
1

Ch22.Branch and Bound

2

BIRD’S-EYE VIEW
� A surefire way to solve a problem is to make a list of all candidate answers and

check them
� If the problem size is big, we can not get the answer in reasonable time using

this approach
� List all possible cases? � exponential cases

� By a systematic examination of the candidate list, we can find the answer
without examining every candidate answer
� Backtracking and Branch and Bound are most popular systematic algorithms

� Branch and Bound
� Searches a solution space that is often organized as a tree (like backtracking)
� Usually searches a tree in a breadth-first / least-costmanner (unlike

backtracking)

3

Table of Contents

� The Branch and Bound Method

� Application
� Rat in a Maze

� Container Loading

4

Branch and Bound
� Another way to systematically search a solution space

� Usually searches trees in either a breadth-first or least-cost manner
� But not exactly breadth-first search

� Each live node becomes an E-node exactly once

� Selection options of the next E-node
� First In, First Out (FIFO)

� The live node list - queue

� Extracts nodes in the same order as they are put into it

� Least Cost (or Max Profit)
� The live node list - min heap (or max heap)

� The next E-node – the live node with least cost (or maximum profit)

5

Backtracking vs. Branch and Bound

More: queue
O(size of solution space)

Space requirementLess: stack
O(length of longest path)

Less*Execution timeMore

Breadth-first or

Least cost
Search orderDepth-first

Branch and BoundBacktracking

•It might be expected to examine fewer nodes on many inputs in a max-profit or least-cost
branch and bound

• Backtracking may never find a solution if tree depth is infinite
• FIFO branch and bound finds solution closest to root
• Least-cost branch and bound directs the search to parts of the space most likely to contain
the answer � So it could perform generally better than backtracking

6

Table of Contents

� The Branch and Bound Method

� Application
� Rat in a Maze

� Container Loading

7

Rat in a Maze
� 3 x 3 rat-in-a-maze instance

� A maze is a tour puzzle in the form of a complex branching passage through
which the solver must find a route
� Path of a maze is a graph
� So, we can traverse a maze using DFS / BFS

� Branch and Bound = Finding solution using BFS
� Worst-case time complexity of finding path to the exit of n*n maze is O(n2)

0 0 0

0 1 1

0 0 0

0 : road

1 : obstacle

entrance

exit

8

Branch and Bound in “Rat in a Maze”

1. Prepare an empty queue and an empty 2D array
2. Initialize array elements with 1 where obstacles are, 0 elsewhere
3. Start at the upper left corner and push the position to the queue
4. Pop a positionfrom the queue and set current position to it
5. Set the array value of current position to 1
6. Check adjacent (up, right, down and left) cells whose value is zero

and push them into the queue
7. If we found such cells, push their positionsinto the queue
8. If we haven't reach to the goal, repeat from 4

9

Code for Rat in a Maze

Prepare an empty queue and an empty 2D array
Initialize array elements with 1 where obstacles are, 0 elsewhere
i ← 1
j ← 1
Repeat until reach to the goal {

a[i][j] ← 1;
if (a[i][j+1]==0) { put (i,j) into the queue

j++; }
if (a[i+1][j]==0) { put (i,j) into the queue

i++; }
if (a[i][j-1]==0) { put (i,j) into the queue

j--; }
if (a[i-1][j]==0) { put (i,j) into the queue

i--; }
pop (i,j) from the queue

}

10

Rat in a Maze Example (1)

� Organize the solution space

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

0 1

① ② ③

④ ⑤ ⑥

⑦ ⑧ ⑨
obstaclepath

11

Rat in a Maze Example (2)

� FIFO Branch and Bound

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node queue

E-node

(1,1)

Push (1,2) and (2,1) // BranchPush (1,2) and (2,1) // BranchPush (1,2) and (2,1) // BranchPush (1,2) and (2,1) // Branch

①

12

Rat in a Maze Example (3)

� FIFO Branch and Bound

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node queue

(1,2)

(2,1)

E-node

(1,1)

Pop (1,2) and Move (Bound) to (1,2)Pop (1,2) and Move (Bound) to (1,2)Pop (1,2) and Move (Bound) to (1,2)Pop (1,2) and Move (Bound) to (1,2)

① ①→②

①→④

13

Rat in a Maze Example (4)

� FIFO Branch and Bound

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node queue

(2,1)

E-node

(1,2)

Push (1,3) // BranchPush (1,3) // BranchPush (1,3) // BranchPush (1,3) // Branch

① ①→②

①→④

①→②→③

14

Rat in a Maze Example (5)

