
SNU

IDB Lab.

Ch.14 Tournament Trees

© copyright 2006 SNU IDB Lab.

2
SNU

IDB Lab.Data Structures

BIRD’S-EYE VIEW (0)

� Chapter 12: Binary Tree

� Chapter 13: Priority Queue

� Heap and Leftiest Tree

� Chapter 14: Tournament Trees

� Winner Tree and Loser Tree

3
SNU

IDB Lab.Data Structures

BIRD’S-EYE VIEW

� A tournament tree is a complete binary tree that is most
efficiently stored by using the array-based binary tree

� Study two varieties of tournament trees
� Winner tree

� Loser tree

� Tournament Tree Application
� Bin packing

4
SNU

IDB Lab.Data Structures

Table of Contents

� Winner Tree

� Loser Trees

� Tournament Tree Applications

� Bin Packing Using First Fit (BPFF)

� Bin Packing Using Next Fit (BPNF)

5
SNU

IDB Lab.Data Structures

Winner Tree

� Definition: A winner tree for n players is a complete binary
tree with n external and n-1 internal nodes

� Each internal node records the winner of the match played
there.

6
SNU

IDB Lab.Data Structures

Max Winner tree

� The player with the larger value wins

7
SNU

IDB Lab.Data Structures

Min Winner tree

� The player with the smaller value wins

8
SNU

IDB Lab.Data Structures

Complexity of Winner Tree

� O(log(n)) time to restructure n player winner tree

� O(1) time to play match at each match node

� n - 1 match nodes

� O(n) time to initialize n player winner tree

9
SNU

IDB Lab.Data Structures

WT Applications – Sorting (1)

2

4 2

4 5 2 3

4 6 5 9 8 2 3 7

Min Winner Tree

10
SNU

IDB Lab.Data Structures

WT Applications – Sorting (2)
2

4 2

4 5 2 3

4 6 5 9 8 2 3 7

2Sorted
array

11
SNU

IDB Lab.Data Structures

WT Applications – Sorting (3)
2

4 2

4 5 8 3

4 6 5 9 8 2 3 7

2Sorted
array

• Restructuring starts at the place where “2” is removed

12
SNU

IDB Lab.Data Structures

WT Applications – Sorting (4)
2

4 3

4 5 8 3

4 6 5 9 8 2 3 7

2Sorted
array

13
SNU

IDB Lab.Data Structures

WT Applications – Sorting (5)
3

4 3

4 5 8 3

4 6 5 9 8 2 3 7

2Sorted
array

14
SNU

IDB Lab.Data Structures

WT Applications – Sorting (6)
3

4 3

4 5 8 3

4 6 5 9 8 2 3 7

2 3Sorted
array

• Restructuring starts at the place where “3” is removed

15
SNU

IDB Lab.Data Structures

WT Applications – Sorting (7)
3

4 3

4 5 8 7

4 6 5 9 8 2 3 7

2 3Sorted
array

16
SNU

IDB Lab.Data Structures

WT Applications – Sorting (8)
3

4 7

4 5 8 7

4 6 5 9 8 2 3 7

2 3Sorted
array

17
SNU

IDB Lab.Data Structures

WT Applications – Sorting (9)
4

4 7

4 5 8 7

4 6 5 9 8 2 3 7

2 3Sorted
array

18
SNU

IDB Lab.Data Structures

WT Applications – Sorting (10)
4

4 7

4 5 8 7

4 6 5 9 8 2 3 7

2 3 4Sorted
array

• Restructuring starts at the place where “4” is removed

19
SNU

IDB Lab.Data Structures

WT Applications – Sorting (11)

4

4 7

6 5 8 7

4 6 5 9 8 2 3 7

2 3 4Sorted array

20
SNU

IDB Lab.Data Structures

WT Applications – Sorting (12)

4

5 7

6 5 8 7

4 6 5 9 8 2 3 7

2 3 4Sorted array

21
SNU

IDB Lab.Data Structures

WT Applications – Sorting (13)

