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BIRD'S-EYE VIEW

= Enter the world of algorithm-design methods

= In the remainder of this book, we study the metHodshe
design of good algorithms

= Basic algorithm methods (Ch18~22)
Greedy method

Divide and conquer

Dynamic Programming

Backtracking

Branch and bound

= Other classes of algorithms
= Amortized algorithm method
= Genetic algorithm method

o = Parallel algorithm method

h
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Optimization Problem

= Many problems in chapter 18—22 are optimizatiorbfgms

= Optimization problem

= A problem in which the@ptimization functions to be optimized (usually
minimized or maximized) subject to somenstraints

s A feasible solution
= a solution that satisfies the constraints

= An optimal solution

= a feasible solution for which the optimization fuoathasthe best possible
value

= In general, finding an optimal solutionasmputationally hard

h
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Examples of Optimization Problem

o achine Scheduling: Find a schedule that minimizesthefinish time
optimization function: finish time

constraints
each job is scheduled continuously on a single machinefor itsprocessing time
no machine processes mor e than onejob at atime

= Bin Packing: Pack itemsinto binsusing the fewest number of bins
optimization function: number of bins

constraints
each item ispacked into a single bin
the capacity of no bin is exceeded

= Minimum Cost Spanning Tree: Find a spanning tree that has minimum cost
optimization function: sum of edge costs
constraints

must select n-1 edges of the given n vertex graph
o - theselected edges must form atree
.
4, ;
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i Various Attack Strategies for Optimization

= Greedy method

= Divide and Conquer

= Dynamic Programming
= Backtracking

= Branch and Bound
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The Greedy Method

= Solve a problem by making a sequence of decisions

= Decisions are madane by onen some order

= Each decision is made usingeedy criterion
= At each stage we make a decision that appears telmest at the time

= A decision, once made, is (usually) not changesr |at

h
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Machine Scheduling (1)

= Assign tasks to machines
= Given ntasks & an infinite supply of machines
= A feasible assignment isthat no machineisassigned two overlapping tasks
= An optimal assgnment isa feasible assgnment that utilizes the fewest # of machines

= Suppose we have the following tasks

task a b ¢ d e f g
start 0O 3 4 9 7 1 6
fimsh | 2 7 7 11 10 5 8§

(a) Seven tasks

= A feasible assignment is to use 7 machines, but ittiamoptimal assignment
= because other assignments can use fewer machines

= e.g. we can assign tasks a, b, and d to the samemaaotulucing the # of
utilized machines to 5

(D ;

SNU Internet DatzaBase Lab.



Machine Scheduling (2)

o reedy way to obtain an optimal task assignment
= Assign the tasks in stages

= Onetask per stagein nondecreasing order of thetask start times

» E.g.task at the starting time O, task at the starting time 1, etc
= For machine selection

= |If an old machine becomes available by the start time of the task to be
assigned, assign the task to this machine

= If not, assign it to a new machine

= The tasks in the (a) can be ordered by start timésbag, g, e, d
= Then, only 3 machines are needed

M3 c d
task a b ¢ d e t g M2 t g
start 0 3 4 9 7 1 6
finish | 2 7 7 11 10 5 8 . . b c
(a) Seven tasks

)
(=
—
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I8}
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. 5 6 7 8 9 10 11
| X
éﬁ time
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(b) Schedule
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The Original Container-Loading Problem

= Problem Definition
= Loading a large ship with containers
= Different containers hawdifferent sizes
= Different containers hawvifferent weights

= Goal=>» To load the ship witlhhe maximum # of containers

= Complexity Analysis
= Container-loading problem is a kind of bin packimglgem
= The bin packing problem is known to be a combinaidti-hard problem

= Solution

= Since it is NP-hard, the most efficient known algons useheuristicsto
accomplish good results

= Which may not be the optimal solution

= Here, weuse greedy heuristi@ndrelax the original problem

) . . . SR
;_ - " Which guarantees the optimal solution under a speondition
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i “Relaxed” Container Loading (1)

= Problem: Load as many containers as possible witioking the
ship!