� FIFO Branch and Bound

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node queue

(2,1)

(1,3)

E-node

(1,2)

Pop (2,1) and Move (Bound) to (2,1)Pop (2,1) and Move (Bound) to (2,1)Pop (2,1) and Move (Bound) to (2,1)Pop (2,1) and Move (Bound) to (2,1)

① ①→②

①→④

①→②→③

15

Rat in a Maze Example (6)

� FIFO Branch and Bound

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node queue

(1,3)

E-node

(2,1)

Push (3,1) // BranchPush (3,1) // BranchPush (3,1) // BranchPush (3,1) // Branch

① ①→②

①→④

①→②→③

①→④→⑦

16

Rat in a Maze Example (7)

� FIFO Branch and Bound

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node queue

(1,3)

(3,1)

E-node

(2,1)

Pop (1,3) & Move (Bound) to (1,3); no more progress Pop (1,3) & Move (Bound) to (1,3); no more progress Pop (1,3) & Move (Bound) to (1,3); no more progress Pop (1,3) & Move (Bound) to (1,3); no more progress

① ①→②

①→④

①→②→③

①→④→⑦

17

Rat in a Maze Example (8)

� FIFO Branch and Bound

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node queue

(3,1)

E-node

(1,3)

Pop (3,1) and Move (Bound) to (3,1)Pop (3,1) and Move (Bound) to (3,1)Pop (3,1) and Move (Bound) to (3,1)Pop (3,1) and Move (Bound) to (3,1)

① ①→②

①→④

①→②→③

①→④→⑦

18

Rat in a Maze Example (9)

� FIFO Branch and Bound

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node queue

E-node

(3,1)

Push (3,2) // BranchPush (3,2) // BranchPush (3,2) // BranchPush (3,2) // Branch

① ①→②

①→④

①→②→③

①→④→⑦

19

Rat in a Maze Example (10)

� FIFO Branch and Bound

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node queue

(3,2)

E-node

(3,1)

Pop (3,2) and Move (Bound) to (3,2)Pop (3,2) and Move (Bound) to (3,2)Pop (3,2) and Move (Bound) to (3,2)Pop (3,2) and Move (Bound) to (3,2)

① ①→②

①→④

①→②→③

①→④→⑦ ①→④→⑦→⑧

20

Rat in a Maze Example (11)

� FIFO Branch and Bound

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node queue

E-node

(3,2)

Push (3,3) // BranchPush (3,3) // BranchPush (3,3) // BranchPush (3,3) // Branch

① ①→②

①→④

①→②→③

①→④→⑦ ①→④→⑦→⑧

21

Rat in a Maze Example (12)

� FIFO Branch and Bound

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3)

Live node queue

(3,3)

E-node

(3,2)

Pop (3,3) and Move (Bound) to (3,3)Pop (3,3) and Move (Bound) to (3,3)Pop (3,3) and Move (Bound) to (3,3)Pop (3,3) and Move (Bound) to (3,3)

① ①→②

①→④

①→②→③

①→④→⑦ ①→④→⑦→⑧ ①→④→⑦→⑧→⑨

22

Rat in a Maze Example (13)
� FIFO Branch and Bound Live node queue

E-node

(3,3)

� Observation
� FIFO search solution is a shortest pathfrom the entrance to the exit

� Rememberthat backtracking solution may not be a shortest path

(1,1) (1,2) (1,3)

(2,1) (2,2) (2,3)

(3,1) (3,2) (3,3) solution

①→④→⑦→⑧→⑨

23

Table of Contents

� The Branch and Bound Method

� Application
� Rat in a Maze

� Container Loading

24

Container Loading
� Container Loading Problem

� 2 ships and n containers
� The ship capacity: c1, c2

� The weight of container i: wi

� Is there a way to load all n containers?

� Container Loading Instance
� n = 4
� c1 = 12, c2 = 9
� w = [8, 6, 2, 3]

� Find a subset of the weights with sum as close to c1 as possible

21
1

ccw
n

i
i +≤∑

=
…

25

Solving without Branch and Bound
� We can find a solution with brute-force search

� Above method are too naïve and not duplicate-free
� Branch and bound provides a systematic way to search feasible solutions

(still NP-complete, though)

1. Generate n random numbers x1, x2, …, xn
where xi = 0 or 1 (i = 1,…,n)

2. If xi = 1, we put i-th container into ship 1

If xi = 0, we put i-th container into ship 2

3. Check if sum of weights in both ships are less

than their maximum capacity

3-1. If so, we found a solution!

