
1

Ch18. The Greedy Methods

2

BIRD’S-EYE VIEW

� Enter the world of algorithm-design methods
� In the remainder of this book, we study the methods for the

design of good algorithms
� Basic algorithm methods (Ch18~22)

� Greedy method
� Divide and conquer
� Dynamic Programming
� Backtracking
� Branch and bound

� Other classes of algorithms
� Amortized algorithm method
� Genetic algorithm method
� Parallel algorithm method

3

Table of Contents

� Optimization problems
� The Greedy method
� Applications

� Container Loading
� 0/1 knapsack problem
� Topological sorting
� Bipartite cover
� Single-source shortest paths
� Minimum-cost spanning trees

4

Optimization Problem

� Many problems in chapter 18—22 are optimization problems

� Optimization problem
� A problem in which the optimization functionis to be optimized (usually

minimized or maximized) subject to some constraints

� A feasible solution
� a solution that satisfies the constraints

� An optimal solution
� a feasible solution for which the optimization function has the best possible

value
� In general, finding an optimal solution iscomputationally hard

5

Examples of Optimization Problem
� Machine Scheduling: Find a schedule that minimizes the finish time

• optimization function: finish time
• constraints

� each job is scheduled continuously on a single machine for its processing time
� no machine processes more than one job at a time

� Bin Packing: Pack items into bins using the fewest number of bins
• optimization function: number of bins
• constraints

� each item is packed into a single bin
� the capacity of no bin is exceeded

� Minimum Cost Spanning Tree: Find a spanning tree that has minimum cost
• optimization function: sum of edge costs
• constraints

� must select n-1 edges of the given n vertex graph
� the selected edges must form a tree

6

Various Attack Strategies for Optimization

� Greedy method

� Divide and Conquer

� Dynamic Programming

� Backtracking

� Branch and Bound

7

Table of Contents

� Optimization problems
� The Greedy method
� Applications

� Container Loading
� 0/1 knapsack problem
� Topological sorting
� Bipartite cover
� Single-source shortest paths
� Minimum-cost spanning trees

8

The Greedy Method

� Solve a problem by making a sequence of decisions

� Decisions are made one by onein some order

� Each decision is made using a greedy criterion
� At each stage we make a decision that appears to be the best at the time

� A decision, once made, is (usually) not changed later

9

Machine Scheduling (1)

� Assign tasks to machines
� Given n tasks & an infinite supply of machines
� A feasible assignment is that no machine is assigned two overlapping tasks
� An optimal assignment is a feasible assignment that utilizes the fewest # of machines

� Suppose we have the following tasks

� A feasible assignment is to use 7 machines, but it is not an optimal assignment
� because other assignments can use fewer machines
� e.g. we can assign tasks a, b, and d to the same machine, reducing the # of

utilized machines to 5

10

Machine Scheduling (2)
� A greedy way to obtain an optimal task assignment

� Assign the tasks in stages
� one task per stage in nondecreasing order of the task start times
� E.g. task at the starting time 0, task at the starting time 1, etc

� For machine selection
� If an old machine becomes available by the start time of the task to be

assigned, assign the task to this machine
� If not, assign it to a new machine

� The tasks in the (a) can be ordered by start times: a, f, b, c, g, e, d
� Then, only 3 machines are needed

11

Table of Contents

� Optimization problems
� The Greedy method
� Applications

� Container Loading
� 0/1 knapsack problem
� Topological sorting
� Bipartite cover
� Single-source shortest paths
� Minimum-cost spanning trees

12

The Original Container-Loading Problem

� Problem Definition
� Loading a large ship with containers
� Different containers have different sizes
� Different containers have different weights

� Goal � To load the ship with the maximum # of containers
� Complexity Analysis

� Container-loading problem is a kind of bin packing problem
� The bin packing problem is known to be a combinational NP-hard problem