= The ship has the capacity
= There aran containers available for loading

= The weight of containaris w,
= Each weight is a positive number

= The volume of container is fixed
= Constraint. Sum of container weights c

éﬁ 5
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i “Relaxed” Container Loading (2)

s Greedy Solutions

= Loadcontainers in increasing order of weigimtil we get to a
container that doesn't fit

= Does this greedy algorithm always load the maxin#uof
containers?

= Yes, This is optimal solution!
= May be proved by using a proof by induction (se¢)te

v

ﬁ 5
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The Original Knapsack Problem (1)

= Problem Definition
= Want to carry essential items in one bgta -

15k9\
= Given a set of items, each has 55 4
= Acost (i.e., 12kg) i
« Avalue (i.e., 4%) B ;
Tyt
s Goal

= To determine the # of each item to include in dectibn so that
= The total cost is less thaome given cost
= And the total value iss large as possible

h
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The Original Knapsack Problem (2)

= Three Types
= 0/1 Knapsack Problem
= restricts the number of each kind of item to zerorw
= Bounded Knapsack Problem
= restricts the number of each item to a specific value
= Unbounded Knapsack Problem
= places no bounds on the number of each item

= Complexity Analysis
= The general knapsack problem is known td\lbehard
= No polynomial-time algorithm is known for this pieln

= Here, we use greedy heuristics which cannot guarémbegptimal solution

h
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0/1 Knapsack Problem (1)

= Problem: Hiker wishes to takeitems on a trip

= The weight of item is w; & items are all different (0/1 Knapsack Problem)
= The items are to be carried in a knapsack whose weaglacity i

= When sum of item weights c, all nitems can be carried in the
knapsack

= When sum of item weights ¢, some items must be left behind
= Which items should be taken/left?
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0/1 Knapsack Problem (2)

= Hiker assigns a profft; to itemi
= All weights and profits are positive numbers
= Hiker wants to select a subset of thekems to take

The weight of the subset should not exceed the dagHdhe knapsack
(constraint)

Cannot select a fraction of an itéoonstraint)

The profit of the subset is the sum of the profithefselected items
(optimization function)

The profit of the selected subset should be maxirfaptimization criterion)

= Letx,=1when itemi is selected ang = O when itemi is not selected
= Because this is a 0/1 Knapsack Problem, you can clio@s&em or not

. maximize &1 P X;  subject to { W, Xi = C
| =

/DB =1 |
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Greedy Attempts for 0/1 Knapsack (1)

= Some heuristics can be applied

= Greedy attempt onapacity utilization
. Greedy criterion: select items in increasing ordeweight

- Whenn=2, c=7, w=[3,6], p= [2, 10],
If only item 1 is selected® profit of selection i = not best selection!

« Greedy attempt oprofit earned
. Greedy criterion: select items in decreasing ord@raofit

- Whenn=3,c=7, w=[7,3, 2], p= [10, 8, 6],
If only item 1 is selected® profit of selection isLO =» not best selection!
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Greedy Attempts for 0/1 Knapsack (2)

« Greedy attempt oprofit density(p/w)
. Greedy criterion: select items in decreasing ord@rafit density
- Whenn=2,¢c=7, w=[1,7], p= [10, 20],
If only item 1 is selected® profit of selection isLO =» not best selection!

