Ch.14 Tournament Trees

© copyright 2006 SNU IDB Lab.

BIRD'S-EYE VIEW (0)

- Chapter 12: Binary Tree
- Chapter 13: Priority Queue
 - Heap and Leftiest Tree
- Chapter 14: Tournament Trees
 - Winner Tree and Loser Tree

BIRD'S-EYE VIEW

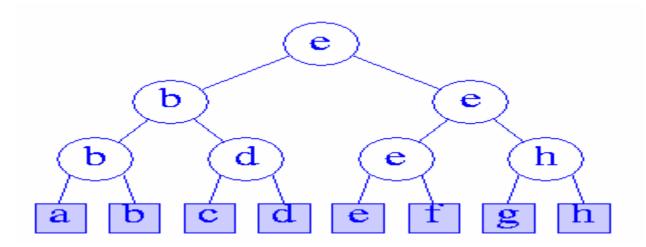
- A tournament tree is a complete binary tree that is most efficiently stored by using the array-based binary tree
- Study two varieties of tournament trees
 - Winner tree
 - Loser tree
- Tournament Tree Application
 - Bin packing

Table of Contents

- Winner Tree
- Loser Trees
- Tournament Tree Applications
 - Bin Packing Using First Fit (BPFF)
 - Bin Packing Using Next Fit (BPNF)

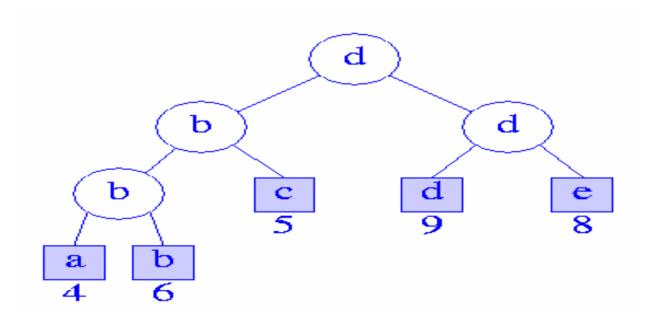
Winner Tree

- Definition: A winner tree for n players is a complete binary tree with n external and n-1 internal nodes
- Each internal node records the winner of the match played there.

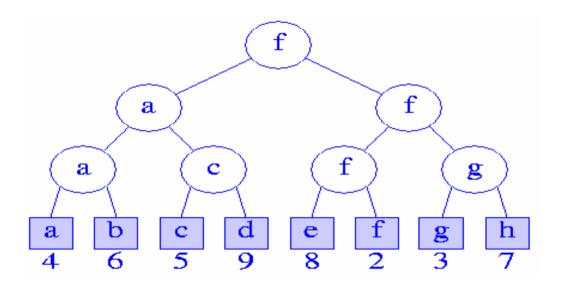


Max Winner tree

The player with the larger value wins



• The player with the smaller value wins

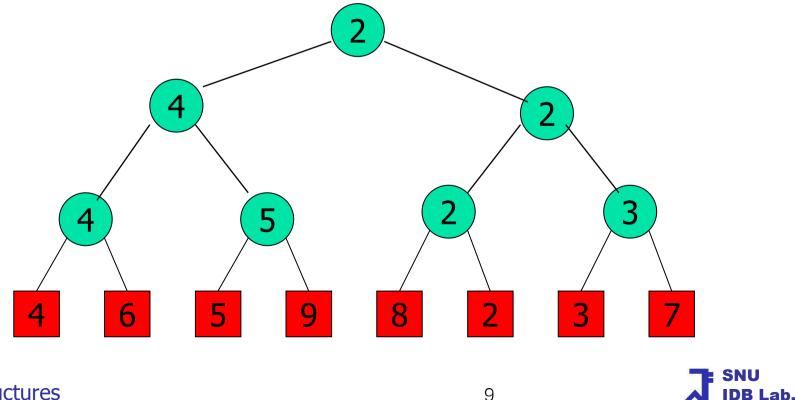


Data Structures

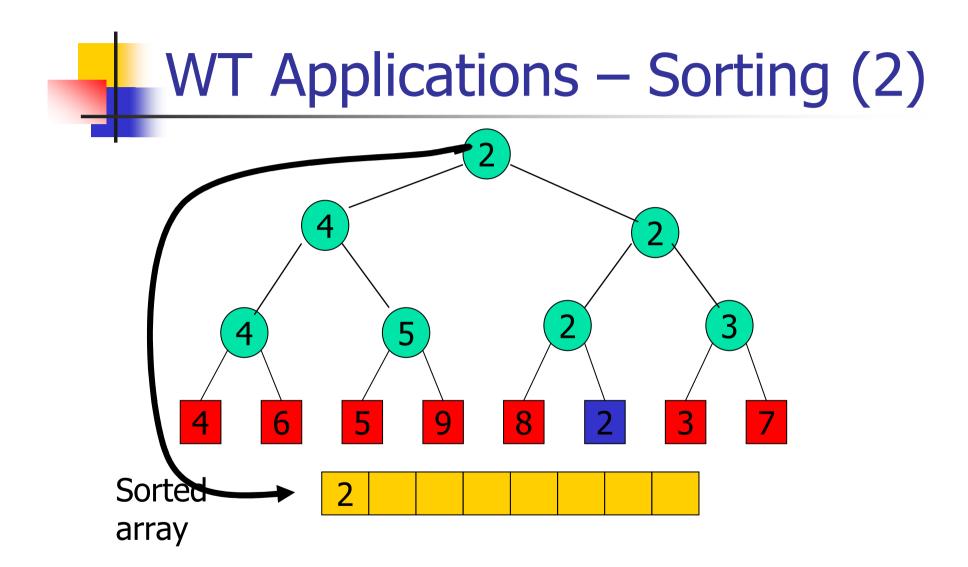
Complexity of Winner Tree

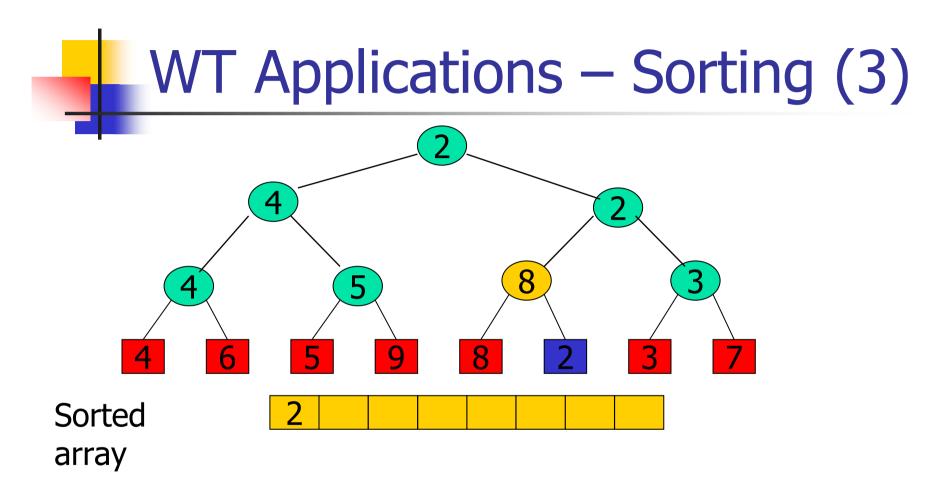
- O(log(n)) time to restructure n player winner tree
- O(1) time to play match at each match node
- n 1 match nodes
- O(n) time to initialize n player winner tree

Min Winner Tree

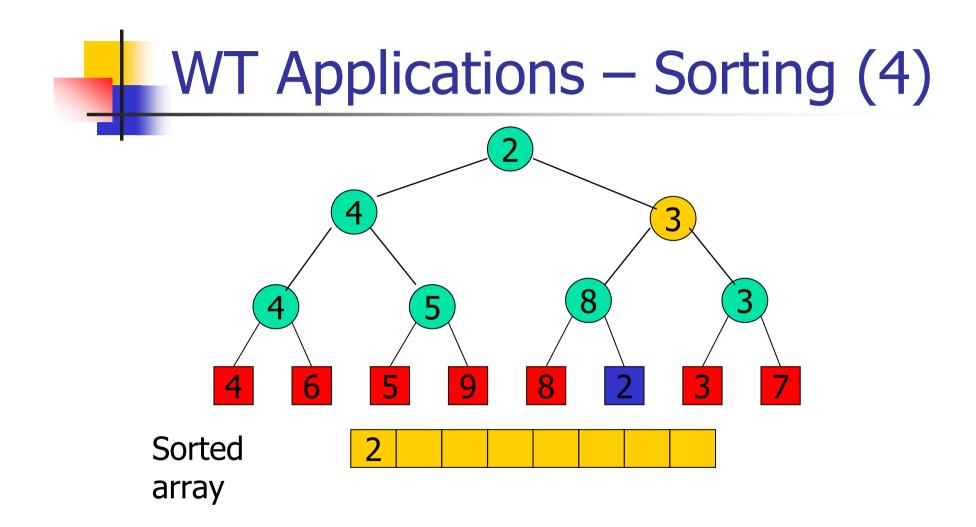


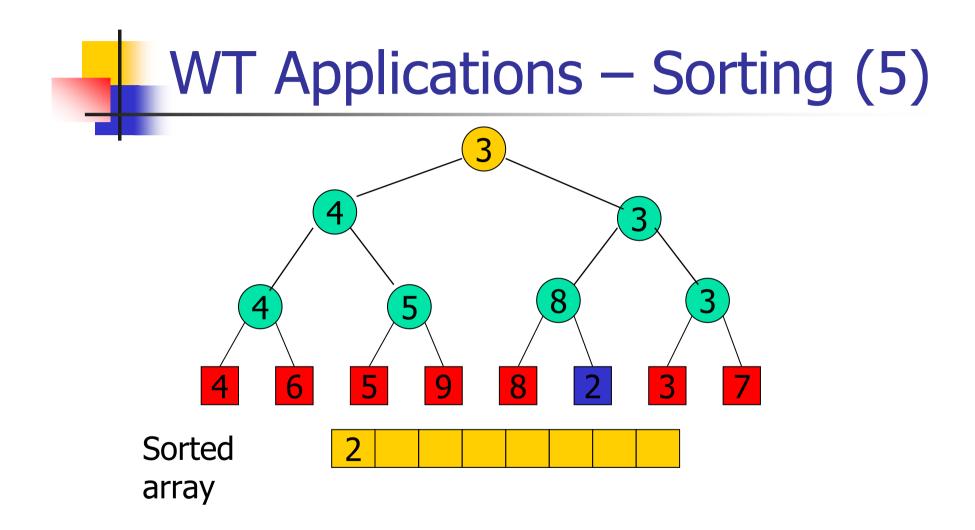
Data Structures

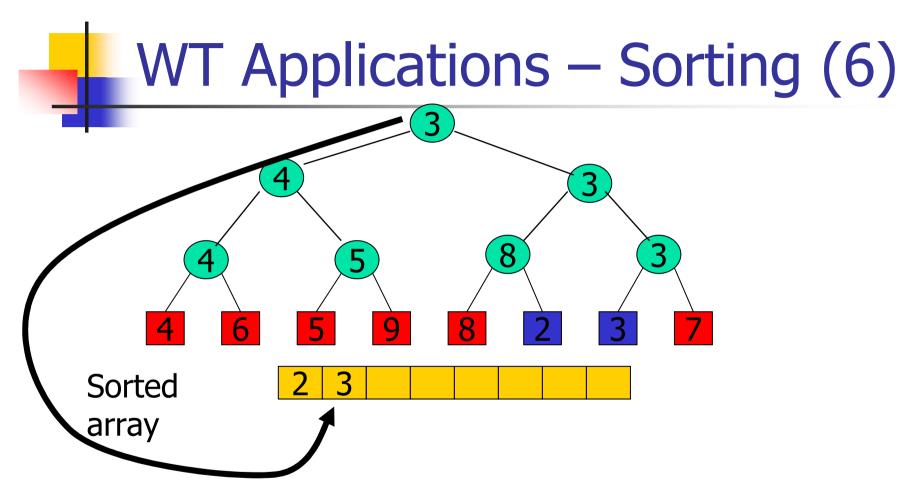




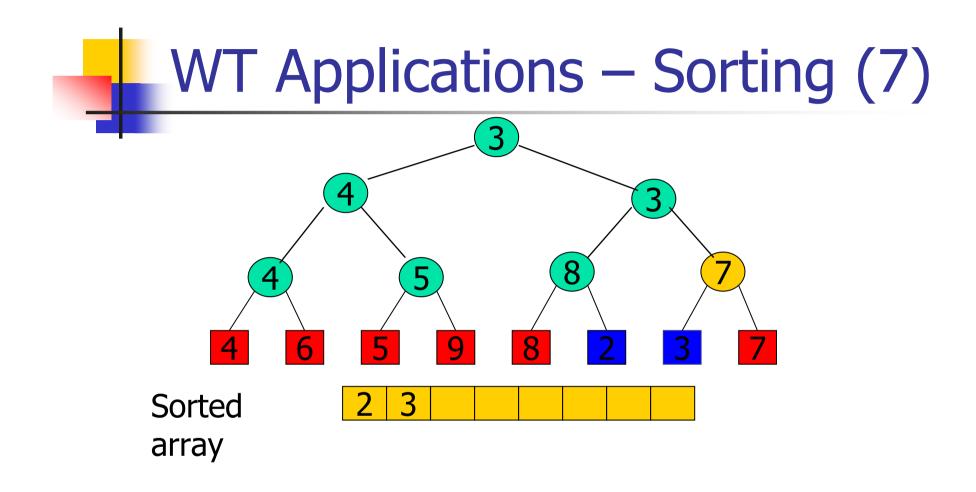
• Restructuring starts at the place where "2" is removed