5

5 7

6 5 8 7

4 6 5 9 8 2 3 7

2 3 4Sorted array

22
SNU

IDB Lab.Data Structures

WT Applications – Sorting (14)

5

5 7

6 5 8 7

4 6 5 9 8 2 3 7

2 3 4 5Sorted array

23
SNU

IDB Lab.Data Structures

WT Applications – Sorting (15)

5

5 7

6 9 8 7

4 6 5 9 8 2 3 7

2 3 4 5Sorted array

24
SNU

IDB Lab.Data Structures

WT Applications – Sorting (16)

5

6 7

6 9 8 7

4 6 5 9 8 2 3 7

2 3 4 5Sorted array

25
SNU

IDB Lab.Data Structures

WT Applications – Sorting (17)

6

6 7

6 9 8 7

4 6 5 9 8 2 3 7

2 3 4 5Sorted array

26
SNU

IDB Lab.Data Structures

WT Applications – Sorting (18)

6

6 7

6 9 8 7

4 6 5 9 8 2 3 7

2 3 4 5 6Sorted array

27
SNU

IDB Lab.Data Structures

WT Applications – Sorting (19)

6

9 7

6 9 8 7

4 6 5 9 8 2 3 7

2 3 4 5 6Sorted array

28
SNU

IDB Lab.Data Structures

WT Applications – Sorting (20)

7

9 7

6 9 8 7

4 6 5 9 8 2 3 7

2 3 4 5 6Sorted array

29
SNU

IDB Lab.Data Structures

WT Applications – Sorting (21)

7

9 7

6 9 8 7

4 6 5 9 8 2 3 7

2 3 4 5 6 7Sorted array

30
SNU

IDB Lab.Data Structures

WT Applications – Sorting (22)

7

9 8

6 9 8 7

4 6 5 9 8 2 3 7

2 3 4 5 6 7Sorted array

31
SNU

IDB Lab.Data Structures

WT Applications – Sorting (23)

8

9 8

6 9 8 7

4 6 5 9 8 2 3 7

2 3 4 5 6 7Sorted array

32
SNU

IDB Lab.Data Structures

WT Applications – Sorting (24)

8

9 8

6 9 8 7

4 6 5 9 8 2 3 7

2 3 4 5 6 7 8Sorted array

33
SNU

IDB Lab.Data Structures

WT Applications – Sorting (25)

9

9 8

6 9 8 7

4 6 5 9 8 2 3 7

2 3 4 5 6 7 8Sorted array

34
SNU

IDB Lab.Data Structures

WT Applications – Sorting (26)

9

9 8

6 9 8 7

4 6 5 9 8 2 3 7

2 3 4 5 6 7 8 9Sorted array

35
SNU

IDB Lab.Data Structures

Complexity of Winner-Tree Sorting

� Initialize winner tree: O(n) time

� Remove winner and replay: O(logn) time

� Remove winner and replay n times: O(n*logn) time

� Total sort time is O(n*logn)
� Actually ƟƟƟƟ(n*logn)

36
SNU

IDB Lab.Data Structures

The ADT WinnerTree

AbstractDataType WinnerTree {

instances
complete binary trees with each node pointing to the winner of the
match played there: the external nodes represent the players

operations

initialize(a) : initialize a winner tree for the players in array a

getWinner() : return the tournament winner

rePlay(i) : replay matches following a change in player i

}

37
SNU

IDB Lab.Data Structures

Replace Winner and Replay (1)

2

4 2

4 5 2 3

4 6 5 9 8 2 3 7

• Suppose replace winner “2” with the new value “6”

� Changing the the value of the winner requires a replay of all matches on the path
from the winner’s external node to the root

� Tree Height

� O(log n) time � more precisely ſſſſ(log n)

38
SNU

IDB Lab.Data Structures

Replace Winner and Replay (2)

2

4 2

4 5 2 3

4 6 5 9 8 6 3 7

rePlay(6) : start rematch on player 6 whose value is now “6”

39
SNU

IDB Lab.Data Structures

Replace Winner and Replay (3)

2

4 2

4 5 6 3

4 6 5 9 8 6 3 7

1st match

Player 6 is a[12] in the array: the first match result
between a[11] and a[12] is stored in a[5]

40
SNU

IDB Lab.Data Structures

Replace Winner and Replay (4)

2

4 3

4 5 6 3

4 6 5 9 8 6 3 7

2nd match

Change in a[5] causes a rematch between a[5] and a[6].