� Solution
� Since it is NP-hard, the most efficient known algorithms use heuristics to

accomplish good results
� Which may not be the optimal solution

� Here, we use greedy heuristicsand relax the original problem
� Which guarantees the optimal solution under a special condition

13

“Relaxed” Container Loading (1)

� Problem: Load as many containers as possible without sinking the
ship!
� The ship has the capacity c
� There arem containers available for loading
� The weight of container i is wi

� Each weight is a positive number

� The volume of container is fixed
� Constraint: Sum of container weights < c

14

“Relaxed” Container Loading (2)

� Greedy Solutions
� Load containers in increasing order of weight until we get to a

container that doesn’t fit
� Does this greedy algorithm always load the maximum # of

containers?
� Yes, This is optimal solution!
� May be proved by using a proof by induction (see text)

15

Table of Contents

� Optimization problems
� The Greedy method
� Applications

� Container Loading
� 0/1 knapsack problem
� Topological sorting
� Bipartite cover
� Single-source shortest paths
� Minimum-cost spanning trees

16

The Original Knapsack Problem (1)

� Problem Definition
� Want to carry essential items in one bag

� Given a set of items, each has
� A cost (i.e., 12kg)

� A value (i.e., 4$)

� Goal
� To determine the # of each item to include in a collection so that

� The total cost is less than some given cost

� And the total value is as large as possible

17

The Original Knapsack Problem (2)

� Three Types
� 0/1 Knapsack Problem

� restricts the number of each kind of item to zero or one
� Bounded Knapsack Problem

� restricts the number of each item to a specific value
� Unbounded Knapsack Problem

� places no bounds on the number of each item

� Complexity Analysis
� The general knapsack problem is known to be NP-hard

� No polynomial-time algorithm is known for this problem

� Here, we use greedy heuristics which cannot guarantee the optimal solution

18

0/1 Knapsack Problem (1)

� Problem: Hiker wishes to take n items on a trip
� The weight of item i is wi & items are all different (0/1 Knapsack Problem)

� The items are to be carried in a knapsack whose weight capacity is c

� When sum of item weights ≤ c, all n items can be carried in the
knapsack

� When sum of item weights > c, some items must be left behind

� Which items should be taken/left?

19

� Hiker assigns a profit pi to item i
� All weights and profits are positive numbers

� Hiker wants to select a subset of the n items to take
� The weight of the subset should not exceed the capacity of the knapsack

(constraint)
� Cannot select a fraction of an item (constraint)
� The profit of the subset is the sum of the profits of the selected items

(optimization function)
� The profit of the selected subset should be maximum (optimization criterion)

� Let xi = 1 when item i is selected and xi = 0 when item i is not selected
� Because this is a 0/1 Knapsack Problem, you can choose the item or not

0/1 Knapsack Problem (2)

i = 1

n
pi ximaximize

i = 1

n
wi xi ≤ csubject to

20

Greedy Attempts for 0/1 Knapsack (1)

� Some heuristics can be applied
� Greedy attempt on capacity utilization

� Greedy criterion: select items in increasing order of weight
� When n = 2, c = 7, w = [3, 6], p = [2, 10],

if only item 1 is selected � profit of selection is 2 � not best selection!

� Greedy attempt on profit earned
� Greedy criterion: select items in decreasing order of profit
� When n = 3, c = 7, w = [7, 3, 2], p = [10, 8, 6],

if only item 1 is selected � profit of selection is 10 � not best selection!

21

Greedy Attempts for 0/1 Knapsack (2)

� Greedy attempt on profit density(p/w)
� Greedy criterion: select items in decreasing order of profit density

� When n = 2, c = 7, w = [1, 7], p = [10, 20],
if only item 1 is selected � profit of selection is 10 � not best selection!