= Another greedy attempt girofit density(p/w)
. Works when selectingfaactionof an item is permitted

. Greedy criterion: select items in decreasing ord@rafit density, and if
next item doesn't fit, take a fraction so as tolriapsack

. Whenn=2,c=7, w=[1,7],p= [10, 20],
item 1 and6/7 of item 2 are selected

. But this solution is not allowed in 0/1 Knapsack
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Topological Sorting

= A precedence relatioexists between certain pairs of tasks

= The set of tasks together with the precedence maggdresented as a digraph
= A task digraph or an activity on vertex (AOV) netk

= Topological sorting constructs a topological ordentfra task digraph

= We tarverse the graph using the greedy criterion:

= Select any one among vertices haviiagncoming edge

= Put the node into the solution & Remove the nadkits outgoing edges from the graph
= Repeat the above steps until no nodes remain

S
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Pseudo Code for Topological Sorting

Let n be the number of vertices in the digraph.

Let theOrder be an empty sequence.

while (true) o

{ Greedy Criterion
Let w be any vertex that has no incoming edg1
(v,w) such that v is not in theOrder.

1f there is no such w, break.

Add w to the end of theOrder.

}

if (theOrder has fewer than m vertices)
the algorithm fails.
else
theOrder is a topological sequence.
Figure 18.5 Topological sorting

(D

SNU Internet DatzaBase Lab.

= Optimal Solution

= The greedy method can produce
the optimal solution which has
linear running time

= Complexity Analysis

= Looking at the while loop in Fig
18.5, it depends on the data
structure

= O(n"2) if we use an adjacency-
matrix representation

= O(n+e) if we use a linked-
adjacency-list representation

24



Topological Sorting Example

= Results of Topological Sorting

= Possible topological orders
= 12>2332>4>5>6

» 12322245526
22125232426

= Impossible topological orders

12422232526
= Because (for example) task 4 precedes task 3srsédguence

Figure 18.4 A task digraph
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The Original Set Cover Problem

= Problem Definition

= Given several sets as input

= The sets may have some elements in common
= Goal

= To select a minimum number of these sets so that thg@ethave picked
containall the elements that are contained in any of tkeisghe input

= Example: A (al, a3), B(al, a4, ab), C(a2, ab), Dé¢d2a5), E(a3, ab)
= Minimum cover:A (al, a3), D(a2, a4, ab)

= Complexity Analysis
= The set cover problem is known tol8e-hard

= Bipartite-cover problemns a kind of the set cover problem
[

h
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Bipartite Graph

= A bipartite graph

= an undirected graph in which the n vertices maydrétjpned into two sets

A and B so thato edge in the graph connects two vertibes are in the
same set

= A subsetA’ of the node seA is said tocoverthe node sdB (or
simply, A’ is a cover) iff every vertex in B is connected tdeatst

one vertex of A’

Set A

Set B

28




i Bipartite Cover Problem

= Finda minimum covem a bipartite graph!

= EX:17-vertex bipartite graph
= A={1,2,3,16,17}B={4,5,6,7,8, 9, 10, 11, 12, 13, 14, 15}
= The subsef’ ={1, 2, 3, 17} covers the s&(size =4)
= The subsef’ = {1, 16, 17} also covers the sBf(size = 3)
= ThereforeA’ ={1, 16, 17} is a minimum cover @

29



A Greedy Heuristic for Bipartite Cover (1)

= DBipartite-cover problems aiéP-hard

= A greedy method to develop a fast heuristic
= Construct the coveX’ in stages
= Select a vertex oA using the greedy criterion:
= Select a vertex of Ahat covers the largest # of uncovered vertices of B

= Pseudo Code for Bipartite Cover
A= ¢

while (more vertices can be covered)

Add the vertex that covers the largest number of Greedy
uncovered vertices to A’. Criterion
if (some vertices are uncovered) fail.

else a cover has been found.

P Figure 18.7 High-level statement of greedy covering heuristic
- —

30

SNU Internet DatzaBase Lab.