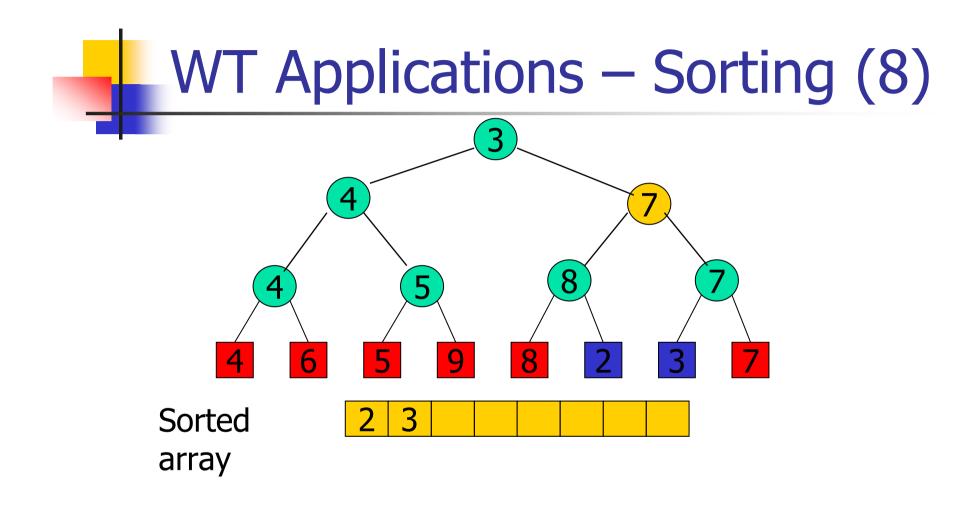


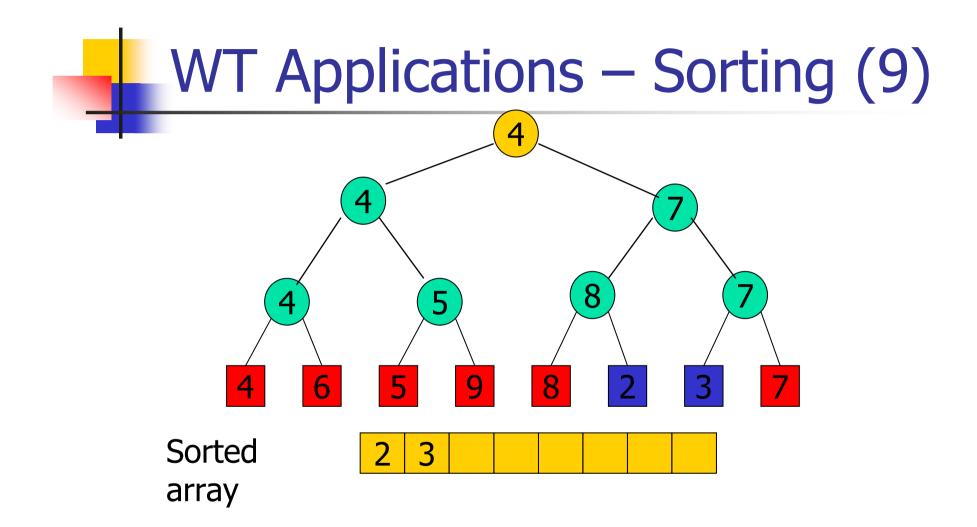


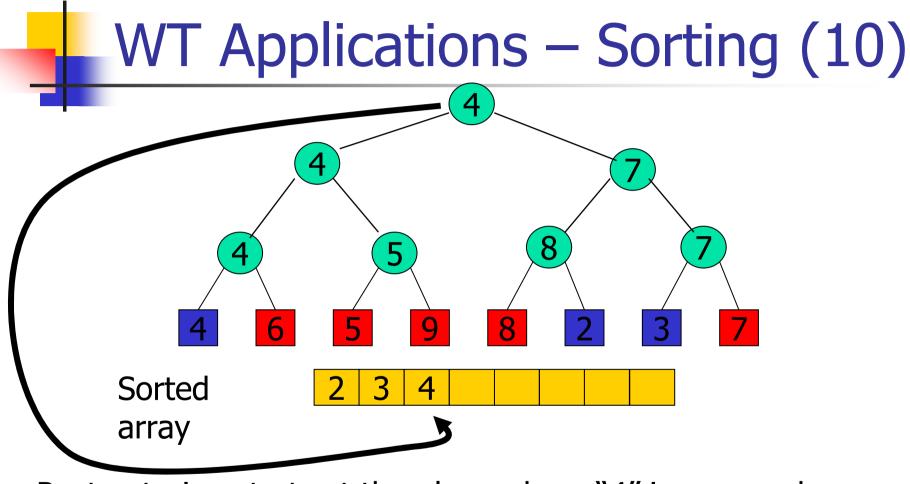


• Restructuring starts at the place where "3" is removed

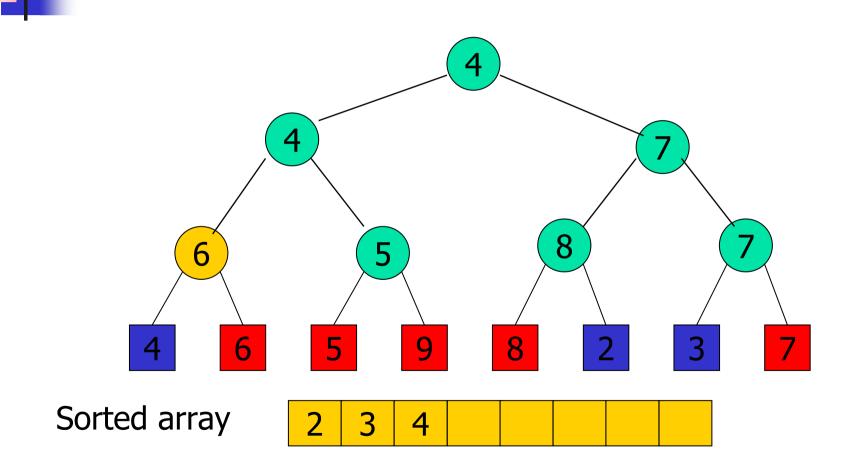


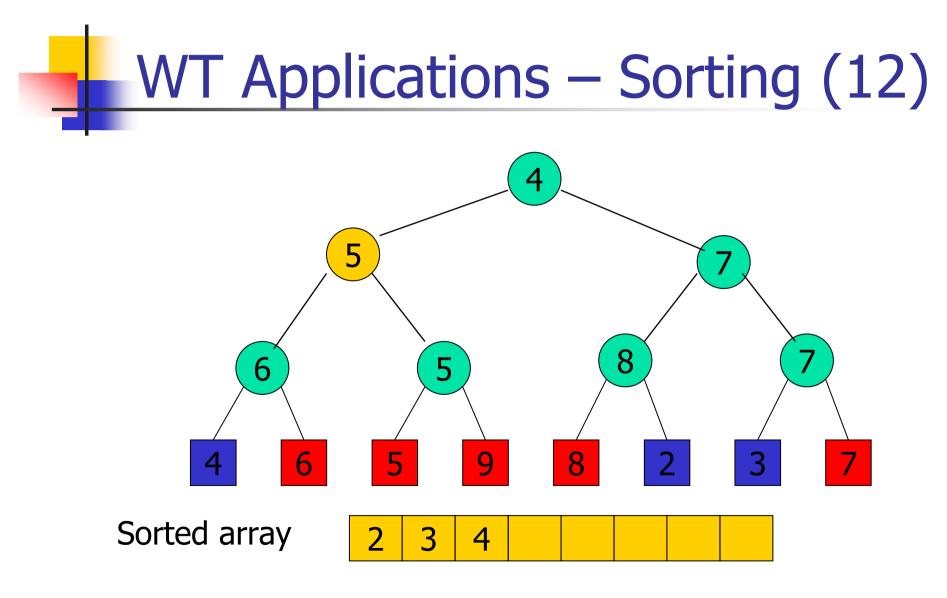




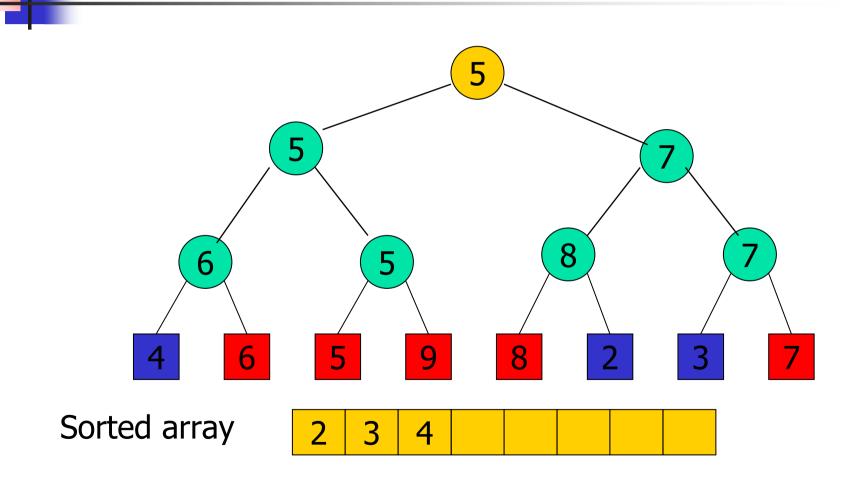


• Restructuring starts at the place where "4" is removed

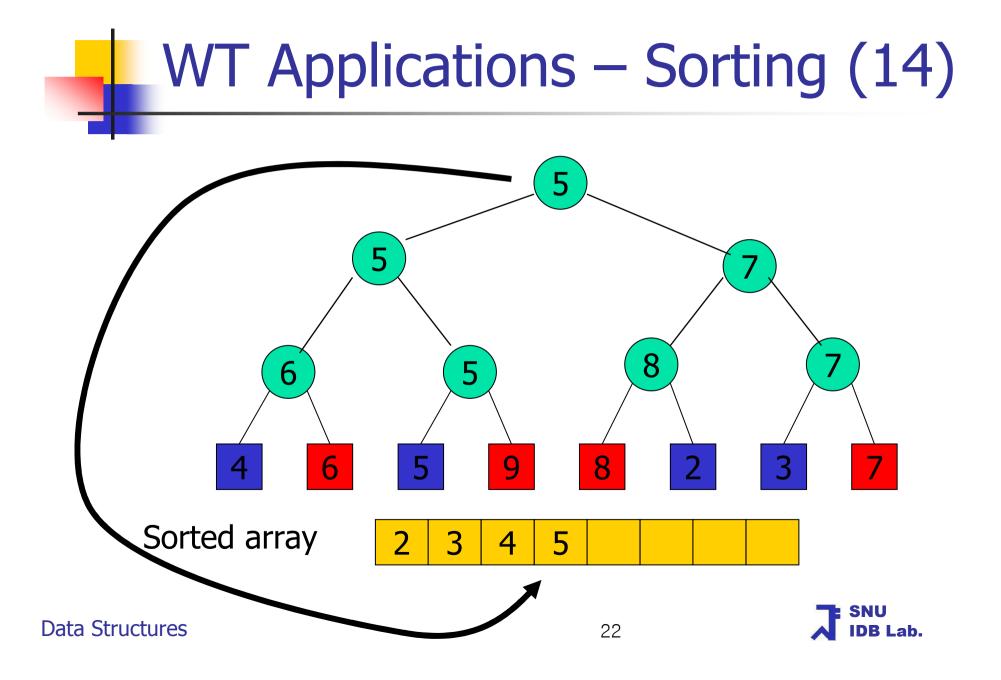




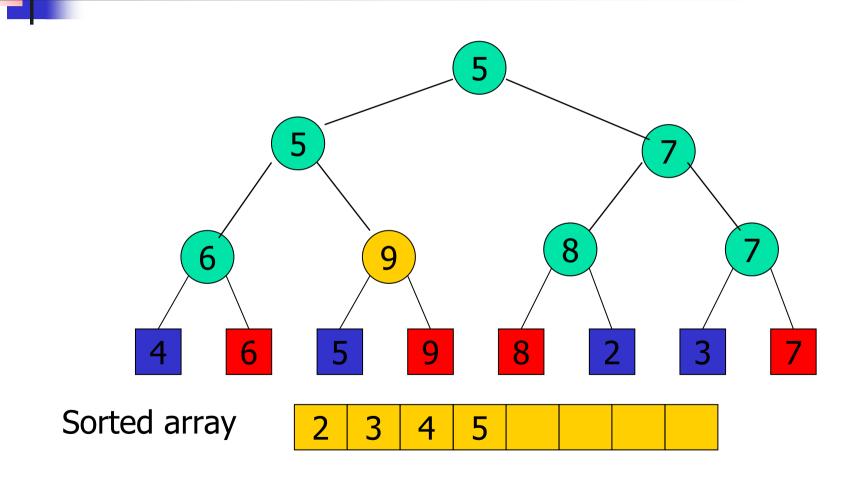
WT Applications – Sorting (13)



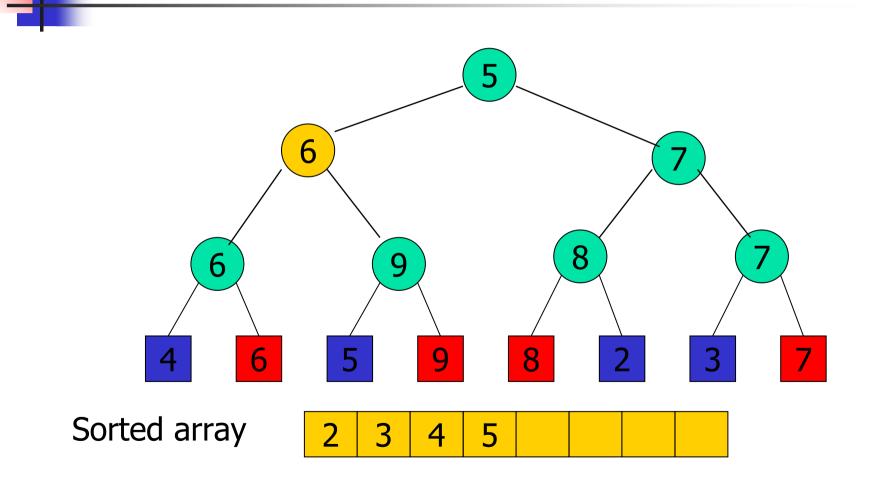
Data Structures



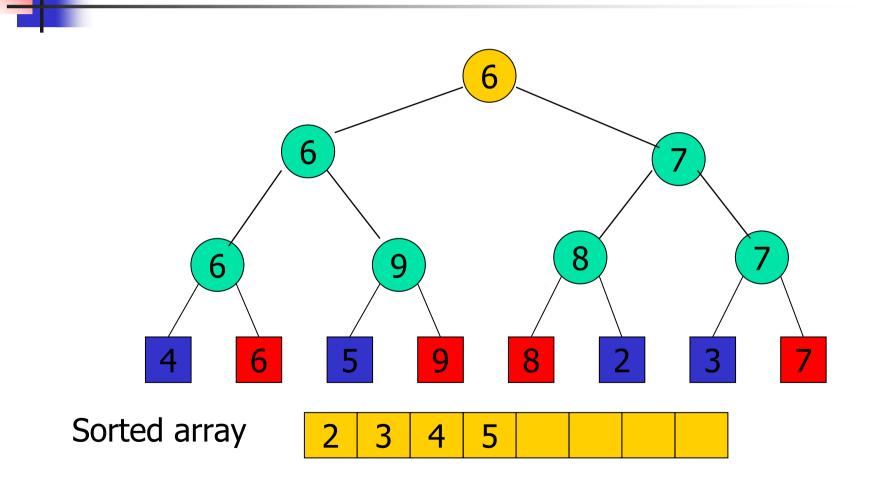
WT Applications – Sorting (15)



WT Applications – Sorting (16)



