Ch18. The Greedy Methods

1

BIRD'S-EYE VIEW

- Enter the world of algorithm-design methods
- In the remainder of this book, we study the methods for the design of good algorithms
- Basic algorithm methods (Ch18~22)
 - Greedy method
 - Divide and conquer
 - Dynamic Programming
 - Backtracking
 - Branch and bound
- Other classes of algorithms
 - Amortized algorithm method
 - Genetic algorithm method
 - Parallel algorithm method

Table of Contents

- Optimization problems
- The Greedy method
- Applications
 - Container Loading
 - 0/1 knapsack problem
 - Topological sorting
 - Bipartite cover
 - Single-source shortest paths
 - Minimum-cost spanning trees

Optimization Problem

- Many problems in chapter 18—22 are optimization problems
- Optimization problem
 - A problem in which the optimization function is to be optimized (usually minimized or maximized) subject to some constraints
- A feasible solution
 - a solution that satisfies the constraints
- An optimal solution
 - a feasible solution for which the optimization function has the best possible value
 - In general, finding an optimal solution is computationally hard

Examples of Optimization Problem

- Machine Scheduling: Find a schedule that minimizes the finish time
 - optimization function: finish time
 - constraints
 - each job is scheduled continuously on a single machine for its processing time
 - no machine processes more than one job at a time
- **Bin Packing:** Pack items into bins using the fewest number of bins
 - optimization function: number of bins
 - constraints
 - each item is packed into a single bin
 - the capacity of no bin is exceeded
- Minimum Cost Spanning Tree: Find a spanning tree that has minimum cost
 - optimization function: sum of edge costs
 - constraints
 - must select n-1 edges of the given n vertex graph
 - the selected edges must form a tree

Various Attack Strategies for Optimization

- Greedy method
- Divide and Conquer
- Dynamic Programming
- Backtracking
- Branch and Bound

Table of Contents

- Optimization problems
- <u>The Greedy method</u>
- Applications
 - Container Loading
 - 0/1 knapsack problem
 - Topological sorting
 - Bipartite cover
 - Single-source shortest paths
 - Minimum-cost spanning trees

- Solve a problem by making a sequence of decisions
- Decisions are made one by one in some order
- Each decision is made using a greedy criterion
 - At each stage we make a decision that appears to be the best at the time
- A decision, once made, is (usually) not changed later

Machine Scheduling (1)

- Assign tasks to machines
 - Given n tasks & an infinite supply of machines
 - A feasible assignment is that no machine is assigned two overlapping tasks
 - An optimal assignment is a feasible assignment that utilizes the fewest # of machines
- Suppose we have the following tasks

task	a	b	с	d	e	f	g
start	0	3	4	9	7	1	6
finish	2	7	7	11	10	5	8

(a) Seven tasks

- A feasible assignment is to use 7 machines, but it is not an optimal assignment
 - because other assignments can use fewer machines
 - e.g. we can assign tasks a, b, and d to the same machine, reducing the # of utilized machines to 5

Machine Scheduling (2)

- A greedy way to obtain an optimal task assignment
 - Assign the tasks in stages
 - one task per stage in nondecreasing order of the task start times
 - E.g. task at the starting time 0, task at the starting time 1, etc
 - For machine selection
 - If an old machine becomes available by the start time of the task to be assigned, assign the task to this machine
 - If not, assign it to a new machine
- The tasks in the (a) can be ordered by start times: a, f, b, c, g, e, d
 - Then, only 3 machines are needed

Table of Contents

- Optimization problems
- The Greedy method
- Applications
 - Container Loading
 - 0/1 knapsack problem
 - Topological sorting
 - Bipartite cover
 - Single-source shortest paths
 - Minimum-cost spanning trees

The Original Container-Loading Problem

- Problem Definition
 - Loading a large ship with containers
 - Different containers have different sizes
 - Different containers have different weights
- Goal \rightarrow To load the ship with the maximum # of containers
- Complexity Analysis
 - Container-loading problem is a kind of bin packing problem
 - The bin packing problem is known to be a combinational NP-hard problem
- Solution
 - Since it is NP-hard, the most efficient known algorithms use heuristics to accomplish good results
 - Which may not be the optimal solution
 - Here, we use greedy heuristics and relax the original problem

Which guarantees the optimal solution under a special condition

"Relaxed" Container Loading (1)

- Problem: Load as many containers as possible without sinking the ship!
 - The ship has the capacity c
 - There are m containers available for loading
 - The weight of container i is w_i
 - Each weight is a positive number
 - The volume of container is fixed
- Constraint: Sum of container weights < c

"Relaxed" Container Loading (2)

- Greedy Solutions
 - Load containers in increasing order of weight until we get to a container that doesn't fit
 - Does this greedy algorithm always load the maximum # of containers?
 - Yes, This is optimal solution!
 - May be proved by using a proof by induction (see text)