A Greedy Heuristic for Bipartite Cover (2)

Initial condition
= V1 & V16 covers six
= V3 covers five
= V2 & V17 covers four

Fi

i [+}

ure 18.6 Figure for Example 18.10

1ststage: Among (V1, V16), suppose we first &tdb to A’,
= it covers {V5, V6, V8, V12, V14, V15} & doesn’t cer {V4, V7, V9, V10, V11, V13}
2nd stage: Among remainders (V1, V3, V2, V17)
= choose V1 because it covers four of theses uncovwemices ({V4, V7, V9, V13})
= V1is added to A’and {V10, V11} remain uncovered

3'd stage: Among remainders (V3, V2, and V17)
= V17 covers two of theses uncovered vertices, so we addd/A’

Now no uncovered vertices rema®» A’ = {V1, V16, V17}

éﬁ 31
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A Greedy Heuristic for Bipartite Cover (3)

= But, this greedy heuristicannot guarantee the optimal solution

= If we use the greedy heuristic in the below example,
= V1 will be added to A’
= Then V2, V3, and V4 will be added to A’
= Then A’={V1, V2, V3, V4}

= But the optimal solution is {V2, V3, V4}

ﬁ 5
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The Shortest Path Problem

= Path length isum of weights of edges on pathdirected weighted graph
= The vertex at which the path begins is shercevertex
= The vertex at which the path ends is dastinatiornvertex

= Goal

= To find a path between two vertices such that time aithe weights of its
constituent edges minimized

=  Complexity Analysis
= The shortest path problem can be computgubipnomial time

= But, some varied versions, suchTaaveling Salesman Proble@re known to
be NP-complete

h
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Types of The Shortest Path Problem

= Three types
= Single-source single-destination shortest path
= Single-source all-destinations shortest path
= All pairs (every vertex is a source and destingtghortest path

-,
— R
5,
- e e Y -h'.
LY ) o 2 -l
1 1 W
ﬁ ;
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Single-Source Single-Destination Shorted Path

= Possible greedy algorithm
Leave the source vertex using the cheapest edge
Leave the current vertex using thieeapest eddge the next vertex
Continue until destination is reached
Try Shortest 1 to 7 Path by this Greedy Algorithm
the algorithm doesot guarantee the optimal solution

ﬁ 5
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Greedy Single-Source All-Destinations Shortest Phth

Problem: Generating the shortest pathsiineasing order of lengfinom one
source to multiple destinations

Greedy Solution
= Givenn vertices, First shortest path is from the source veo@self
. The length of this path (3

= Generate up ta paths (including path from source to itself) by ¢needy
criteria

« from the vertices to which a shortest path has nat geaeratedselect
one that results ithe least path length

= Construct up tm paths in order of increasing length

37



Greedy Single-Source All-Destinations Shortest Path

6 3 .
Path Length 5 7 4 10
@ 0 . ‘/1 .
@@ 2 5 3 :
@0 @ 5 =
‘_" 6 = Each path (other than first) is a one edge

extension of a previous path

= Next shortest path is the shortest one
edge extension of an already generated
shortest path

Ol &0l 0l0] 244 &l shortest pateE = 0l A one edge

M o = Xt XYl =)LELS
_— - Increasing eExtensmnoM_e [tH Igngth?} PIES A le ojctoh edge
B order = &8 > increasing ordeE & & &= U 2!




Greedy Single-Source All-Destinations Shortest Path

s Data Structures

= Letd(i) (distanceFromSource)ibe the length of a shortest one edge
extension of an already generated shortest pationgedge extension ends
at vertex

= The next shortest path is to an as yet unreacheevient which thel()
value is least

= Letp(i) (predecessor(ie the vertex just before vertegn the shortest one
edge extension to i
= Complexity Analysis: O(n"2)
= Any shortest path algorithm must examine each edgeeigraph at least
once, since any of the edges can be in a shortdst pat
= S0 the minimum possible time for such an algorithould be O(e)

= Since cost-adjacency matrices were used to reprdsedigraph, it takes
e w2(N"2)

h B
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Griedy Single Source All Destinations: Example (1)