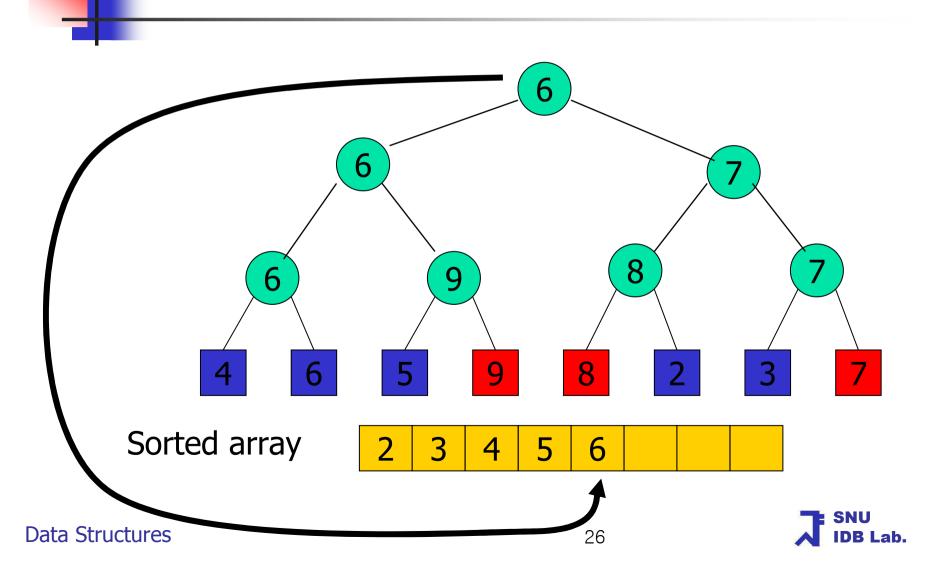
WT Applications – Sorting (17)



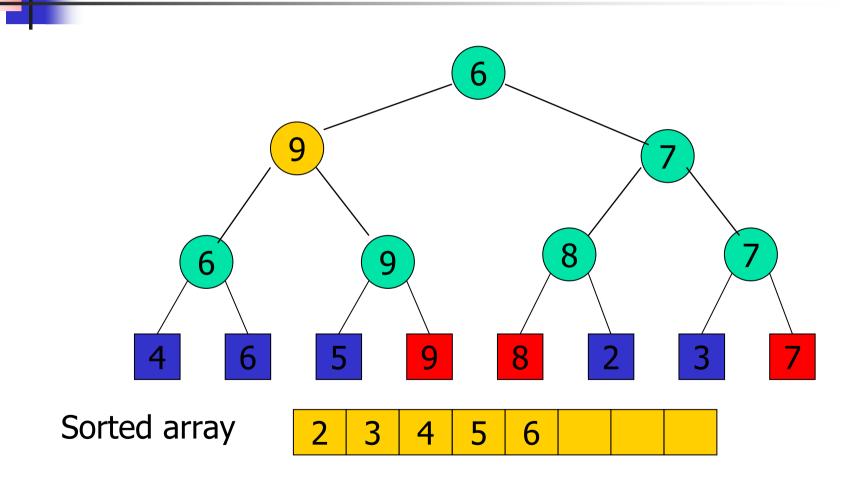
SNU

IDB Lab.

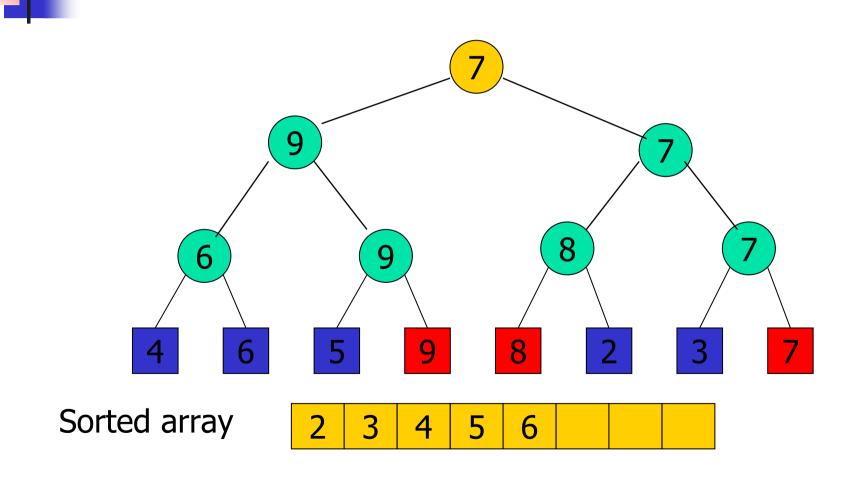
WT Applications – Sorting (18)



WT Applications – Sorting (19)

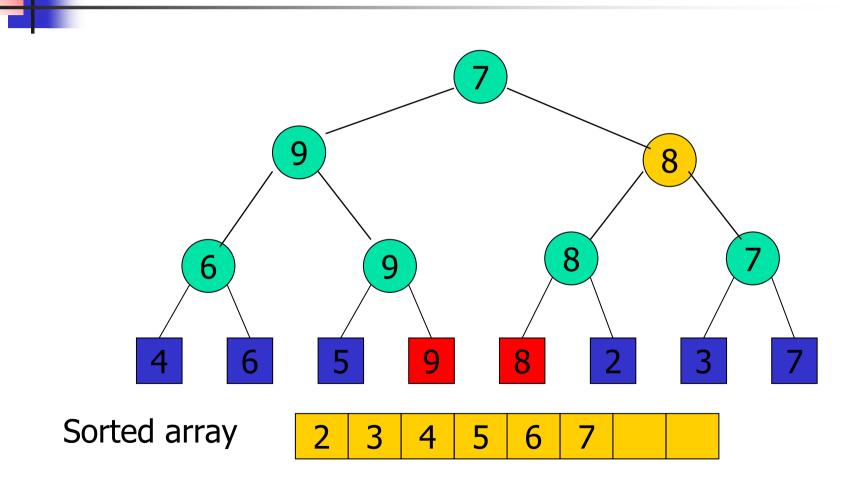


WT Applications – Sorting (20)

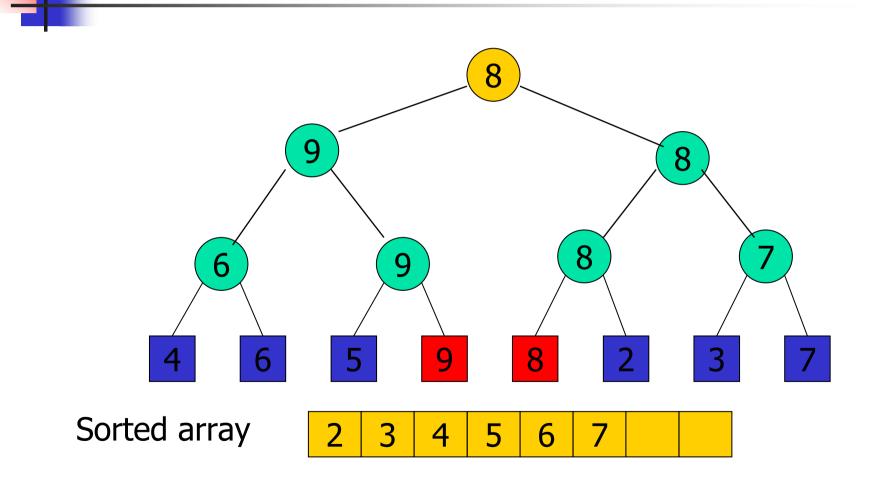


WT Applications – Sorting (21) Sorted array SNU Data Structures **IDB** Lab.

WT Applications – Sorting (22)



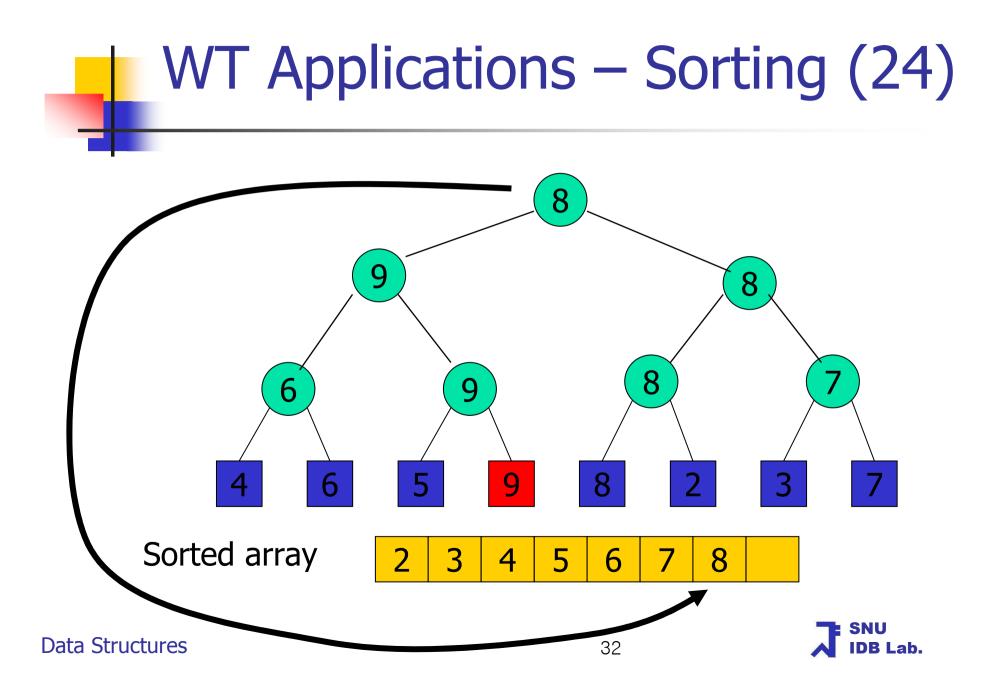
WT Applications – Sorting (23)



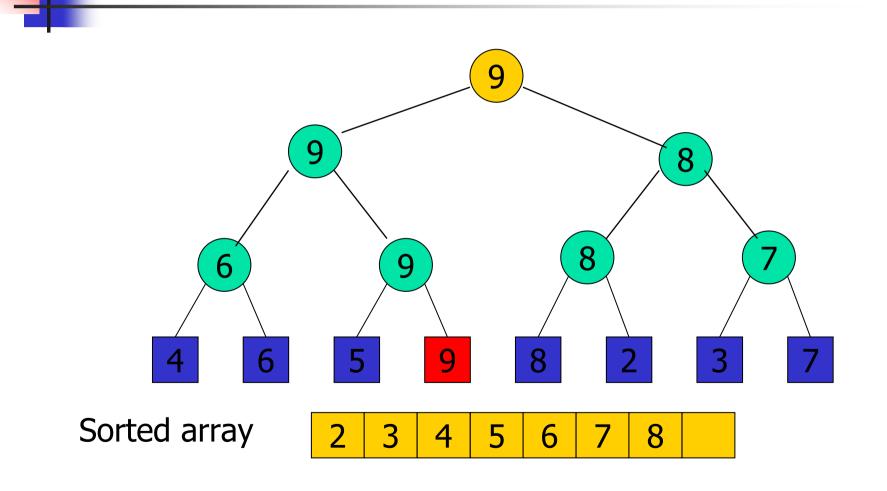
Data Structures

SNU

IDB Lab.

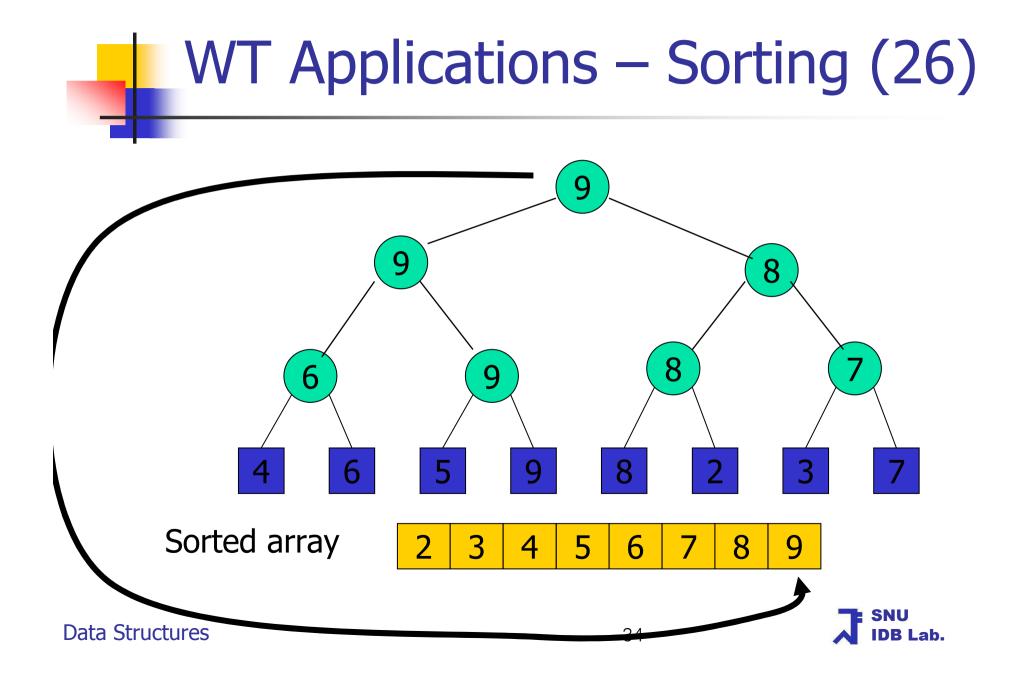


WT Applications – Sorting (25)



SNU

IDB Lab.