The match result is stored in a[2].

41
SNU

IDB Lab.Data Structures

Replace Winner and Replay (5)

3

4 3

4 5 6 3

4 6 5 9 8 6 3 7

3rd match = Log28

Change in a[2] causes a rematch between a[1] and a[2].
The match result is stored in a[0].

42
SNU

IDB Lab.Data Structures

Table of Contents

� Winner Trees

� Loser Trees

� Tournament Tree Applications

� Bin Packing Using First Fit (BPFF)

� Bin Packing Using Next Fit (BPNF)

43
SNU

IDB Lab.Data Structures

Loser Trees
� Each match node stores the match loser rather than the match winner

The loser of final match

a< c<

a<

f< g<

f<

Min Loser Tree

The winner of final match

f<

• Can reduce the work when the winner value is changed
• Show the better performance than the winner tree

44
SNU

IDB Lab.Data Structures

Replay in 8-Player Min Winner Tree (1)

• Suppose we change f (key 2) with a new key 5

f

a f

a c f g

a b c d e f g h
4 6 5 9 8 2 3 75

45
SNU

IDB Lab.Data Structures

Replay in 8-Player Min Winner Tree (2)

• We should compare f' with e (=another child of parent of f')

• Need referencing twice (self � parent � sibling)

f

a f

a c f' g

a b c d e f' g h
4 6 5 9 8 3 75

46
SNU

IDB Lab.Data Structures

Replay in 8-Player Min Winner Tree (3)

• We should compare f' with g (=another child of parent of f')

• Need referencing twice (self � parent � sibling)

f

a g

a c g

a b c d g h
4 6 5 9 8 3 7

f'

e f'

5

47
SNU

IDB Lab.Data Structures

Replay in 8-Player Min Winner Tree (4)

• We should compare g with a (=another child of parent of g)

• Need referencing twice (self � parent � sibling)

f

a g

a c g

a b c d g h
4 6 5 9 8 3 7

f'

e f'

5

48
SNU

IDB Lab.Data Structures

Replay in 8-Player Min Loser Tree (1)

• Suppose we change winner f (key 2) with a new key 5

a

c g

b d e h

a b c d e f g h

f

4 6 5 9 8 2 3 7

� Special case: The key of winner is changed

5

49
SNU

IDB Lab.Data Structures

Replay in 8-Player Min Loser Tree (2)

• We simply compare f' with its parent because previous loser is stored
at parent node

• Need referencing only once (self � parent)

a

c g

b d e h

a b c d e f' g h
4 6 5 9 8 3 75

f

50
SNU

IDB Lab.Data Structures

Replay in 8-Player Min Loser Tree (3)

• We simply compare f' with its parent because previous loser is stored
at parent node

• Need referencing only once (self � parent)

a

c g

b d e h

a b c d e f' g h
4 6 5 9 8 3 75

f

f'

51
SNU

IDB Lab.Data Structures

Replay in 8-Player Min Loser Tree (4)

• We simply compare g with its parent because previous loser is stored
at parent node

• Need referencing only once (self � parent)

a

c f'

b d e h

a b c d e f' g h
4 6 5 9 8 3 75

f

52
SNU

IDB Lab.Data Structures

Replay in 8-Player Min Loser Tree (5)

• Winner changes to g

a

c f'

b d e h

a b c d e f' g h
4 6 5 9 8 3 75

f g

53
SNU

IDB Lab.Data Structures

Replay in 8-Player Min Loser Tree (6)

• Suppose we change d (key 9) with a new key 3
• We should compare d with its sibling(c), NOT parent(d)

a

c g

b d e h

a b c d e f g h

f

4 6 5 9 8 2 3 7

� The loser tree is not effective if the changed node
is not the previous winner

3

54
SNU

IDB Lab.Data Structures

Table of Contents

� Winner Trees

� Loser Trees

� Tournament Tree Applications

� Bin Packing Using First Fit (BPFF)