3-2. Otherwise, repeat from 1

26

Container Loading and Branch & Bound

� Container loading is one of NP-complete problems
� There are 2n possible partitionings

� If we represent the decision of location of each container with a branch, we
can represent container loading problem with a tree
� So, we can traverse the tree using DFS / BFS

� Branch and bound= Finding solution using BFS
� Worst-case time complexity is O(2n) if there are n containers

� FIFO branch and bound finds solution closest to root
� Rat in Maze

� Least-cost branch and bounddirects the search to parts of the space most
likely to contain the answer
� Container Loading

27

Considering only One Ship
� Original problem: Is there any way to load n containers with

� Because is constant,

� So, all we need to do is trying to load containers at ship 1 as much as
possible and check if the sum of weights of remaining containers is less than
or equal to c2

21

21

, cwcw
shiptobelongsi

i
shiptobelongsi

i ≤≤ ∑∑

∑∑∑
=

=+
n

i
i

shiptobelongsi
i

shiptobelongsi
i www

121

)min()max(
21

∑∑ =
shiptobelongsi

i
shiptobelongsi

i ww

28

Branch and Bound in Container Loading

1. Prepare an empty queue Q & a complete binary tree T with depth n
2. Initialize the max to zero
3. Start from root of T and put the root node into the queue
4. Pop a node from the queue and set t to it
5. If we haven't visit left child and have space to load wdepth(t),

then load it, pusht into Qand move to left child
6. If we haven't visit right child, push t into Qand move to right child
7. If current sum of weights is greater than max, update max
8. Repeat from 4 until we have checked all nodes

29

Container Loading Code
Consider n, c1, c2, w are given
Construct a complete binary tree with depth n
Prepare an empty max-priority queue
max ←←←← 0
sum ←←←← 0
x ←←←← root node of the tree
while(true){

if (x.depth < n && !x.visitedLeft && c1 – sum ≥≥≥≥ w[x.depth]) {
sum ←←←← sum + w[x.depth]
if (sum > max) max = sum;
Put (x,sum) into the queue
x.visitedLeft ←←←← true;
x ←←←← x.leftChild;

}
if (x.depth < n && !x.visitedRight) {

Put (x,sum) into the queue
x.visitedRight ←←←← true;
x ←←←← x.rightChild;

}
if (the queue is empty) {if (the queue is empty) {if (the queue is empty) {if (the queue is empty) {

If If If If sum(wsum(wsum(wsum(w)))) – max <= c2, max is the optimal weightmax <= c2, max is the optimal weightmax <= c2, max is the optimal weightmax <= c2, max is the optimal weight
Otherwise, it is impossible to load all containersOtherwise, it is impossible to load all containersOtherwise, it is impossible to load all containersOtherwise, it is impossible to load all containers
Quit the program }Quit the program }Quit the program }Quit the program }

Pop (Pop (Pop (Pop (x,sumx,sumx,sumx,sum) from the queue) from the queue) from the queue) from the queue
}}}}

30

Container LoadingExample(1)
� Organize the solution space: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

� Max Profit Branch Bound � Priority Queue

A

B C

D E F G

H I J K L M N O

P Q R S T U V W X Y Z a b c d e

1 0

1 1

1 1 1 1

1 1 1 1 1 1 1 1

0 0

0 0 0 0

0 0 0 0 0 0 0 0

1 : selection1 : selection1 : selection1 : selection
0 : non0 : non0 : non0 : non----selectionselectionselectionselection

8888

6666

2222

3333

Push A to Live Node QueuePush A to Live Node QueuePush A to Live Node QueuePush A to Live Node Queue

31

Container Loading Example(2)
� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

A : 0/19

n / r

Live node queue

(max-priority)

priority = upper weight
= node weight n
+ remaining container weight r A:0

{}

B C

D E F G

H I J K L M N O

P

1 0

1 1

1 1 1 1

0 0

0 0 0 0

eQ R S T U V W X Y Z a b c d

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

Pop A and Move to APop A and Move to APop A and Move to APop A and Move to A

max = 0

8888

6666

2222

3333

32

Container Loading Example(3)

A:0
{}

B C

D E F G

H I J K L M N O

P

Push B and C // BranchPush B and C // BranchPush B and C // BranchPush B and C // Branch

eQ R S T U V W X Y Z a b c d

n / r

max = 0

Live node queue

(max-priority)

+8 +0

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

33

Container Loading Example(4)

A:0
{}

B C

D E F G

H I J K L M N O

P

Pop B and Move (Bound) to BPop B and Move (Bound) to BPop B and Move (Bound) to BPop B and Move (Bound) to B

eQ R S T U V W X Y Z a b c d

B : 8/11

C : 0/11

n / r

max = 0

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

34

Container Loading Example(5)

A:0
{}

B:8
{8}

C

D E F G

H I J K L M N O

P

Push E // BranchPush E // BranchPush E // BranchPush E // Branch

eQ R S T U V W X Y Z a b c d

C : 0/11

n / r

max = 0

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

+6 +0Too big!