Complexity of Winner-Tree Sorting

- Initialize winner tree:
- Remove winner and replay:
- Remove winner and replay n times:

O(n) time O(logn) time O(n*logn) time

- Total sort time is O(n*logn)
 - Actually ⊖(n*logn)

The ADT WinnerTree

AbstractDataType WinnerTree {

instances

complete binary trees with each node pointing to the winner of the match played there: the external nodes represent the players

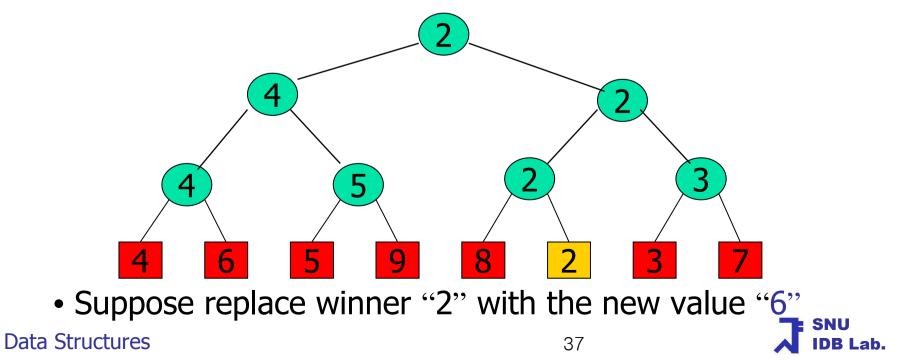
operations

- initialize(a) : initialize a winner tree for the players in array a
- getWinner() : return the tournament winner
- rePlay(i) : replay matches following a change in player i

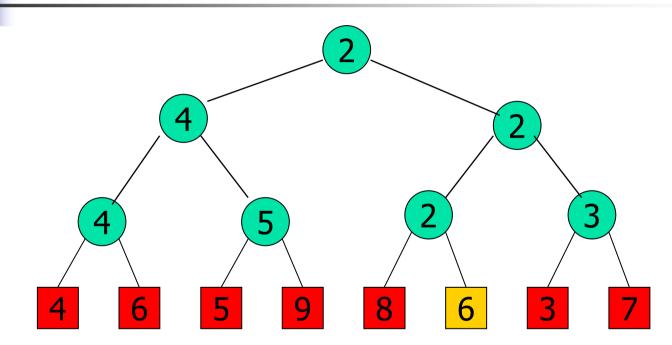
}

Replace Winner and Replay (1)

- Changing the the value of the winner requires a replay of all matches on the path from the winner's external node to the root
- Tree Height
- $O(\log n)$ time \rightarrow more precisely $\Theta(\log n)$



Replace Winner and Replay (2)

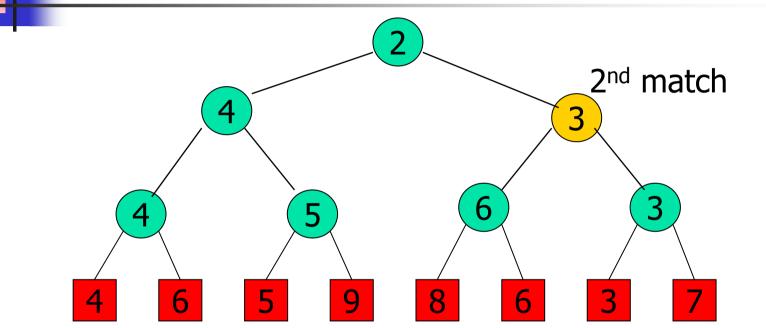


rePlay(6) : start rematch on player 6 whose value is now "6"

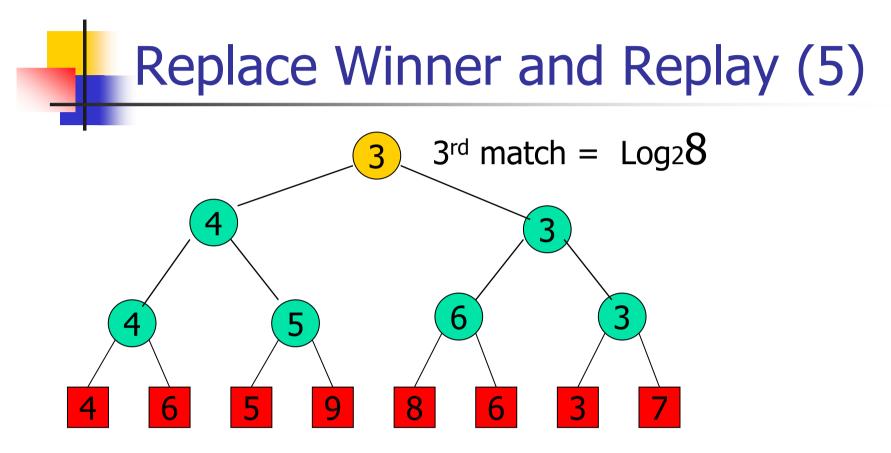
Replace Winner and Replay (3) 1st match

Player 6 is a[12] in the array: the first match result between a[11] and a[12] is stored in a[5]

Replace Winner and Replay (4)



Change in a[5] causes a rematch between a[5] and a[6]. The match result is stored in a[2].



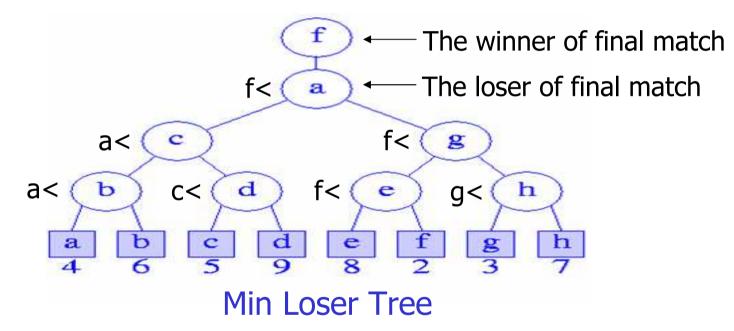
Change in a[2] causes a rematch between a[1] and a[2]. The match result is stored in a[0].

Table of Contents

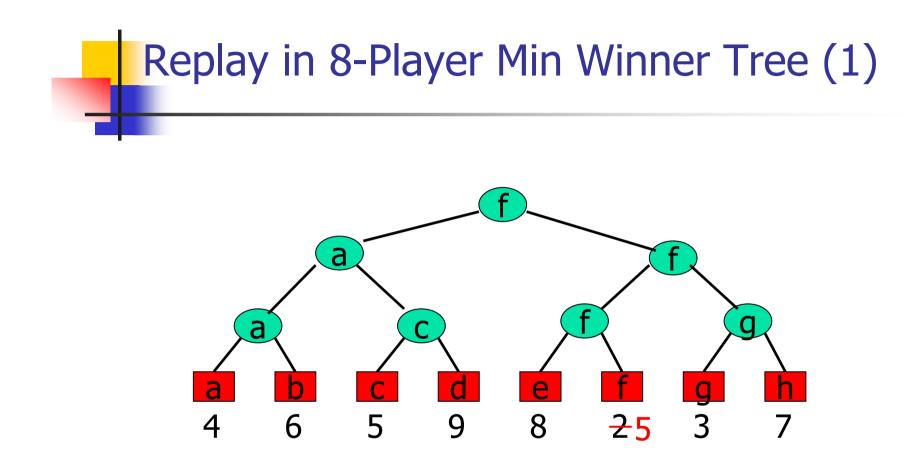
- Winner Trees
- Loser Trees
- Tournament Tree Applications
 - Bin Packing Using First Fit (BPFF)
 - Bin Packing Using Next Fit (BPNF)

Loser Trees

Each match node stores the match loser rather than the match winner

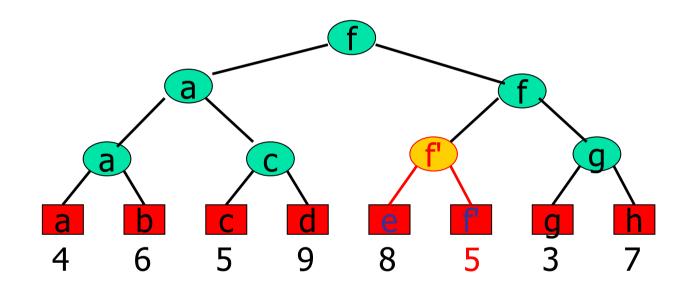


- Can reduce the work when the winner value is changed
 - Show the better performance than the winner tree



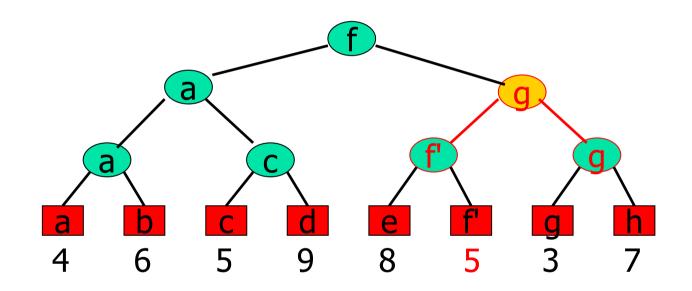
• Suppose we change f (key 2) with a new key 5

Replay in 8-Player Min Winner Tree (2)



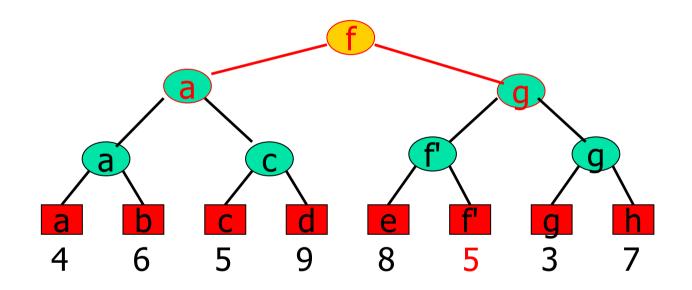
- We should compare f' with e (=another child of parent of f')
- Need referencing twice (self \rightarrow parent \rightarrow sibling)

Replay in 8-Player Min Winner Tree (3)



- We should compare f' with g (=another child of parent of f')
- Need referencing twice (self \rightarrow parent \rightarrow sibling)

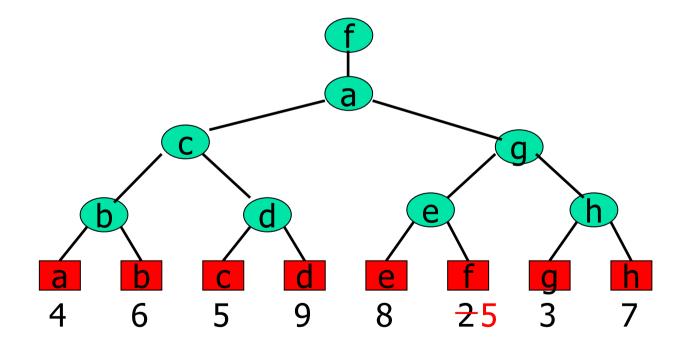
Replay in 8-Player Min Winner Tree (4)



- We should compare g with a (=another child of parent of g)
- Need referencing twice (self \rightarrow parent \rightarrow sibling)

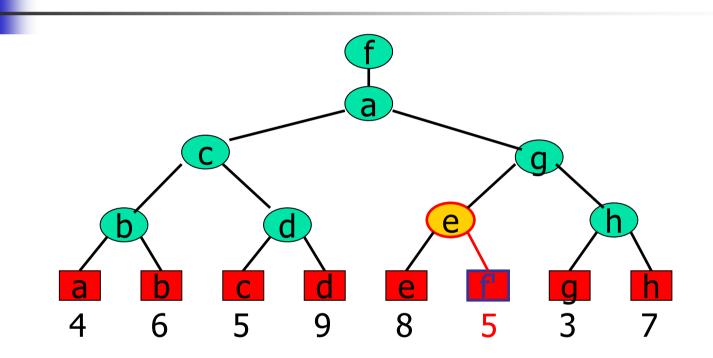
Replay in 8-Player Min Loser Tree (1)

Special case: The key of *winner* is changed



• Suppose we change winner f (key 2) with a new key 5

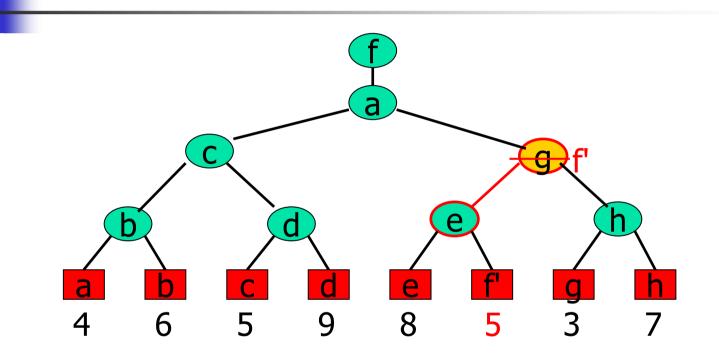
Replay in 8-Player Min Loser Tree (2)



• We simply compare f' with its **parent** because previous loser is stored at parent node

• Need referencing only once (self \rightarrow parent)

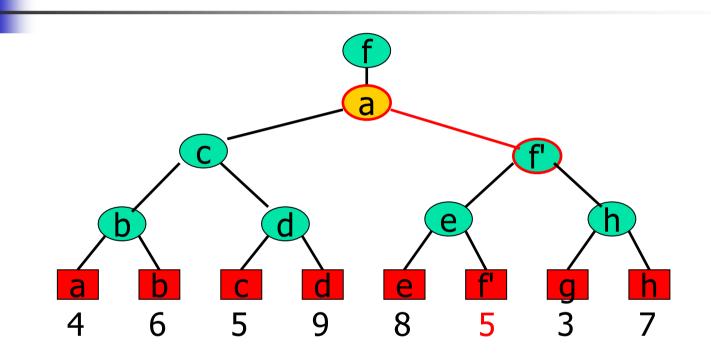
Replay in 8-Player Min Loser Tree (3)



• We simply compare f' with its **parent** because previous loser is stored at parent node

• Need referencing only once (self \rightarrow parent)

Replay in 8-Player Min Loser Tree (4)

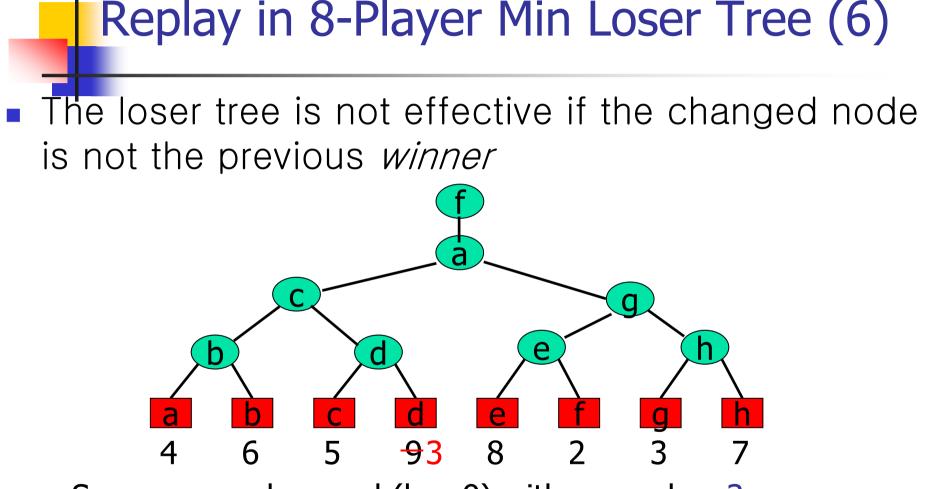


• We simply compare g with its **parent** because previous loser is stored at parent node

• Need referencing only once (self \rightarrow parent)

Replay in 8-Player Min Loser Tree (5) а e C f e g а d h **(** 3 6 5 9 8 5 4 7

• Winner changes to g



• Suppose we change d (key 9) with a new key 3

• We should compare d with its sibling(c), NOT parent(d)