� Bin Packing Using Next Fit (BPNF)

55
SNU

IDB Lab.Data Structures

Bin Packing Problem

� Object i requires objectSize[i] units of capacity

� 0 < objectSize[i] ≤ binCapacity

� A feasible packing is an assignment of objects to bins so that
no bin’s capacity is exceeded

� Optimal packing: A feasible packing using the fewest number of bins

� First-Fit: find the first available bin using the winner tree

� Next-Fit: A variant of First-Fit searching the next bins

56
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (1)
� Initialize: Winner tree of 8 bins and binCapacity = 10

� If the players have the same value, the player with the small index is winner

� Suppose objects to be allocated are [8, 6, 5, 3]

� We want a feasible packing with a fewest number of bins

1

1 5

1 3 5 7

10 10 10 10 10 10 10 10

Tree[1]
Tree[2] Tree[3]

Tree[4] Tree[5] Tree[6] Tree[7]

57
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (2)

� Suppose objects to be allocated are [8, 6, 5, 3]

� objectSize[1] is 8

� Bin[tree[1]].unusedCapacity >= objectSize[1] � go to left

� 10 > 8

1

1 5

1 3 5 7

10 10 10 10 10 10 10 10

Tree[1]

Tree[2]

Tree[4]

58
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (3)
� Bin[tree[2]].unusedCapacity >= objectSize[1] � go to left

� 10 > 8

1

1 5

1 3 5 7

10 10 10 10 10 10 10 10

59
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (4)
� Bin[tree[4]].unusedCapacity >= objectSize[1] � go to left

� 10 > 810 > 810 > 810 > 8

1

1 5

1 3 5 7

10 10 10 10 10 10 10 10

Tree[4]

60
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (5)

� Object with size “8” is now in Bin[1]

� Need to update the winner tree

1

1 5

1 3 5 7

2 10 10 10 10 10 10 10

8

61
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (6)

1

1 5

2 3 5 7

2 10 10 10 10 10 10 10

� Replay: start rematch at Tree[4]

Tree[4]

8

62
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (7)

1

2 5

2 3 5 7

2 10 10 10 10 10 10 10

� Rematch at Tree[3]

Tree[3]

8

63
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (8)

2

2 5

2 3 5 7

2 10 10 10 10 10 10 10

Tree[1]

Tree[2]

Tree[4]

� Rematch at Tree[1]

8

64
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (9)

� Suppose objects to be allocated are [8, 6, 5, 3]

� objectSize[2] = 6

2

2 5

2 3 5 7

2 10 10 10 10 10 10 10

8

Tree[1]

65
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (10)

� Bin[tree[1]].unusedCapacity >= objectSize[2]

� 10 > 6

2

2 5

2 3 5 7

2 10 10 10 10 10 10 10

8

Tree[1]

66
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (11)

� Bin[tree[2]].unusedCapacity >= objectSize[2]

� 10 > 6

2

2 5

2 3 5 7

2 10 10 10 10 10 10 10

Tree[1]

Tree[2]

Tree[4]

8

67
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (12)

� Bin[tree[4]].unusedCapacity >= objectSize[2]

� 10 > 610 > 610 > 610 > 6

2

2 5

2 3 5 7

2 10 10 10 10 10 10 10

8

68
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (13)

� Object with size “6” is now in Bin[2]

2

2 5

2 3 5 7

2 4 10 10 10 10 10 10

8 6

69
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (14)

2

2 5

2 3 5 7

2 4 10 10 10 10 10 10

� Update the winner tree

8 6

70
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (15)

2

3 5

2 3 5 7

2 4 10 10 10 10 10 10

� Update the winner tree

8 6

71
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (16)

3

3 5

2 3 5 7

2 4 10 10 10 10 10 10

� Update the winner tree

8 6

72
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (17)

� Suppose objects to be allocated are [8, 6, 5, 3]