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

35

Container Loading Example(6)

A:0
{}

B:8
{8}

C

D E F G

H I J K L M N O

P

Pop E and Move (Bound) to EPop E and Move (Bound) to EPop E and Move (Bound) to EPop E and Move (Bound) to E

eQ R S T U V W X Y Z a b c d

E : 8/5

C : 0/11

n / r

max = 0

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

36

Container Loading Example(7)

A:0
{}

B:8
{8}

C

D
E:8
{8}

F G

H I J K L M N O

P

Push J and K // BranchPush J and K // BranchPush J and K // BranchPush J and K // Branch

eQ R S T U V W X Y Z a b c d

C : 0/11

n / r

max = 0

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

+2 +0

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

37

Container Loading Example(8)

A:0
{}

B:8
{8}

C

D
E:8
{8}

F G

H I J K L M N O

P

Pop J and Move (Bound) to JPop J and Move (Bound) to JPop J and Move (Bound) to JPop J and Move (Bound) to J

eQ R S T U V W X Y Z a b c d

J : 10/3

C : 0/11

K : 8/3

n / r

max = 0

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

38

Container Loading Example(9)

A:0
{}

B:8
{8}

C

D
E:8
{8}

F G

H I
J:10
{8,2}

K L M N O

P

Push U // BranchPush U // BranchPush U // BranchPush U // Branch

eQ R S T U V W X Y Z a b c d

C : 0/11

K : 8/3

n / r

max = 0

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

Too big!

+3 +0

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

39

Container Loading Example(10)

A:0
{}

B:8
{8}

C

D
E:8
{8}

F G

H I
J:10
{8,2}

K L M N O

P

Pop C and Move (Bound) to CPop C and Move (Bound) to CPop C and Move (Bound) to CPop C and Move (Bound) to C

eQ R S T U V W X Y Z a b c d

C : 0/11

K : 8/3

U : 10/0

n / r

max = 0

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

XXXX

40

Container Loading Example(11)

A:0
{}

B:8
{8}

C:0
{}

D
E:8
{8}

F G

H I
J:10
{8,2}

K L M N O

P

Push F // BranchPush F // BranchPush F // BranchPush F // Branch

eQ R S T U V W X Y Z a b c d

K : 8/3

U : 10/0

n / r

max = 0

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

Too small!

+6 +0

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

XXXX

41

Container Loading Example(12)

A:0
{}

B:8
{8}

C:0
{}

D
E:8
{8}

F G

H I
J:10
{8,2}

K L M N O

P

Pop K and Move (Bound) to KPop K and Move (Bound) to KPop K and Move (Bound) to KPop K and Move (Bound) to K

eQ R S T U V W X Y Z a b c d

K : 8/3

F : 6/5

U : 10/0

n / r

max = 0

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

XXXX

XXXX

42

Container Loading Example(13)

A:0
{}

B:8
{8}

C:0
{}

D
E:8
{8}

F G

H I
J:10
{8,2}

K:8
{8}

L M N O

P

Push V // BranchPush V // BranchPush V // BranchPush V // Branch

eQ R S T U V W X Y Z a b c d

F : 6/5

U : 10/0

n / r

max = 0

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

Too small!

+3 +0

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

XXXX

XXXX

XXXX

43

Container Loading Example(14)

A:0
{}

B:8
{8}

C:0
{}

D
E:8
{8}

F G

H I
J:10
{8,2}

K:8
{8}

L M N O

P eQ R S T U V W X Y Z a b c d

F : 6/5

V : 11/0

U : 10/0

n / r

max = 0

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

Pop F and Move (Bound) to FPop F and Move (Bound) to FPop F and Move (Bound) to FPop F and Move (Bound) to F

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

XXXX

XXXX

XXXX

44

Container Loading Example(15)

A:0
{}

B:8
{8}

C:0
{}

D
E:8
{8}

F:6
{6}

G

H I
J:10
{8,2}

K:8
{8}

L M N O

P eQ R S T U V W X Y Z a b c d

V : 11/0

U : 10/0

n / r

max = 0

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

Push L // BranchPush L // BranchPush L // BranchPush L // Branch

+2 +0
Too small!