Table of Contents

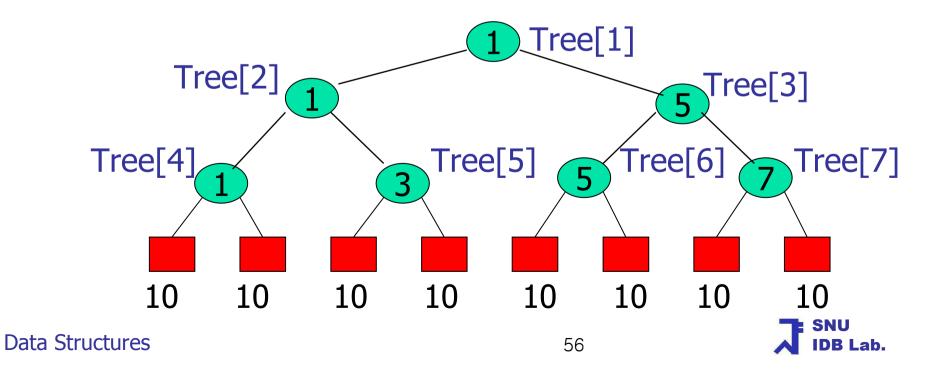
- Winner Trees
- Loser Trees
- Tournament Tree Applications
 - Bin Packing Using First Fit (BPFF)
 - Bin Packing Using Next Fit (BPNF)

Bin Packing Problem

- Object i requires objectSize[i] units of capacity
 - 0 < objectSize[i] ≤ binCapacity
- A feasible packing is an assignment of objects to bins so that no bin's capacity is exceeded
 - Optimal packing: A feasible packing using the fewest number of bins
- First-Fit: find the first available bin using the winner tree
- Next-Fit: A variant of First-Fit searching the next bins

First-Fit and Winner Trees (1)

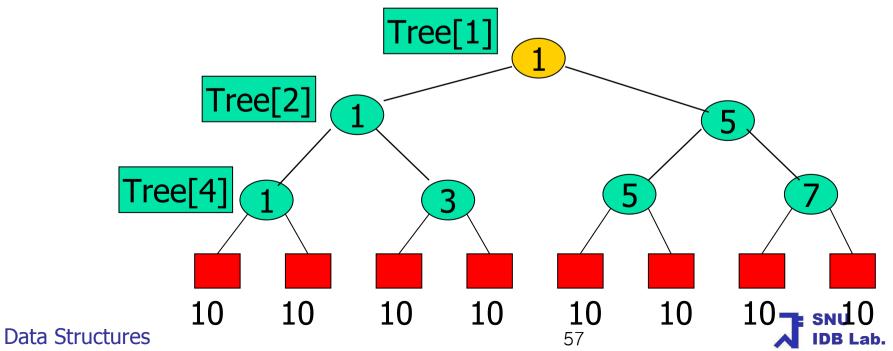
- Initialize: Winner tree of 8 bins and binCapacity = 10
 - If the players have the same value, the player with the small index is winner
- Suppose objects to be allocated are [8, 6, 5, 3]
- We want a feasible packing with a fewest number of bins



First-Fit and Winner Trees (2)

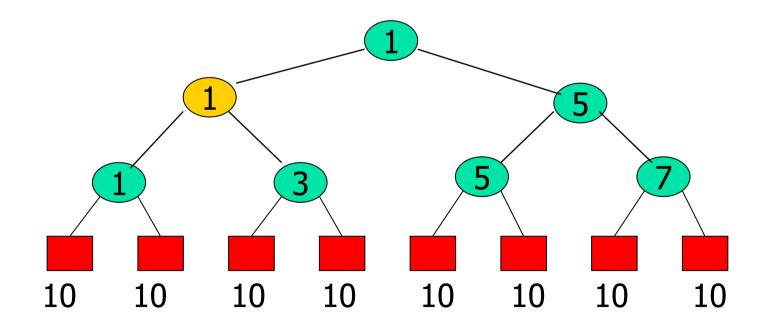
- Suppose objects to be allocated are [8, 6, 5, 3]
 - objectSize[1] is 8
- Bin[tree[1]].unusedCapacity >= objectSize[1] → go to left

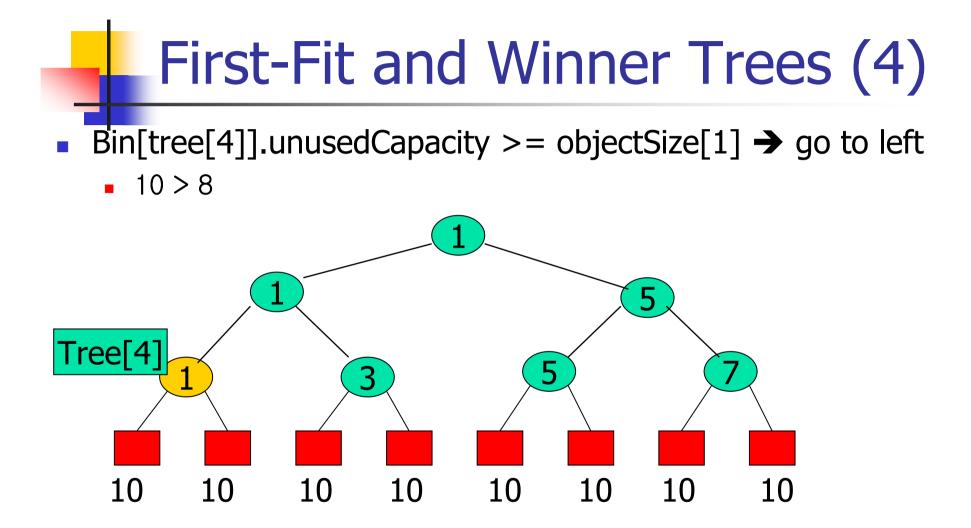
10 > 8



First-Fit and Winner Trees (3)

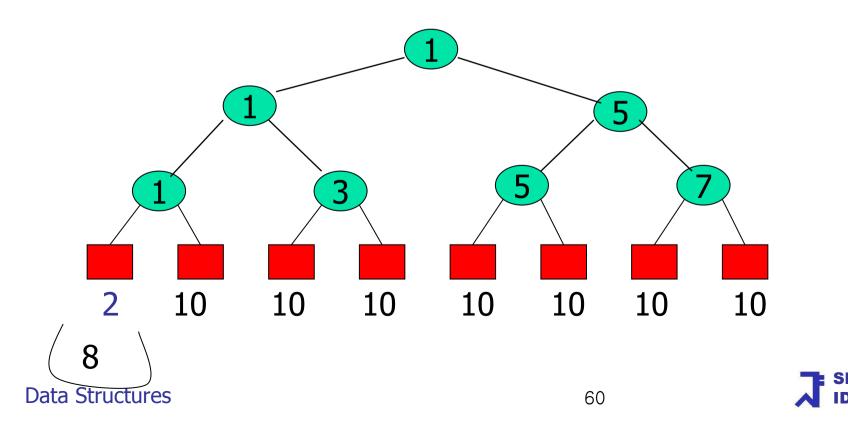
Bin[tree[2]].unusedCapacity >= objectSize[1] → go to left
 10 > 8

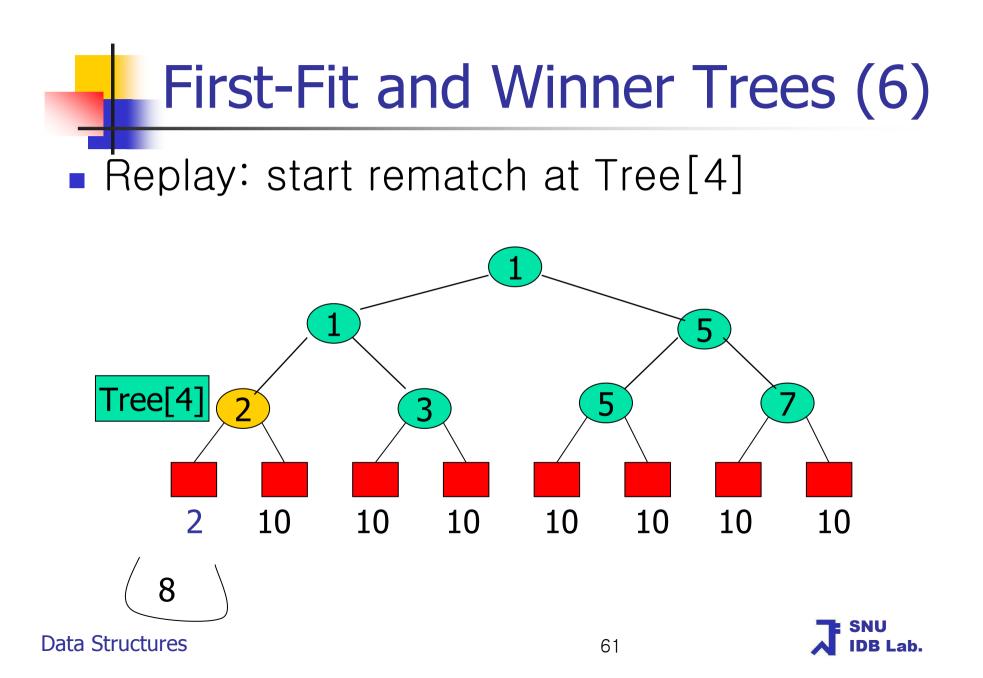


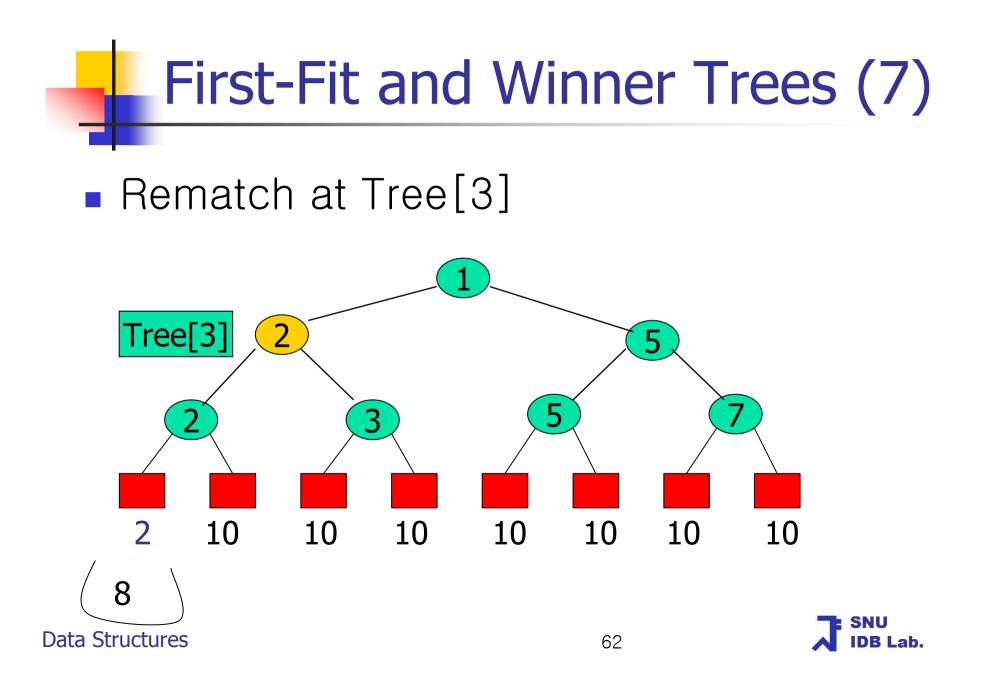


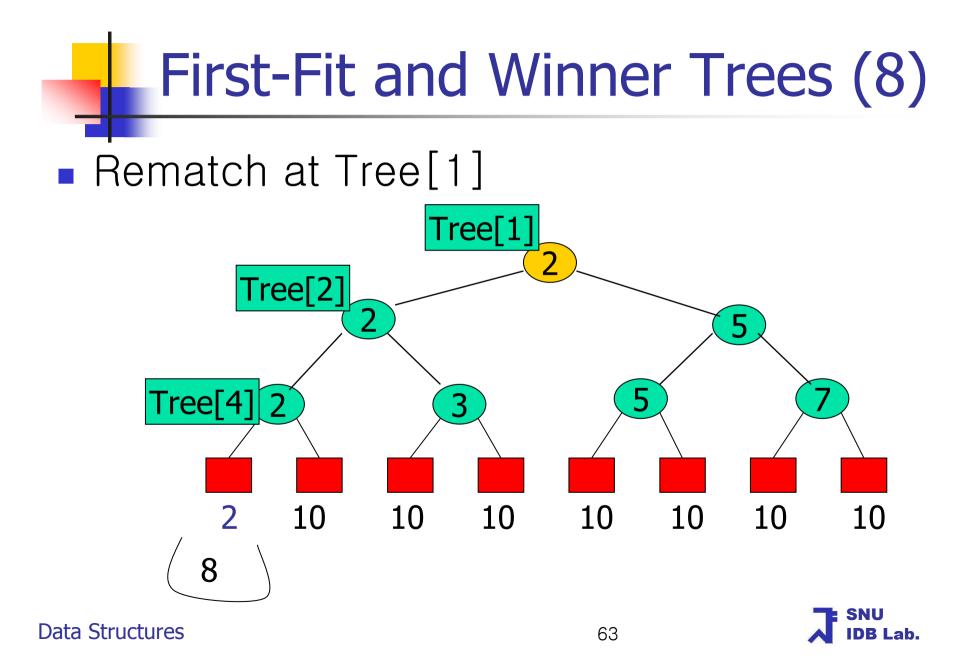
First-Fit and Winner Trees (5)

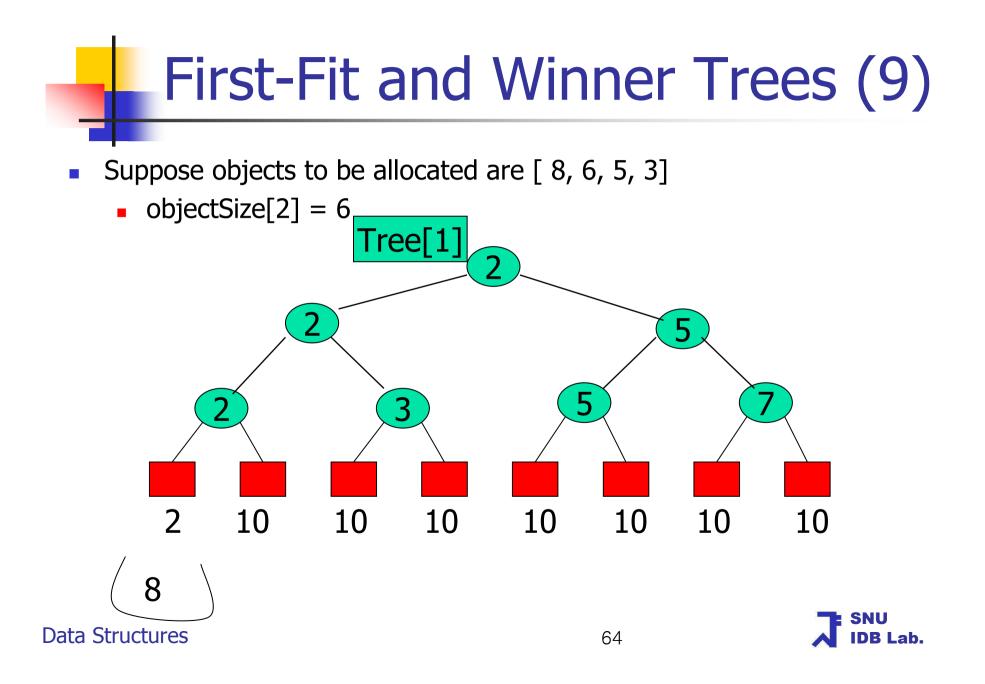
- Object with size "8" is now in Bin[1]
- Need to update the winner tree