� objectSize[3] = 5

3

3 5

2 3 5 7

2 4 10 10 10 10 10 10

8 6

73
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (18)

� Bin[tree[1]].unusedCapacity >= objectSize[3]

� 10 > 5
3

3 5

2 3 5 7

2 4 10 10 10 10 10 10

8 6

74
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (19)

� Bin[tree[2]].unusedCapacity >= objectSize[3]

� 10 > 510 > 510 > 510 > 5
3

3 5

2 3 5 7

2 4 10 10 10 10 10 10

8 6

75
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (20)

� Bin[tree[4]].unusedCapacity < objectSize[3]

� 4 < 5

3

3 5

2 3 5 7

2 4 10 10 10 10 10 10

8 6

76
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (21)

� Go to sibling: Bin[tree[5]].unusedCapacity >= objectSize[3]

� 10 > 510 > 510 > 510 > 5

3

3 5

2 3 5 7

2 4 10 10 10 10 10 10

8 6

77
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (22)

� Object with size “5” is now in Bin[3]

3

3 5

2 3 5 7

2 4 5 10 10 10 10 10

8 6 5

78
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (23)

3

3 5

2 4 5 7

2 4 5 10 10 10 10 10

� Update the winner tree

8 6 5

79
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (24)

3

4 5

2 4 5 7

2 4 5 10 10 10 10 10

� Update the winner tree

8 6 5

80
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (25)

4

4 5

2 4 5 7

2 4 5 10 10 10 10 10

� Update the winner tree

8 6 5

81
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (26)

� Suppose objects to be allocated are [8, 6, 5, 3]

� objectSize[4] = 3
4

4 5

2 4 5 7

2 4 5 10 10 10 10 10

8 6 5

82
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (27)

� Bin[tree[1]].unusedCapacity >= objectSize[4]

� 10 > 3

4

4 5

2 4 5 7

2 4 5 10 10 10 10 10

Tree[1]

Tree[2]

8 6 5

83
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (28)

� Bin[tree[2]].unusedCapacity >= objectSize[4]

� 10 > 310 > 310 > 310 > 3

4

4 5

2 4 5 7

2 4 5 10 10 10 10 10

Tree[1]

Tree[2]

8 6 5

84
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (29)

� Bin[tree[4]].unusedCapacity >= objectSize[4]

� 4 > 3

4

4 5

2 4 5 7

2 4 5 10 10 10 10 10

Tree[1]

Tree[2]

Tree[4]

8 6 5

85
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (30)

� Object with size “3” is now in bin[2]

4

4 5

2 4 5 7

2 1 5 10 10 10 10 10

8 6, 3 5

86
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (31)

4

4 5

1 4 5 7

2 1 5 10 10 10 10 10

� Update the winner tree

8 6, 3 5

87
SNU

IDB Lab.Data Structures

First Fit and Winner Trees (32)

4

4 5

1 4 5 7

2 1 5 10 10 10 10 10

� Update the winner tree

8 6, 3 5

88
SNU

IDB Lab.Data Structures

First-Fit and Winner Trees (33)

4

4 5

1 4 5 7

2 1 5 10 10 10 10 10

� Update the winner tree

8 6, 3 5

89
SNU

IDB Lab.Data Structures

The method firstFitPack() (1)
public static void firstFitPack(int [] objectSize, int binCapacity) {

int n = objectSize.length - 1; // number of objects
Bin [] bin = new Bin [n + 1]; // bins
ExtendedCWTree winTree = new ExtendedCWTree();
for (int i = 1; i <= n; i++) // initialize n bins and winner tree

bin[i] = new Bin(binCapacity); // initial unused capacity
winTree.initialize(bin);
// put objects in bins
for (int i = 1; i <= n; i++) { // put object i into a bin
// find first bin with enough capacity

int child = 2; // start search at left child of root
while (child < n) {
int winner = winTree.getWinner(child);
if (bin[winner].unusedCapacity < objectSize[i])