� Another greedy attempt on profit density(p/w)
� Works when selecting a fractionof an item is permitted

� Greedy criterion: select items in decreasing order of profit density, and if
next item doesn’t fit, take a fraction so as to fill knapsack

� When n = 2, c = 7, w = [1, 7], p = [10, 20],
item 1 and6/7 of item2 are selected

� But this solution is not allowed in 0/1 Knapsack

22

Table of Contents

� Optimization problems
� The Greedy method
� Applications

� Container Loading
� 0/1 knapsack problem
� Topological sorting
� Bipartite cover
� Single-source shortest paths
� Minimum-cost spanning trees

23

Topological Sorting
� A precedence relationexists between certain pairs of tasks

� The set of tasks together with the precedence may be represented as a digraph
� A task digraph or an activity on vertex (AOV) network

� Topological sorting constructs a topological order from a task digraph

� We tarverse the graph using the greedy criterion:
� Select any one among vertices having no incoming edge
� Put the node into the solution & Remove the node and its outgoing edges from the graph

� Repeat the above steps until no nodes remain

24

Pseudo Code for Topological Sorting

Greedy Criterion

� Optimal Solution
� The greedy method can produce

the optimal solution which has
linear running time

� Complexity Analysis
� Looking at the while loop in Fig

18.5, it depends on the data
structure

� O(n^2) if we use an adjacency-
matrix representation

� O(n+e) if we use a linked-
adjacency-list representation

25

Topological Sorting Example

� Results of Topological Sorting

� Possible topological orders
� 1 � 2 �3 � 4 � 5 � 6

� 1 � 3 �2 � 4 � 5 � 6

� 2 � 1 �5 � 3 � 4 � 6

� ….

� Impossible topological orders
� 1 � 4 � 2 � 3 � 5 � 6

� Because (for example) task 4 precedes task 3 in this sequence

26

Table of Contents

� Optimization problems
� The Greedy method
� Applications

� Container Loading
� 0/1 knapsack problem
� Topological sorting
� Bipartite cover
� Single-source shortest paths
� Minimum-cost spanning trees

27

The Original Set Cover Problem

� Problem Definition
� Given several sets as input

� The sets may have some elements in common

� Goal
� To select a minimum number of these sets so that the sets you have picked

contain all the elements that are contained in any of the sets in the input

� Example: A (a1, a3), B(a1, a4, a5), C(a2, a5), D(a2, a4, a5), E(a3, a5)

� Minimum cover: A (a1, a3), D(a2, a4, a5)

� Complexity Analysis
� The set cover problem is known to be NP-hard

� Bipartite-cover problemis a kind of the set cover problem

28

Bipartite Graph

� A bipartite graph
� an undirected graph in which the n vertices may be partitioned into two sets

A and B so that no edge in the graph connects two verticesthat are in the
same set

� A subset A’ of the node set A is said to coverthe node set B (or
simply, A’ is a cover) iff every vertex in B is connected to at least
one vertex of A’

1 2 3 4

5 6 7 8 9 10

Set A

Set B

29

Bipartite Cover Problem

� Find a minimum coverin a bipartite graph!

� Ex: 17-vertex bipartite graph
� A = {1, 2, 3, 16, 17} B = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

� The subset A’ = {1, 2, 3, 17} covers the set B (size = 4)

� The subset A’ = {1, 16, 17} also covers the set B (size = 3)

� Therefore, A’ = {1, 16, 17} is a minimum cover of B

30

A Greedy Heuristic for Bipartite Cover (1)

� Bipartite-cover problems are NP-hard

� A greedy method to develop a fast heuristic
� Construct the cover A’ in stages

� Select a vertex of A using the greedy criterion:

� Select a vertex of Athat covers the largest # of uncovered vertices of B

� Pseudo Code for Bipartite Cover

Greedy

Criterion

31

A Greedy Heuristic for Bipartite Cover (2)

� Initial condition
� V1 & V16 covers six
� V3 covers five
� V2 & V17 covers four

� 1st stage: Among (V1, V16), suppose we first add V16 to A’,
� it covers {V5, V6, V8, V12, V14, V15} & doesn’t cover {V4, V7, V9, V10, V11, V13}