2
(1, @3

1
6 10
/\ﬂ
2 = >@ 3 (7
(1) 14
[1] [2] [3] [4] [5] [6] [7]
d 0O 6 [2|]16 - - 14
p - 1 1 1 - - 1



Griedy Single Source All Destinations : Example (2)

D

@—0© [1] [2] [3] [4] 5] [6] [7]
d 0 6 2 16 5 10 14
p - 1 1 1 3 3 1



Griedy Single Source All Destinations . Example (3)

[1] [2] [3] [4] [5] [6] [7]
d 0 g 2 9 5 10 14
o - 1 1 5 3 3 1



Griedy Single Source All Destinations : Example (4)

[1] [2] [3] [4] [5] [6] [7]
d 0 6 2 9 5 10 14
o - 1 1 5 3 3 1



Griedy Single Source All Destinations . Example (5)

14

[1] (2] 3] [4] [51 [6] [7]
d o 6 2 9 5 10 12
p- 1 1 5 3 3 4




G;edy Single Source All Destinations . Example (6)

@0 —-© [1] [2] [3] [4] [5] [6] [7]
d O 6 2 9 5 10 11
p - 1 1 5 3 3 6
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Minimum-Cost Spanning Tree

= Spanning tree for weighted connected undirectepigra
= Cost of spanning tree is sum of edge costs

s Goal: Find a spanning tree that has minimum cost!
= Sometimes called, minimum spanning tree

= Complexity Analysis
The minimum spanning tree can be obtaingooiynomial time
= Kruskal’s algorithm
= Prim’s algorithm
= Sollin’s algorithm

h
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Kruskal’s Algorithm(1)

= Kruskal's Algorithm selects the n-1 edgase at a timeisingthe greedy criterian

= From the remaining edgesslect a least-cost edge that does not result in a
cyclewhen added to the set of already selected edges

= A collection of edges that contains a cycle cafmotompleted into a
spanning tree

@ €

10

© O @ &

&) €

@ ©
() ()

&’ﬁﬁ Figure 18.11 Constructing a minimun-cost spanning tre 48



Kruskal’s Algorithm(2)

Figure 18.11 Constructing a minimum-cost spanning tree

O(n+e*og(e)) where n nodes & e edges

49
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Prim’s Algorithm

=  Prim’s Algorithm constructs the minimum-cost spanniag toy selecting edgesie
at a timdike Kruskal's
= The greedy criterion:

= From the remaining edgeszlect a least-cost edge whose addition to thef seflected
edges forms a tree

= Consequently, at each stage the set of selectexs$ doignsa tree

O(n"2) when
n nodes

50

Figure 18.14 Stages in Prim’s algorithm



Sollin’s Algorithm

= Sollin’s Algorithm selectseveral edges at each stage
= Select one edge for each tree in the forest sdréwd are connected and form a
minimum spanning tree
» Greedy criterionThis selected edge has a minimum-cost edge betimeetrees
= At the initial stage (a), vertices 1 to 7 are s&hrand each choose the closest vertex
from itself=» (1,6), (2,7), (3,4), (4,3), (5,4), (6,1), (7,2)
= Eliminate the duplicates to get (1,6), (2,7), (3(8)4)
= At the stage (b), consider the 3 trees in stagag&) single vertices (t1, t2, t3)
= (t1, t3), (12, t3), (13, t2) = (i1, t3), (12, t3) by eliminating duplicates

O(e*logn)
with n nodes and e edges

Figure 18.15 Stages in Sollin’s algorithm

51
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BIRD'S-EYE VIEW

= Enter the world of algorithm-design methods

= In the remainder of this book, we study the metHodshe
design of good algorithms

= Basic algorithm methods (Ch18~22)
Greedy method

Divide and conquer

Dynamic Programming

Backtracking

Branch and bound

= Other classes of algorithms
= Amortized algorithm method
= Genetic algorithm method

, = Parallel algorithm method
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