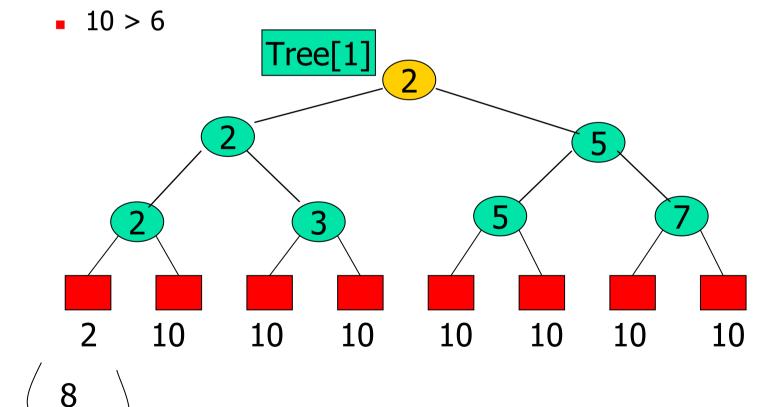






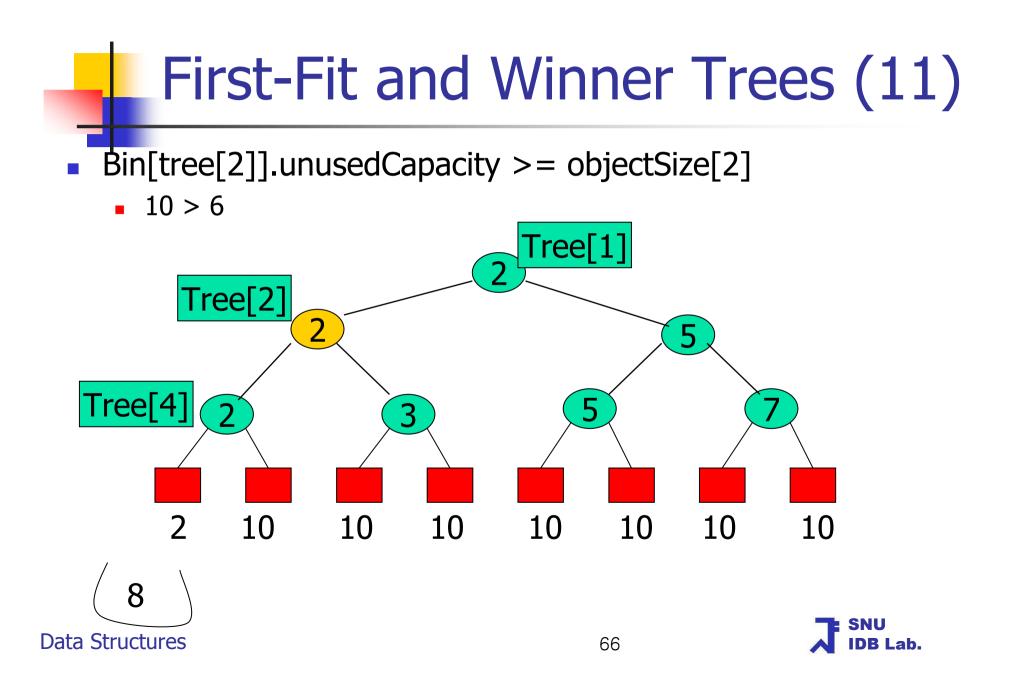
First-Fit and Winner Trees (10)

Bin[tree[1]].unusedCapacity >= objectSize[2]



Data Structures

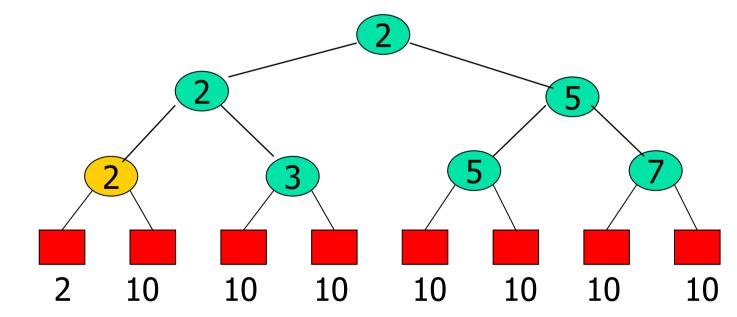
65



First-Fit and Winner Trees (12)

Bin[tree[4]].unusedCapacity >= objectSize[2]

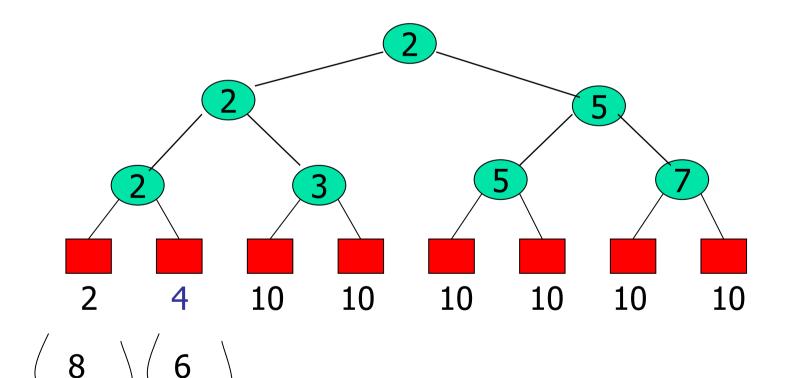
10 > 6



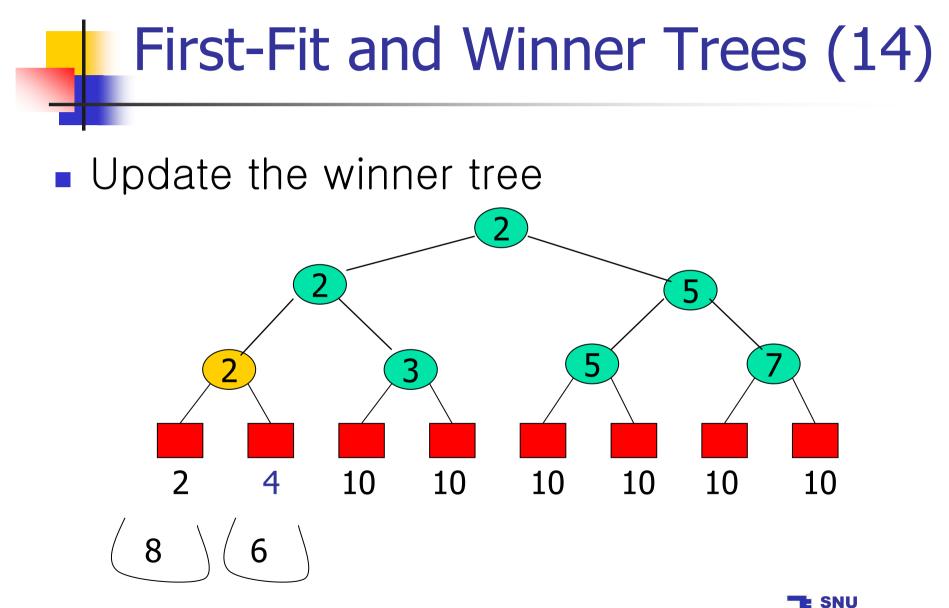


First-Fit and Winner Trees (13)

• Object with size "6" is now in Bin[2]

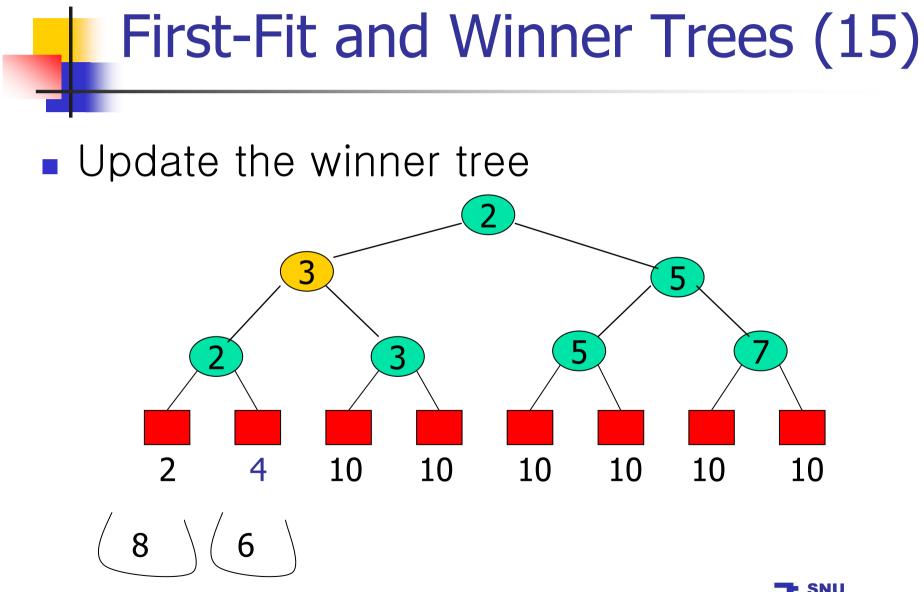


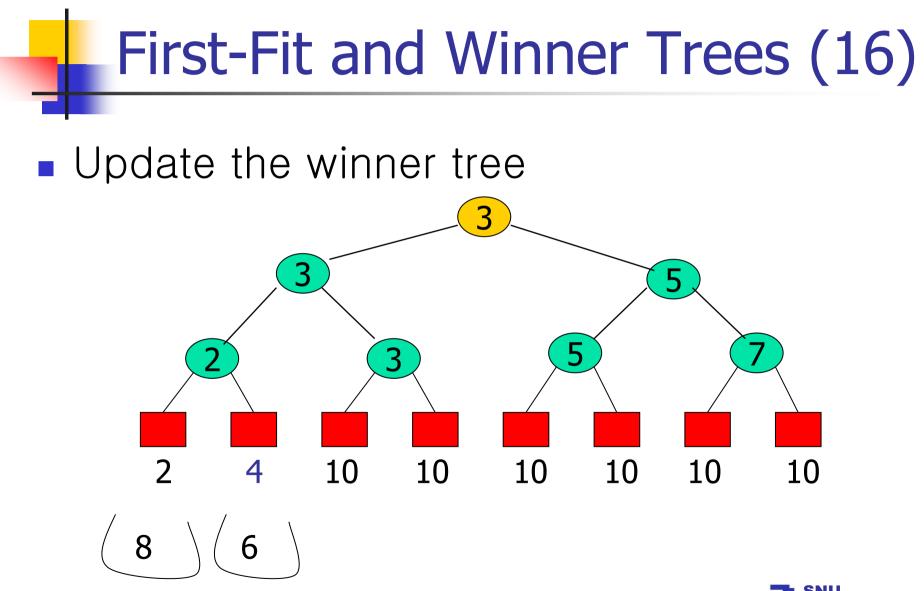
SNU IDB Lab.



Data Structures

IDB Lab.



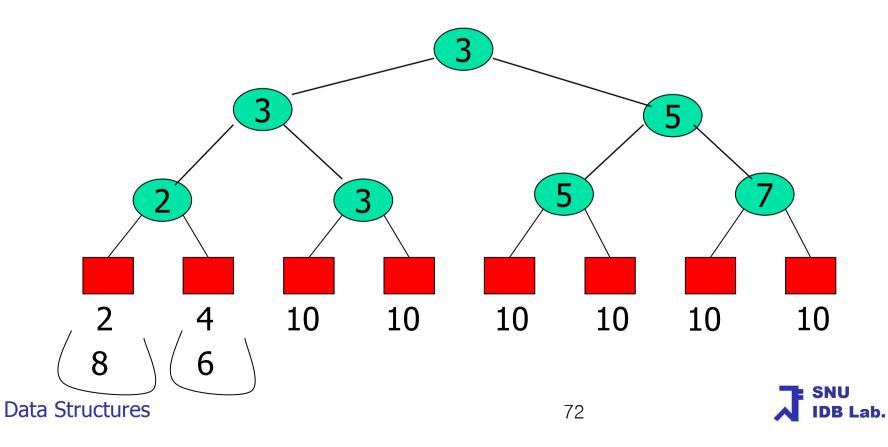


Data Structures

SNU IDB Lab.

First-Fit and Winner Trees (17)

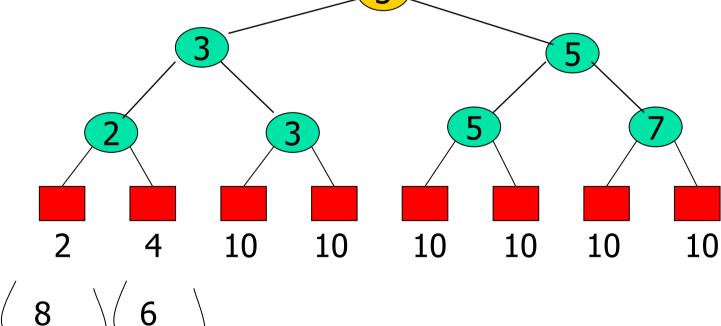
- Suppose objects to be allocated are [8, 6, 5, 3]
 - objectSize[3] = 5



First-Fit and Winner Trees (18)

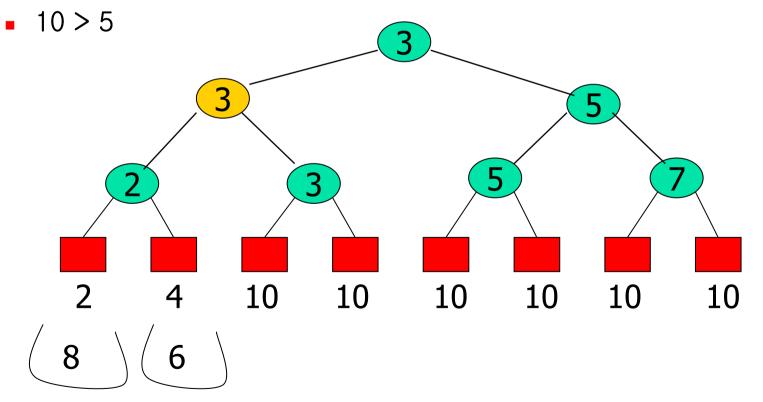
Bin[tree[1]].unusedCapacity >= objectSize[3]

10 > 5



First-Fit and Winner Trees (19)

Bin[tree[2]].unusedCapacity >= objectSize[3]

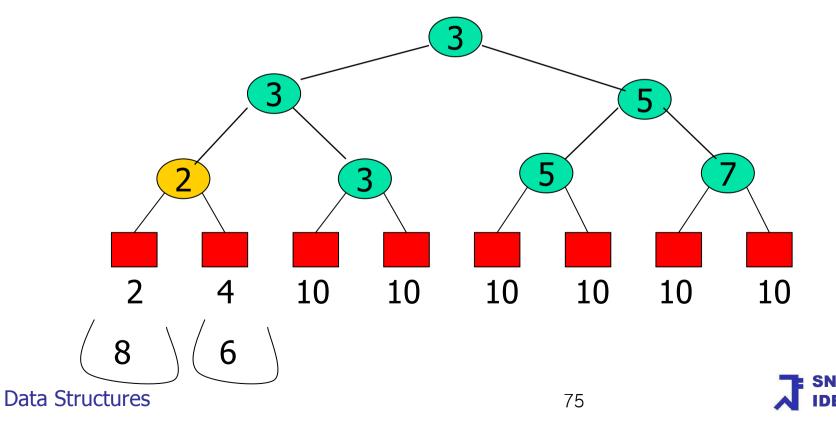


First-Fit and Winner Trees (20)

.ab.