� 2nd stage: Among remainders (V1, V3, V2, V17)
� choose V1 because it covers four of theses uncovered vertices ({V4, V7, V9, V13})

� V1 is added to A’ and {V10, V11} remain uncovered
� 3rd stage: Among remainders (V3, V2, and V17)

� V17 covers two of theses uncovered vertices, so we add V17 to A’

� Now no uncovered vertices remain � A’ = {V1, V16, V17}

32

A Greedy Heuristic for Bipartite Cover (3)

� But, this greedy heuristic cannot guarantee the optimal solution
� If we use the greedy heuristic in the below example,

� V1 will be added to A’

� Then V2, V3, and V4 will be added to A’

� Then A’ = {V1, V2, V3, V4}

� But the optimal solution is {V2, V3, V4}

1 2 3 4

5 6 7 8 9 10

33

Table of Contents

� Optimization problems
� The Greedy method
� Applications

� Container Loading
� 0/1 knapsack problem
� Topological sorting
� Bipartite cover
� Single-source shortest paths
� Minimum-cost spanning trees

34

The Shortest Path Problem

� Path length is sum of weights of edges on pathin directed weighted graph

� The vertex at which the path begins is the source vertex

� The vertex at which the path ends is the destination vertex

� Goal

� To find a path between two vertices such that the sum of the weights of its
constituent edges is minimized

� Complexity Analysis

� The shortest path problem can be computed in polynomial time

� But, some varied versions, such as Traveling Salesman Problem, are known to
be NP-complete

35

Types of The Shortest Path Problem

� Three types

� Single-source single-destination shortest path

� Single-source all-destinations shortest path

� All pairs (every vertex is a source and destination) shortest path

36

Single-Source Single-Destination Shorted Path

� Possible greedy algorithm

� Leave the source vertex using the cheapest edge

� Leave the current vertex using the cheapest edgeto the next vertex

� Continue until destination is reached

� Try Shortest 1 to 7 Path by this Greedy Algorithm

� the algorithm does not guarantee the optimal solution

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4

4

5 3

1

37

� Problem: Generating the shortest paths in increasing order of length from one
source to multiple destinations

� Greedy Solution

� Given n vertices, First shortest path is from the source vertex to itself

� The length of this path is 0

� Generate up ton paths (including path from source to itself) by the greedy
criteria

� from the vertices to which a shortest path has not been generated, select
one that results inthe least path length

� Construct up to n paths in order of increasing length

Greedy Single-Source All-Destinations Shortest Path (1)

38

Greedy Single-Source All-Destinations Shortest Path (2)

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1Path Length
1 0
1 3 2

1 3 55

1 2 6

1 3 95 4

1 3 106

1 3 116 7

� Each path (other than first) is a one edge
extension of a previous path

� Next shortest path is the shortest one
edge extension of an already generated
shortest path

Increasing
order

이전에이미생성된 shortest path들중에서 one edge
extension 했을때 length가가장작게증가하는 edge
를선택� increasing order 보장할수있음!

39

� Data Structures
� Let d(i) (distanceFromSource(i)) be the length of a shortest one edge

extension of an already generated shortest path, the one edge extension ends
at vertexi

� The next shortest path is to an as yet unreached vertex for which the d()
value is least

� Let p(i) (predecessor(i)) be the vertex just before vertexi on the shortest one
edge extension to i

� Complexity Analysis: O(n^2)
� Any shortest path algorithm must examine each edge in the graph at least

once, since any of the edges can be in a shortest path

� So the minimum possible time for such an algorithm would be O(e)

� Since cost-adjacency matrices were used to represent the digraph, it takes
O(n^2)

Greedy Single-Source All-Destinations Shortest Path (3)

Greedy Single Source All Destinations: Example (1)

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

0
-

1

2

3

4 7

6
1

2
1

16
1

-
-

-
-

14
1

2

Greedy Single Source All Destinations : Example (2)