Table of Contents

- Optimization problems
- The Greedy method
- Applications
 - Container Loading
 - 0/1 knapsack problem
 - Topological sorting
 - Bipartite cover
 - Single-source shortest paths
 - Minimum-cost spanning trees

The Original Knapsack Problem (1)

- Problem Definition
 - Want to carry essential items in one bag
 - Given a set of items, each has
 - A cost (i.e., 12kg)
 - A value (i.e., 4\$)
- Goal

- The total cost is less than some given cost
- And the total value is as large as possible

The Original Knapsack Problem (2)

- Three Types
 - 0/1 Knapsack Problem
 - restricts the number of each kind of item to zero or one
 - Bounded Knapsack Problem
 - restricts the number of each item to a specific value
 - Unbounded Knapsack Problem
 - places no bounds on the number of each item
- Complexity Analysis
 - The general knapsack problem is known to be NP-hard
 - No polynomial-time algorithm is known for this problem
 - Here, we use greedy heuristics which cannot guarantee the optimal solution

0/1 Knapsack Problem (1)

- Problem: Hiker wishes to take **n** items on a trip
 - The weight of item i is $w_i \&$ items are all different (0/1 Knapsack Problem)
 - The items are to be carried in a knapsack whose weight capacity is c
 - When sum of item weights ≤ c, all n items can be carried in the knapsack
 - When sum of item weights > c, some items must be left behind
- Which items should be taken/left?

0/1 Knapsack Problem (2)

- Hiker assigns a profit p_i to item i
 - All weights and profits are positive numbers
- Hiker wants to select a subset of the **n** items to take
 - The weight of the subset should not exceed the capacity of the knapsack (constraint)
 - Cannot select a fraction of an item (constraint)
 - The profit of the subset is the sum of the profits of the selected items (optimization function)
 - The profit of the selected subset should be maximum (optimization criterion)

19

- Let $x_i = 1$ when item i is selected and $x_i = 0$ when item i is not selected
 - Because this is a 0/1 Knapsack Problem, you can choose the item or not

maximize
$$\sum_{i=1}^{n} p_i x_i$$
 subject to $\sum_{i=1}^{n} w_i x_i \le c$

Greedy Attempts for 0/1 Knapsack (1)

Some heuristics can be applied

- Greedy attempt on capacity utilization
 - Greedy criterion: select items in increasing order of weight
 - When n = 2, c = 7, w = [3, 6], p = [2, 10], if only item 1 is selected \rightarrow profit of selection is 2 \rightarrow not best selection!
- Greedy attempt on profit earned
 - Greedy criterion: select items in decreasing order of profit
 - When n = 3, c = 7, w = [7, 3, 2], p = [10, 8, 6], if only item 1 is selected \rightarrow profit of selection is $10 \rightarrow$ not best selection!

Greedy Attempts for 0/1 Knapsack (2)

- Greedy attempt on profit density (p/w)
 - Greedy criterion: select items in decreasing order of profit density
 - When n = 2, c = 7, w = [1, 7], p = [10, 20],
 if only item 1 is selected → profit of selection is 10 → not best selection!
- Another greedy attempt on profit density (p/w)
 - Works when selecting a fraction of an item is permitted
 - Greedy criterion: select items in decreasing order of profit density, and if next item doesn't fit, take a fraction so as to fill knapsack
 - When n = 2, c = 7, w = [1, 7], p = [10, 20], item 1 and 6/7 of item 2 are selected
 - But this solution is not allowed in 0/1 Knapsack

Table of Contents

- Optimization problems
- The Greedy method
- Applications
 - Container Loading
 - 0/1 knapsack problem
 - Topological sorting
 - Bipartite cover
 - Single-source shortest paths
 - Minimum-cost spanning trees

Topological Sorting

- A precedence relation exists between certain pairs of tasks
- The set of tasks together with the precedence may be represented as a digraph
 - A task digraph or an activity on vertex (AOV) network
- Topological sorting constructs a topological order from a task digraph
- We tarverse the graph using the greedy criterion:
 - Select any one among vertices having no incoming edge
 - Put the node into the solution & Remove the node and its outgoing edges from the graph
 - Repeat the above steps until no nodes remain

Pseudo Code for Topological Sorting

Let n be the number of vertices in the digraph. Let theOrder be an empty sequence. while (true) { Creedy Criterion Let w be any vertex that has no incoming edge (v,w) such that v is not in theOrder. if there is no such w, break. Add w to the end of theOrder. } if (theOrder has fewer than n vertices) the algorithm fails. else theOrder is a topological sequence. Figure 18.5 Topological sorting

