) into the dictionary

Code 1= output text band add (3, text(2)fc(1)) = (3, aab) into the dinary

Code 4 It is undefined= previous code 1, so text(4) = text(1)fc(1) =bb
=>» output text bland add (4, bb) into the dictionary

Code 5 It is undefined? previous code 4, so text(5) = text(4)fc(4) = bbb
=>» output text bbland add (4,bbb) into the dictionary

. Code 3> output aaland add (6, text(5)fc(3)) = (6,bbba) into the dinary

8. Code 7> It is undefined=® previous code 3, so text(7) = text(3)fc(3) = aaba
=>» add (7,aaba) into the dictionary amatput aaba

=

W

ok

oL

\l

The decompressed text: a+aa+b+bb+bbb+aab+@abaabbbbbbaabaaba

SNU
Data Structures 97 IDB Lab.

i Table of Contents

= Application — Text Compression
« LZW Compression
« Implementation of LZW Compression
« LZW Decompression
« Implementation of LZW Decompression
« Performance Evaluation

SNU
Data Structures 98 IDB Lab.

Dictionary in Decompress (1)

o plement as the class Decompress
= Decompress.setFiles is similar to Compress.setFiles

= Dictionary Organization
= Store the prefix code and the suffix separately as two integers
= Array dictionary using the class Element

private static class Element {
// data members
private int prefix;
private int suffix;

/[constructor

private Element(int thePrefix, int theSuffix) {
prefix = thePrefix;
suffix = theSuffix;

}

SNU
Data Structures 99 IDB Lab.

i Dictionary in Decompress (2)

[**output the byte sequence that corresponds to tbde
private static void output(int code) throws IOExcepfi
size = -1;
while (code >= ALPHA) {// suffix is in the dictionary
s[++size] = h[code].suffix;
code = h[code].prefix;
}
s[++size] = code)/ code < ALPHA
// decompressed string is s[size] ... s[0]
for (inti =size; i >=0;i--)
out.write(s[i]);

}

SNU
Data Structures 100 IDB Lab.

getCode() in Decompress

Reverse the process employed by the method output() in Compress

[** @return next code from compressed file @retr if there is no next code */
private static int getCode() throws IOEXxception {
int ¢ = in.read();
if (c == -1) return -1;// no more codes // see if any leftover bits frioafore
/I if yes, concatenate with leftover bits
int code;
if (bitsLeftOver) code = (leftOver << BYTE_SIZE)ct
else { // no leftover bits, need more bits to completeecod
int d = in.read();// another byte
code = (c << EXCESS) + (d >> EXCESS);
leftOver = d & MASK; // save unused bits
}
bitsLeftOver = !bitsLeftOver;
return code;

}

J SNU
Data Structures 101 IDB Lab.

‘-L decompress() in Decompress (1)

[** Lempel-Ziv-Welch decompressor */
private static void decompress() throws IOException {
iInt codesUsed = ALPHA]/ codes used so far
s = new int [MAX_CODES];
h = new Element [MAX_CODES];
// input and decompress
int pcode = getCode()// previous code
ccode; I/ current code

If (pcode >= 0) {// input file is not empty
s[0] = pcode; // byte for pcode
out.write(s[0));
size = 0J/ s[size] is first character of last string output

SNU
Data Structures 102 IDB Lab.

decompress() in Decompress (2)

do{ ccode = getCode(); get another code
if (ccode < 0) break; // no more codes
if (ccode < codesUsed)/{ ccode is defined */
output(ccode);
if (codesUsed < MAX_CODES) h[codesUsed++] = newntdat(pcode, s[size]);
} else{ // special case, undefined code
h[codesUsed++] = new Element(pcode, s[size]);

output(ccode); }
pcode = ccode;
} while(true);

} /lend of if pcode>=0
out.close();
in.close();
} llend of decompress() SNU

Data Structures 103 IDB Lab.

Data Members & Methods in Decompress

public class Decompress {// constants and variables
final static int MAX_CODES = 4096; /[l 2712
final static int BYTE_SIZE = 8;

final static int EXCESS = 4; /Il 12 - ByteSize
final static int ALPHA = 256; I/ 2"ByteSize

final static int MASK = 15; [2"EXCESS -1
static int[] s; // used to reconstruct text
static int size; I/ size of reconstructed text
static Element [] h; /[array dictionary!!!

static int leftOver; // input bits yet to be output

static boolean bitsLeftOver;
static BufferedIinputStream in;
static BufferedOutputStream out;
/[other methods defined here : output(), gdelh decompress(),
public static void main(String [] argv) throws IOEeqmtion {
setFiles(argv);
decompress(); }

Data Structured/€Nd Of class Decompress SNU

104 IDB Lab.

i Table of Contents

= Application — Text Compression
= LZW Compression
= Implementation of LZW Compression
= LZW Decompression
= Implementation of LZW Decompression
= Performance Evaluation

SNU
Data Structures 105 IDB Lab.

i Performance Evaluation

= Our LZW program : compress a 33772byte ASCII file to 18765 bytes
= Compression ratio = 1.8

= Zip : compress 33772byte ASCII file to 11041 bytes
« Compression ratio = 3.1

= Commercial compression programs couple methods such as LZW
compression and other compression methods

= We should not expect a raw LZW compressor to match the
performance of a commercial compressor

SNU
Data Structures 106 IDB Lab.

Summary (0)

= Chapter 9: Stack

= A kind of Linear list & LIFO(last-in-first-out) structure
= Insertion and removal from one end

= Chapter 10: Queue
= A kind of Linear list & FIFO(first-in-first-out) structure
= Insertion and deletion occur at different ends of the linear list

= Chapter 11: Skip Lists & Hashing
= Chains augmented with additional forward pointers
= Popular technique for random access to records

SNU
Data Structures 107 IDB Lab.

Summary (1)

efine the concept of Dictionary
Skip list for Dictionary
« Chains augmented with additional forward pointers

= Employ a randomization technique

= T0 determine
Which chain nodes are to be augmented
How many additional pointers are to be placed in the node

= To search, insert, remove element: O(log n) time

Hashing for Dictionary
= Usage of randomization to search, insert, remove elements at 0(1) time

Hashing Application
= Text compression: Lampel-Ziv-Welch algorithm
= Text decompression

SNU
Data Structures 108 IDB Lab.

i Summary (2)

= Comparison of performance (Dictionary Implementation)

Method Worst Case Excepted
Search Insert | Removed | Search | Insert | Remove
Sorted array | 6(log n) o(n) 0(n) | B(log n) o(n) o(n)
Sorted chain o(n) o(n) o(n) o(n) o(n) o(n)
Skip lists o(n) o(n) O(n) | 6(log n) | 6(log n) | B(log n)
Hash tables o(n) o(n) o(n) 0(1) 6(1) 0(1)

= Skip lists is better than hashing when frequently outputting all
elements in sorted order or search by element rank

= Hashing in Java:
java.util.HashTable, java.util.HashMap, and java.util.Hashset

Data Structures

109

SNU
IDB Lab.

JDK class: java.util.Hashtable

public interface Hashtable extends Dictionary {

constructors
Hashtable(): Constructs an empty hash table with initial size 11
Hashtable(int cap): Constructs an empty hash table with initial size cap

methods
Object get(Object key): Returns the value to which key is mapped
Object put(Object key, Object value): Maps key to value

J SNU
Data Structures 110 IDB Lab.