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

1

0
-

6
1

2
1

16
1

-
-

-
-

14
1

1 3

2

5

6

5
3

10
3

5

Greedy Single Source All Destinations : Example (3)

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

1

0
-

6
1

2
1

16
1

-
-

-
-

14
1

1 3

5
3

10
3

1 3 5

4 7

9
5

6

Greedy Single Source All Destinations : Example (4)

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

1

0
-

6
1

2
1

9
5

-
-

-
-

14
1

1 3

5
3

10
3

1 3 5

1 2

4

9

Greedy Single Source All Destinations : Example (5)

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

1

0
-

6
1

2
1

9
5

-
-

-
-

14
1

1 3

5
3 3

1 3 5

1 2

1 3 5 4

7

12
4

10

Greedy Single Source All Destinations : Example (6)

1

2

3

4

5

6

7

2

6
16

7

8

10

3

14

4
4

5 3

1

[1] [2] [3] [4] [5] [6] [7]
d
p

0
-

6
1

2
1

9
5

-
-

-
-

14
1

5
3

10
3

12
4

1 3 6

7

11
6

46

Table of Contents

� Optimization problems
� The Greedy method
� Applications

� Container Loading
� 0/1 knapsack problem
� Topological sorting
� Bipartite cover
� Single-source shortest paths
� Minimum-cost spanning trees

47

Minimum-Cost Spanning Tree

� Spanning tree for weighted connected undirected graph
� Cost of spanning tree is sum of edge costs

� Goal: Find a spanning tree that has minimum cost!
� Sometimes called, minimum spanning tree

� Complexity Analysis
The minimum spanning tree can be obtained in polynomial time
� Kruskal’s algorithm
� Prim’s algorithm
� Sollin’s algorithm

48

Kruskal’s Algorithm(1)

� Kruskal’s Algorithm selects the n-1 edges one at a timeusing the greedy criterion:

� From the remaining edges,select a least-cost edge that does not result in a
cycle when added to the set of already selected edges

� A collection of edges that contains a cycle cannot be completed into a
spanning tree

Figure 18.11 Constructing a minimun-cost spanning tree

49

Kruskal’s Algorithm(2)

O(n+e*log(e)) where n nodes & e edges

50

Prim’s Algorithm

� Prim’s Algorithm constructs the minimum-cost spanning tree by selecting edges one
at a time like Kruskal’s

� The greedy criterion:
� From the remaining edges,select a least-cost edge whose addition to the set of selected

edges forms a tree

� Consequently, at each stage the set of selected edges forms a tree

O(n^2) when
n nodes

51

Sollin’s Algorithm

� Sollin’s Algorithm selects several edges at each stage
� select one edge for each tree in the forest so that trees are connected and form a

minimum spanning tree
� Greedy criterion: This selected edge has a minimum-cost edge between two trees

� At the initial stage (a), vertices 1 to 7 are scanned, and each choose the closest vertex
from itself � (1,6), (2,7), (3,4), (4,3), (5,4), (6,1), (7,2)

� Eliminate the duplicates to get (1,6), (2,7), (3,4), (5,4)

� At the stage (b), consider the 3 trees in stage (a) as 3 single vertices (t1, t2, t3)

� (t1, t3), (t2, t3), (t3, t2) � (t1, t3), (t2, t3) by eliminating duplicates

O(e*logn)
with n nodes and e edges

52

Table of Contents

� Optimization problems
� The Greedy method
� Applications

� Container Loading
� 0/1 knapsack problem
� Topological sorting
� Bipartite cover
� Single-source shortest paths
� Minimum-cost spanning trees

53

BIRD’S-EYE VIEW

� Enter the world of algorithm-design methods
� In the remainder of this book, we study the methods for the

design of good algorithms
� Basic algorithm methods (Ch18~22)

� Greedy method
� Divide and conquer
� Dynamic Programming
� Backtracking
� Branch and bound

� Other classes of algorithms
� Amortized algorithm method
� Genetic algorithm method
� Parallel algorithm method