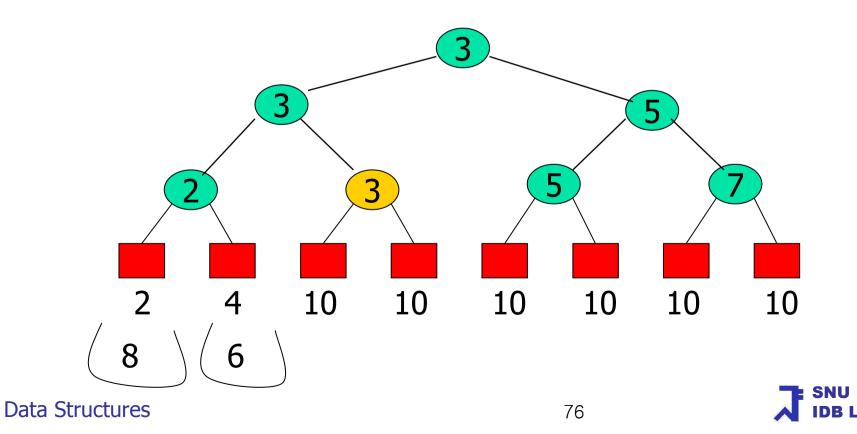
Bin[tree[4]].unusedCapacity < objectSize[3]

• 4 < 5



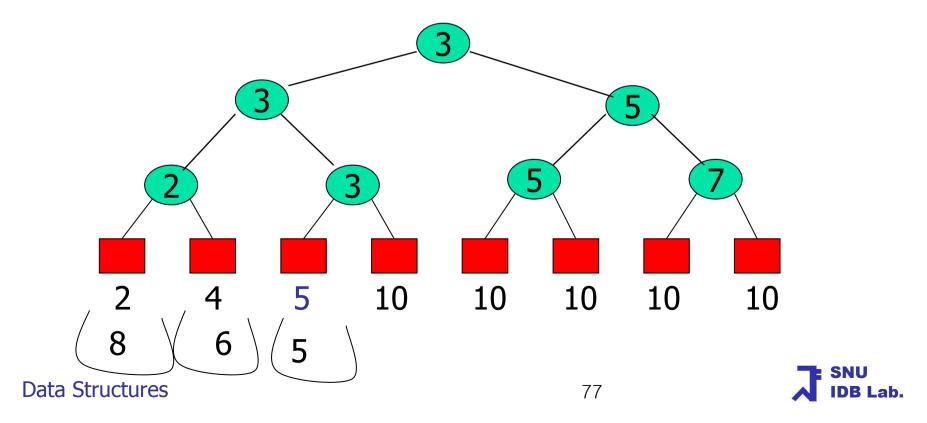
First-Fit and Winner Trees (21)

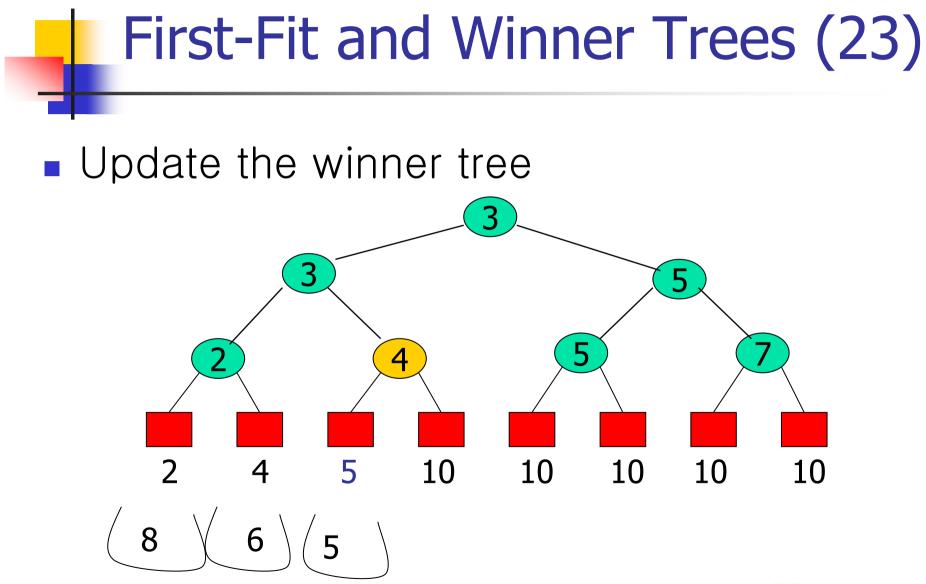
Go to sibling: Bin[tree[5]].unusedCapacity >= objectSize[3]

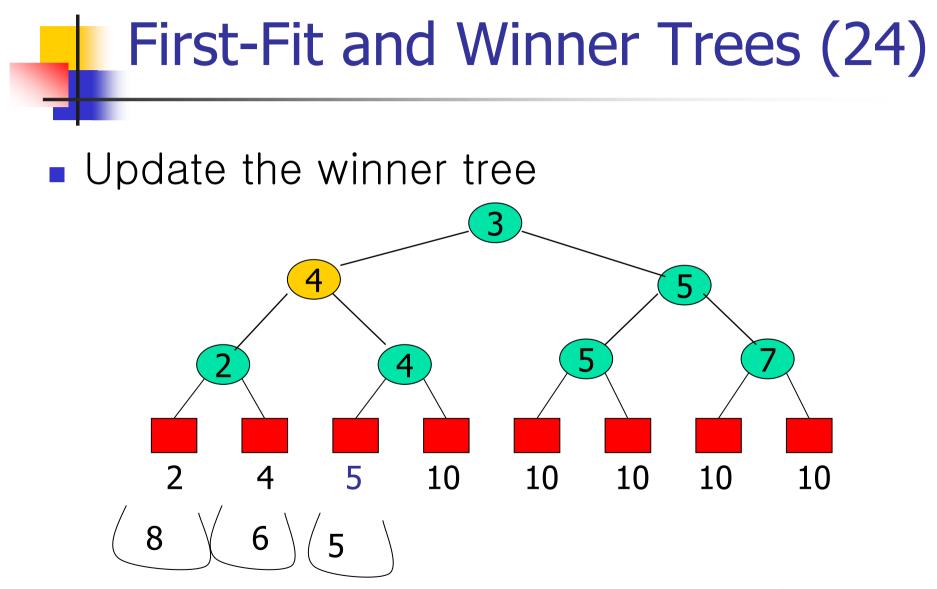


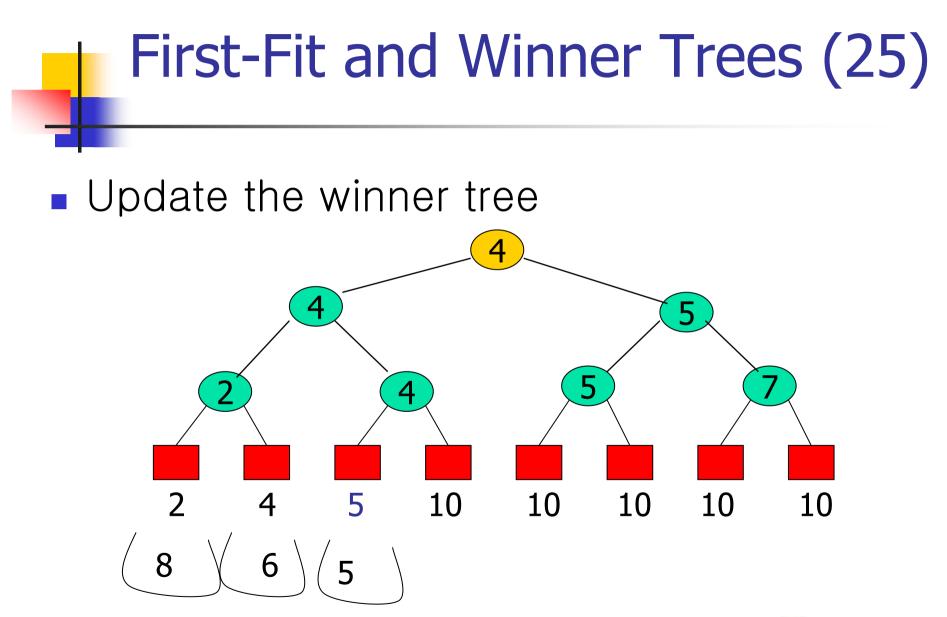
First-Fit and Winner Trees (22)

Object with size "5" is now in Bin[3]



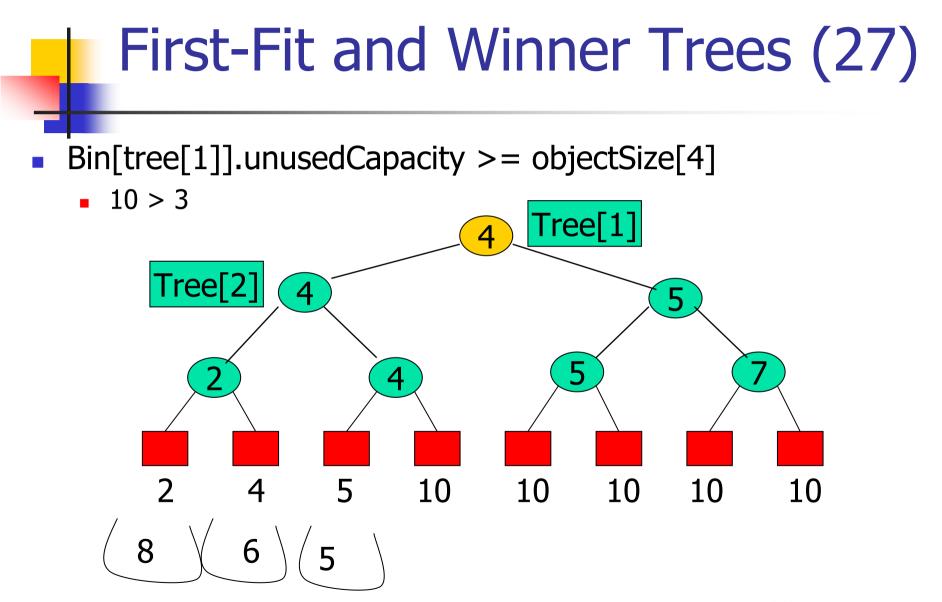


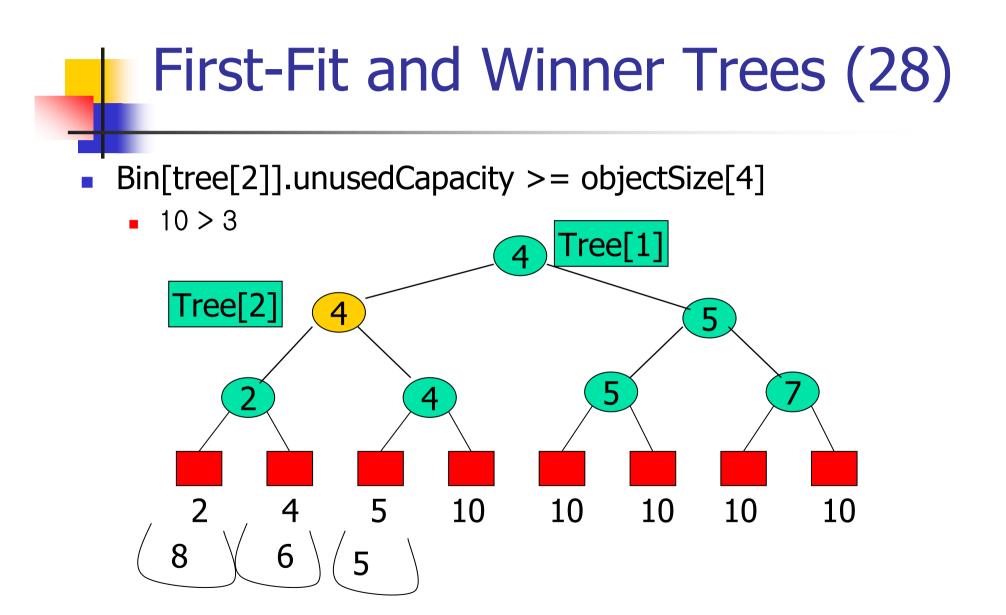




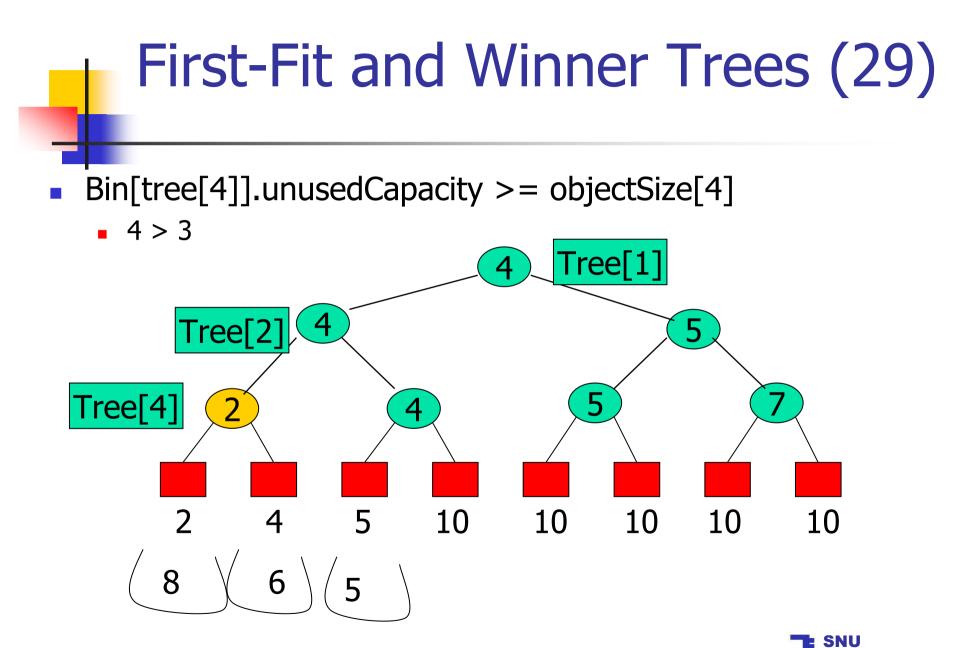
First-Fit and Winner Trees (26)

- Suppose objects to be allocated are [8, 6, 5, 3]
- objectSize[4] = 3Δ





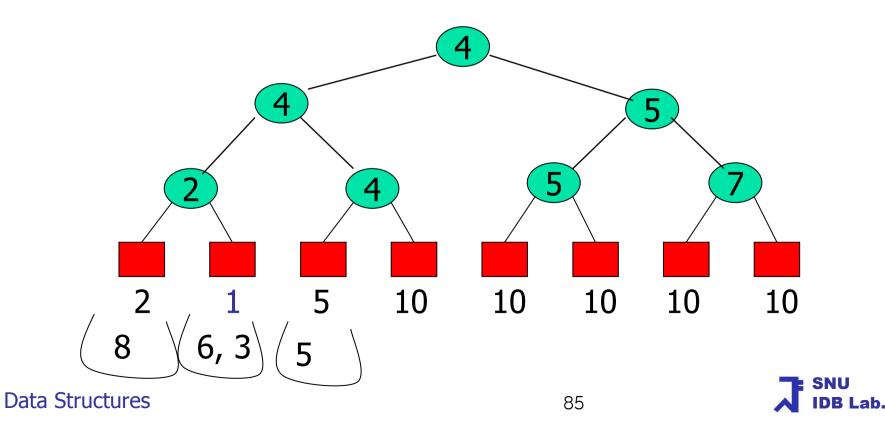
DB Lab.