child++ ; // first bin is in right subtree
child *= 2; // move to left child }

90
SNU

IDB Lab.Data Structures

The method firstFitPack() (2)
int binToUse; // will be set to bin to use
child /= 2; // undo last left-child move
if (child < n) { // at a tree node
binToUse = winTree.getWinner(child);
// if binToUse is right child, need to check bin binToUse-1.
// No harm done by checking bin binToUse-1 even if binToUse is left child.
if (binToUse > 1 && bin[binToUse - 1].unusedCapacity >= objectSize[i])

binToUse--;
}
else binToUse = winTree.getWinner(child / 2); // arises when n is odd
System.out.println("Pack object " + i + " in bin " + binToUse);
bin[binToUse].unusedCapacity -= objectSize[i];
winTree.rePlay(binToUse);

}
}
** O(nlogn) time using a winner tree

91
SNU

IDB Lab.Data Structures

Table of Contents

� Winner Trees

� Loser Trees

� Tournament Tree Applications

� Bin Packing Using First Fit (BPFF)

� Bin Packing Using Next Fit (BPNF)

92
SNU

IDB Lab.Data Structures

Next-Fit
� For the new object, we determine the next nonempty binthat can accommodate the object by

polling the bins in a round robin fashion
� We want a feasible packing with a fewest number of bins

� 3 bins of size 7 and six objects [3,5,3,4,2,1]
� 3 goes to bin[1]

� 5 goes to bin[2] // the candidate is bin[2] & check the left side; bin[2] is OK.

� 3 goes to bin[1] // the candidate is bin[3] & check the left side; bin[1] is better

� 4 goes to bin[3] // the candidate is bin[3] & check the left side; bin[3] is OK

� 2 goes to bin[2] // first check bin[1], but not qualified; bin[2] is qualified

� 1 goes to bin[3] // frist check bin[3], but not qualified; bin[3] is qualified

� Idea (O(n) for one assignment)
� Search for the next bin of the last used bin which can accommodate the new object

� If the candidate bin is not empty, use it

� Otherwise search for the left-most bin which can accommodate the new object

93
SNU

IDB Lab.Data Structures

Next-Fit with Winner Tree

� Step 1 (Figure 14.8 in textbook)
� Search the suitable bin with help of winner tree
� If the found bin is empty, go to step 2
� O(log(n))

� Step 2 (actually First-Fit)
� Search the left-most suitable bin with help of winner tree
� O(log(n))

94
SNU

IDB Lab.Data Structures

95
SNU

IDB Lab.Data Structures

Next-Fit with Winner Tree (1)
� Suppose the size of a new object to be allocated is 7 &LastUsedBin is bin[1]

� Start from bin[2] & bin[3]; go to parent of bin[2] (which is tree[4])

� go to tree[2] & try tree[3];

� The unusedCapacity of tree[3] is 10, try to find the first bin of tree[3] which
can accommodate “7”

7

1 7

1 4 5 7

7 4 5 6 8 3 10 10

Tree[1]

Tree[2] Tree[3]

Tree[4] Tree[5] Tree[6] Tree[7]

96
SNU

IDB Lab.Data Structures

Next-Fit and Winner Tree (2)
� Suppose the size of a new object to be allocated is 9 &LastUsedBin is bin[3]

� Start from bin[4] & bin[5]; go to the parent of bin[4] (which is tree[5])
� Go to tree[2] and try tree[3]
� The unusedCapacity of tree[3] is 10, try to find the first bin of tree[3] which

can accommodate “9” � bin[7] is the candidate, but empty
� We check the left-most bin which can accommodate “9” � No such bin �

bin[7] is the bin to use

7

1 7

1 4 5 7

7 4 5 6 8 3 10 10

Tree[1]

Tree[2] Tree[3]

Tree[4]
Tree[5]

Tree[6]

Tree[7]

97
SNU

IDB Lab.Data Structures

Summary

� A tournament tree is a complete binary tree that is most
efficiently stored by using the array-based binary tree

� Study two varieties of tournament trees

� Winner tree

� Loser tree

� Tournament Tree Application

� Bin Packing Using First Fit (BPFF)

� Bin Packing Using Next Fit (BPNF)