Optimal Solution

 The greedy method can produce the optimal solution which has linear running time

Complexity Analysis

- Looking at the while loop in Fig 18.5, it depends on the data structure
 - O(n^2) if we use an adjacencymatrix representation
 - O(n+e) if we use a linkedadjacency-list representation

Topological Sorting Example

- Results of Topological Sorting
 - Possible topological orders
 - $\bullet 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6$
 - $\bullet 1 \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 6$
 - $2 \rightarrow 1 \rightarrow 5 \rightarrow 3 \rightarrow 4 \rightarrow 6$
 - ••••
 - Impossible topological orders
 - $1 \rightarrow 4 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 6$
 - Because (for example) task 4 precedes task 3 in this sequence

Figure 18.4 A task digraph

Table of Contents

- Optimization problems
- The Greedy method
- Applications
 - Container Loading
 - 0/1 knapsack problem
 - Topological sorting
 - Bipartite cover
 - Single-source shortest paths
 - Minimum-cost spanning trees

The Original Set Cover Problem

- Problem Definition
 - Given several sets as input
 - The sets may have some elements in common
- Goal
 - To select a minimum number of these sets so that the sets you have picked contain all the elements that are contained in any of the sets in the input
- Example: A (a1, a3), B(a1, a4, a5), C(a2, a5), D(a2, a4, a5), E(a3, a5)
 - Minimum cover: A (a1, a3), D(a2, a4, a5)
- Complexity Analysis
 - The set cover problem is known to be NP-hard
- Bipartite-cover problem is a kind of the set cover problem

Bipartite Graph

- A bipartite graph
 - an undirected graph in which the n vertices may be partitioned into two sets
 A and B so that no edge in the graph connects two vertices that are in the same set
- A subset A' of the node set A is said to cover the node set B (or simply, A' is a cover) iff every vertex in B is connected to at least one vertex of A'

Bipartite Cover Problem

- Find a minimum cover in a bipartite graph!
- Ex: 17-vertex bipartite graph
 - $A = \{1, 2, 3, 16, 17\}$ $B = \{4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$
 - The subset $A' = \{1, 2, 3, 17\}$ covers the set B (size = 4)
 - The subset $A' = \{1, 16, 17\}$ also covers the set B (size = 3)
 - Therefore, $A' = \{1, 16, 17\}$ is a minimum cover of B

Figure 18.6 Figure for Example 18.10

A Greedy Heuristic for Bipartite Cover (1)

- Bipartite-cover problems are NP-hard
- A greedy method to develop a fast heuristic
 - Construct the cover *A*' in stages
 - Select a vertex of A using the greedy criterion:
 - Select a vertex of A that covers the largest # of uncovered vertices of B
- Pseudo Code for Bipartite Cover

A Greedy Heuristic for Bipartite Cover (2)

- Initial condition
 - V1 & V16 covers six
 - V3 covers five
 - V2 & V17 covers four

Figure 18.6 Figure for Example 18.10

- 1st stage: Among (V1, V16), suppose we first add V16 to A',
 - it covers {V5, V6, V8, V12, V14, V15} & doesn't cover {V4, V7, V9, V10, V11, V13}
- 2nd stage: Among remainders (V1, V3, V2, V17)
 - choose V1 because it covers four of theses uncovered vertices ({V4, V7, V9, V13})
 - V1 is added to A' and {V10, V11} remain uncovered
- 3rd stage: Among remainders (V3, V2, and V17)
 - V17 covers two of theses uncovered vertices, so we add V17 to A'
- Now no uncovered vertices remain \rightarrow A' = {V1, V16, V17}

A Greedy Heuristic for Bipartite Cover (3)

- But, this greedy heuristic cannot guarantee the optimal solution
 - If we use the greedy heuristic in the below example,
 - V1 will be added to A'
 - Then V2, V3, and V4 will be added to A'
 - Then $A' = \{V1, V2, V3, V4\}$
 - But the optimal solution is {V2, V3, V4}

Table of Contents

- Optimization problems
- The Greedy method
- Applications
 - Container Loading
 - 0/1 knapsack problem
 - Topological sorting
 - Bipartite cover
 - Single-source shortest paths
 - Minimum-cost spanning trees

The Shortest Path Problem

- Path length is sum of weights of edges on path in directed weighted graph
 - The vertex at which the path begins is the source vertex
 - The vertex at which the path ends is the destination vertex
- Goal
 - To find a path between two vertices such that the sum of the weights of its constituent edges is minimized
- Complexity Analysis
 - The shortest path problem can be computed in polynomial time
 - But, some varied versions, such as Traveling Salesman Problem, are known to be NP-complete

Types of The Shortest Path Problem

- Three types
 - Single-source single-destination shortest path
 - Single-source all-destinations shortest path
 - All pairs (every vertex is a source and destination) shortest path