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

XXXX

XXXX

XXXX

XXXX

45

Container Loading Example(16)

A:0
{}

B:8
{8}

C:0
{}

D
E:8
{8}

F:6
{6}

G

H I
J:10
{8,2}

K:8
{8}

L M N O

P eQ R S T U V W X Y Z a b c d

V : 11/0

L : 8/3

U : 10/0

n / r

max = 0

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

Pop V and Move (Bound) to VPop V and Move (Bound) to VPop V and Move (Bound) to VPop V and Move (Bound) to V

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

XXXX XXXX

XXXX

XXXX

46

Container Loading Example(17)

A:0
{}

B:8
{8}

C:0
{}

D
E:8
{8}

F:6
{6}

G

H I
J:10
{8,2}

K:8
{8}

L M N O

P eQ R S T U
V:11
{8,3}

W X Y Z a b c d

L : 8/3

U : 10/0

n / r

max = 0

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

max

Set maxSet maxSet maxSet max11, Pop L and Move (Bound) to L11, Pop L and Move (Bound) to L11, Pop L and Move (Bound) to L11, Pop L and Move (Bound) to L

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

XXXX

XXXX

XXXX

XXXX

47

Container Loading Example(18)

A:0
{}

B:8
{8}

C:0
{}

D
E:8
{8}

F:6
{6}

G

H I
J:10
{8,2}

K:8
{8}

L:8
{6,2}

M N O

P eQ R S T U
V:11
{8,3}

W X Y Z a b c d

U : 10/0

n / r

max = 11

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

max

+3 +0

Push X // BranchPush X // BranchPush X // BranchPush X // Branch

Too small!

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

XXXX

XXXX

XXXX

XXXX XXXX

48

Container Loading Example(19)

A:0
{}

B:8
{8}

C:0
{}

D
E:8
{8}

F:6
{6}

G

H I
J:10
{8,2}

K:8
{8}

L:8
{6,2}

M N O

P eQ R S T U
V:11
{8,3}

W X Y Z a b c d

X : 11/0

U : 10/0

n / r

max = 11

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

max

Pop X and Move (Bound) to XPop X and Move (Bound) to XPop X and Move (Bound) to XPop X and Move (Bound) to X

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

XXXX XXXX

XXXX

XXXX

XXXX

49

Container Loading Example(20)

A:0
{}

B:8
{8}

C:0
{}

D
E:8
{8}

F:6
{6}

G

H I
J:10
{8,2}

K:8
{8}

L:8
{6,2}

M N O

P eQ R S T U
V:11
{8,3}

W X:11
{6,2,3}

Y Z a b c d

U : 10/0

n / r

max = 11

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

max

Pop U and Move (Bound) to UPop U and Move (Bound) to UPop U and Move (Bound) to UPop U and Move (Bound) to U

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

XXXX XXXX XXXX

XXXX

XXXX

50

Container Loading Example(21)

A:0
{}

B:8
{8}

C:0
{}

D
E:8
{8}

F:6
{6}

G

H I
J:10
{8,2}

K:8
{8}

L:8
{6,2}

M N O

P eQ R S T
U:10
{8,2}

V:11
{8,3}

W X:11
{6,2,3}

Y Z a b c d

n / r

max = 11

Live node queue

(max-priority)

� Max Profit Branch Bound: n = 4; c1 = 12, c2 = 9; w = [8, 6, 2, 3]

ship1

max

ship2: {8,6,2,3}-{8,3}={6,2}

8888

6666

2222

3333

priority = upper weight
= node weight n
+ remaining container weight r

XXXX

XXXX

XXXX

XXXX

XXXX XXXX

51

BIRD’S-EYE VIEW
� A surefire way to solve a problem is to make a list of all candidate answers and

check them
� If the problem size is big, we can not get the answer in reasonable time using

this approach
� List all possible cases? � exponential cases

� By a systematic examination of the candidate list, we can find the answer
without examining every candidate answer
� Backtracking and Branch and Bound are most popular systematic algorithms

� Branch and Bound
� Searches a solution space that is often organized as a tree (like backtracking)
� Usually searches a tree in a breadth-first / least-costmanner (unlike

backtracking)

52

Table of Contents

� The Branch and Bound Method

� Application
� Rat in a Maze

� Container Loading