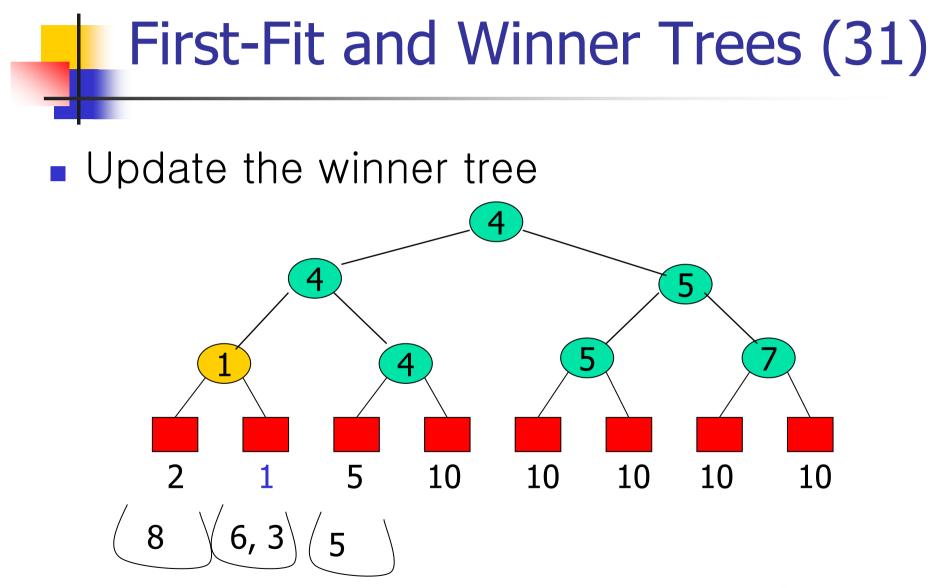


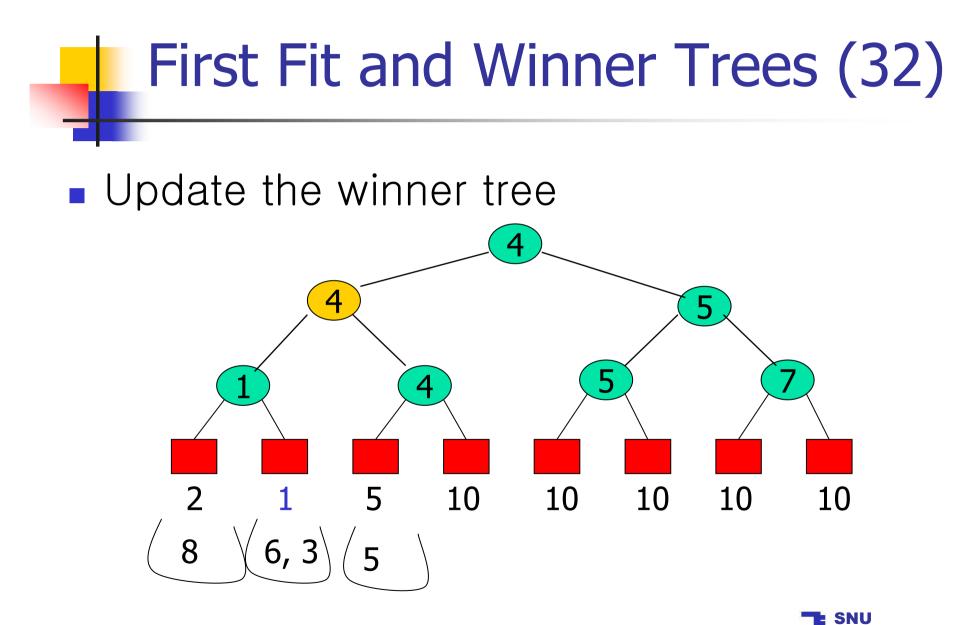
DB Lab.

First-Fit and Winner Trees (30)

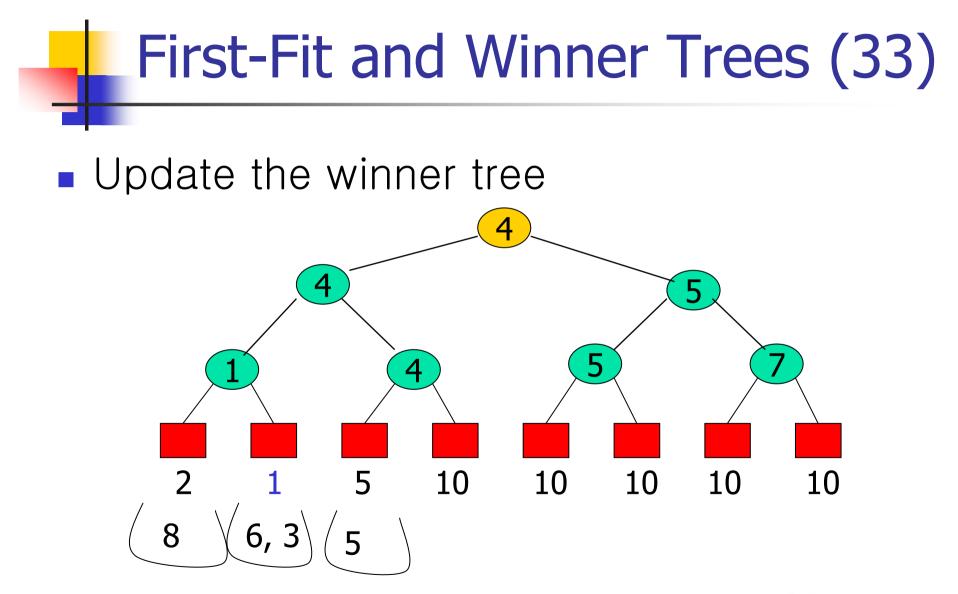
Object with size "3" is now in bin[2]







IDB Lab.



The method firstFitPack() (1)

```
public static void firstFitPack(int [] objectSize, int binCapacity) {
   int n = objectSize.length - 1; // number of objects
   Bin [] bin = new Bin [n + 1]; // bins
   ExtendedCWTree winTree = new ExtendedCWTree();
   for (int i = 1; i <= n; i++) // initialize n bins and winner tree
         bin[i] = new Bin(binCapacity); // initial unused capacity
   winTree.initialize(bin);
   // put objects in bins
   for (int i = 1; i <= n; i++) { // put object i into a bin
   // find first bin with enough capacity
         int child = 2; // start search at left child of root
         while (child < n) {
         int winner = winTree.getWinner(child);
         if (bin[winner].unusedCapacity < objectSize[i])
                  child++ ; // first bin is in right subtree
          child *= 2; // move to left child }
```


The method firstFitPack() (2)

```
int binToUse; // will be set to bin to use
   child /= 2; // undo last left-child move
   if (child < n) { // at a tree node
    binToUse = winTree.getWinner(child);
    // if binToUse is right child, need to check bin binToUse-1.
    // No harm done by checking bin binToUse-1 even if binToUse is left child.
    if (binToUse > 1 && bin[binToUse - 1].unusedCapacity >= objectSize[i])
                 binToUse--;
    }
    else binToUse = winTree.getWinner(child / 2); // arises when n is odd
   System.out.println("Pack object " + i + " in bin " +
                                                             binToUse);
    bin[binToUse].unusedCapacity -= objectSize[i];
   winTree.rePlay(binToUse);
  }
   O(nlogn) time using a winner tree
**
```

Data Structures

}

Table of Contents

- Winner Trees
- Loser Trees
- Tournament Tree Applications
 - Bin Packing Using First Fit (BPFF)
 - Bin Packing Using Next Fit (BPNF)

Next-Fit

- For the new object, we determine the next nonempty bin that can accommodate the object by polling the bins in a round robin fashion
 - We want a feasible packing with a fewest number of bins
- 3 bins of size 7 and six objects [3,5,3,4,2,1]
 - 3 goes to bin[1]
 - 5 goes to bin[2] // the candidate is bin[2] & check the left side; bin[2] is OK.
 - 3 goes to bin[1] // the candidate is bin[3] & check the left side; bin[1] is better
 - 4 goes to bin[3] // the candidate is bin[3] & check the left side; bin[3] is OK
 - 2 goes to bin[2] // first check bin[1], but not qualified; bin[2] is qualified
 - 1 goes to bin[3] // frist check bin[3], but not qualified; bin[3] is qualified
- Idea (O(n) for one assignment)
 - Search for the next bin of the last used bin which can accommodate the new object
 - If the candidate bin is not empty, use it
 - Otherwise search for the left-most bin which can accommodate the new object

Next-Fit with Winner Tree

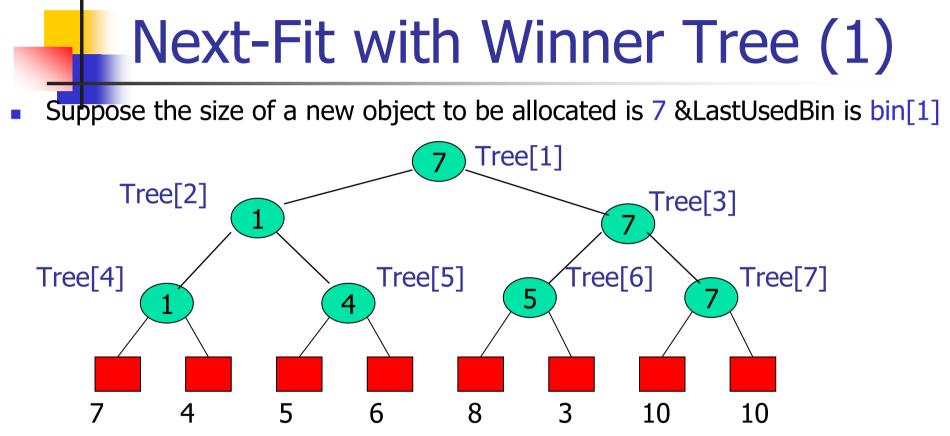
Step 1 (Figure 14.8 in textbook)

- Search the suitable bin with help of winner tree
- If the found bin is empty, go to step 2
- **O**(log(n))
- Step 2 (actually First-Fit)
 - Search the left-most suitable bin with help of winner tree
 - **O**(log(n))

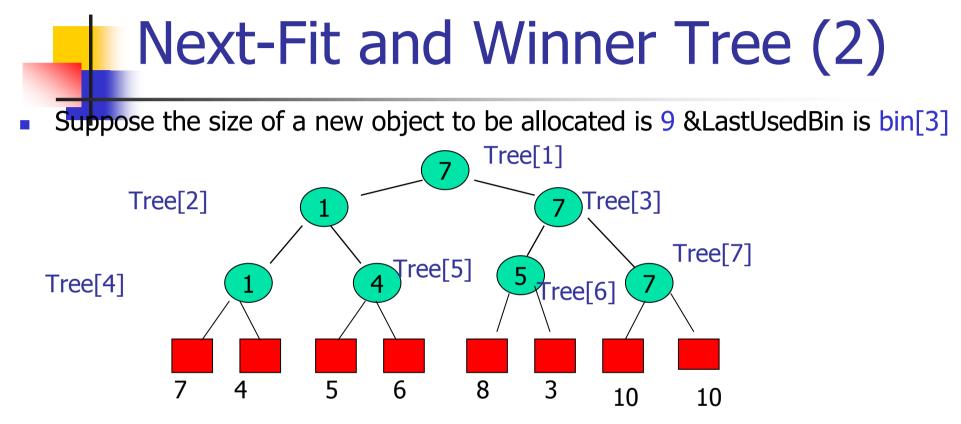

```
// Find nearest bin to right of
// lastBinUsed into which object i fits.
i = lastBinUsed + 1;
if (bin[j].unusedCapacity >= objectSize[i])
   return j;
if (bin[j+1].unusedCapacity >= objectSize[i])
   return j + 1;
p = parent of bin[j];
if (p == n - 1)
{// special case
   let q be the external node to the right of tree[p];
   if (bin[q].unusedCapacity >= objectSize[i])
      return q;
}
// move toward root looking for first right
// subtree that has a bin with enough capacity
// subtree to right of p is p+1
p /= 2; // move to parent
while (bin[tree[p+1]].unusedCapacity < objectSize[i])
   p /= 2;
```

return first bin in subtree p+1 into which object i fits;

Figure 14.8 Pseudocode for step 1



- Start from bin[2] & bin[3]; go to parent of bin[2] (which is tree[4])
- go to tree[2] & try tree[3];
- The unusedCapacity of tree[3] is 10, try to find the first bin of tree[3] which can accommodate "7"



- Start from bin[4] & bin[5]; go to the parent of bin[4] (which is tree[5])
- Go to tree[2] and try tree[3]
- The unusedCapacity of tree[3] is 10, try to find the first bin of tree[3] which can accommodate "9" \rightarrow bin[7] is the candidate, but empty
- We check the left-most bin which can accommodate "9" \rightarrow No such bin \rightarrow bin[7] is the bin to use **Data Structures**

Summary

- A tournament tree is a complete binary tree that is most efficiently stored by using the array-based binary tree
- Study two varieties of tournament trees
 - Winner tree
 - Loser tree
- Tournament Tree Application
 - Bin Packing Using First Fit (BPFF)
 - Bin Packing Using Next Fit (BPNF)