Single-Source Single-Destination Shorted Path

- Possible greedy algorithm
 - Leave the source vertex using the cheapest edge
 - Leave the current vertex using the cheapest edge to the next vertex
 - Continue until destination is reached
- Try Shortest 1 to 7 Path by this Greedy Algorithm
 - the algorithm does not guarantee the optimal solution

Greedy Single-Source All-Destinations Shortest Path (1)

- Problem: Generating the shortest paths in increasing order of length from one source to multiple destinations
- Greedy Solution
 - Given n vertices, First shortest path is from the source vertex to itself
 - The length of this path is 0
 - Generate up to n paths (including path from source to itself) by the greedy criteria
 - from the vertices to which a shortest path has not been generated, select one that results in the least path length
 - Construct up to n paths in order of increasing length

Greedy Single-Source All-Destinations Shortest Path (2)

Path Length () 2 5 6 9 10 11 Increasing order

- Each path (other than first) is a one edge extension of a previous path
- Next shortest path is the shortest one edge extension of an already generated shortest path

이전에 이미 생성된 shortest path들 중에서 one edge extension 했을 때 length가 가장 작게 증가하는 edge 를 선택 → increasing order 보장할 수 있음!

Greedy Single-Source All-Destinations Shortest Path (3)

Data Structures

- Let d(i) (distanceFromSource(i)) be the length of a shortest one edge extension of an already generated shortest path, the one edge extension ends at vertex i
- The next shortest path is to an as yet unreached vertex for which the d() value is least
- Let p(i) (predecessor(i)) be the vertex just before vertex i on the shortest one edge extension to i

Complexity Analysis: O(n^2)

- Any shortest path algorithm must examine each edge in the graph at least once, since any of the edges can be in a shortest path
- So the minimum possible time for such an algorithm would be O(e)
- Since cost-adjacency matrices were used to represent the digraph, it takes

Philliphone at Designation

Table of Contents

- Optimization problems
- The Greedy method
- Applications
 - Container Loading
 - 0/1 knapsack problem
 - Topological sorting
 - Bipartite cover
 - Single-source shortest paths
 - Minimum-cost spanning trees

Minimum-Cost Spanning Tree

- Spanning tree for weighted connected undirected graph
 - Cost of spanning tree is sum of edge costs
- Goal: Find a spanning tree that has minimum cost!
- Sometimes called, minimum spanning tree
- Complexity Analysis

The minimum spanning tree can be obtained in polynomial time

- Kruskal's algorithm
- Prim's algorithm
- Sollin's algorithm

Kruskal's Algorithm (1)

• Kruskal's Algorithm selects the n-1 edges one at a time using the greedy criterion:

- From the remaining edges, select a least-cost edge that does not result in a cycle when added to the set of already selected edges
- A collection of edges that contains a cycle cannot be completed into a spanning tree

Figure 18.11 Constructing a minimun-cost spanning tree

Kruskal's Algorithm (2)

Figure 18.11 Constructing a minimum-cost spanning tree

O(n+e*log(e)) where n nodes & e edges

Prim's Algorithm

- Prim's Algorithm constructs the minimum-cost spanning tree by selecting edges one at a time like Kruskal's
- The greedy criterion:
 - From the remaining edges, select a least-cost edge whose addition to the set of selected edges forms a tree
 - Consequently, at each stage the set of selected edges forms a tree

Sollin's Algorithm

- Sollin's Algorithm selects several edges at each stage
 - select one edge for each tree in the forest so that trees are connected and form a minimum spanning tree
 - Greedy criterion: This selected edge has a minimum-cost edge between two trees
 - At the initial stage (a), vertices 1 to 7 are scanned, and each choose the closest vertex from itself → (1,6), (2,7), (3,4), (4,3), (5,4), (6,1), (7,2)
 - Eliminate the duplicates to get (1,6), (2,7), (3,4), (5,4)
 - At the stage (b), consider the 3 trees in stage (a) as 3 single vertices (t1, t2, t3)
 - $(t1, t3), (t2, t3), (t3, t2) \rightarrow (t1, t3), (t2, t3)$ by eliminating duplicates

O(e**log*n) with n nodes and e edges

Table of Contents

- Optimization problems
- The Greedy method
- Applications
 - Container Loading
 - 0/1 knapsack problem
 - Topological sorting
 - Bipartite cover
 - Single-source shortest paths
 - Minimum-cost spanning trees

BIRD'S-EYE VIEW

- Enter the world of algorithm-design methods
- In the remainder of this book, we study the methods for the design of good algorithms
- Basic algorithm methods (Ch18~22)
 - Greedy method
 - Divide and conquer
 - Dynamic Programming
 - Backtracking
 - Branch and bound
- Other classes of algorithms
 - Amortized algorithm method
 - Genetic algorithm method
 - Parallel algorithm method

