!'_ Ch22.Branch and Bound

w

=

c

=)

s L)
&

-

4

o '
o

W

m

o

m

o
5“'
=

i BIRD'S-EYE VIEW

= A surefire way to solve a problem is to makgst of all candidate answers and
check them

= If the problem size is big, we can not get the answezasonable time using
this approach

= List all possible cases® exponential cases

= By a systematic examination of the candidate listcarefind the answer
without examining every candidate answer

= Backtracking andBranch and Bound are most popular systematic algorithms

= Branch and Bound

= Searches a solution space that is often organizadras (like backtracking)

= Usually searches a tree ibgeadth-first / least-costanner (unlike
o backtracking)

‘L Table of Contents

s [he Branch and Bound Method

= Application
« Rat in a Maze
= Container Loading

w

=

[

2

(]

o

-

@
U'
o

b

m

2 [
n

o
rI'
w

=

‘L Branch and Bound

Another way to systematically search a solution space

= Usually searches trees in eitlaebreadth-first or least-cost manner
= But not exactly breadth-first search

= Each live node becomes an E-nedeactly once

= Selection options of the next E-node
= First In, First Out (FIFO)
= The live node list - queue
= Extracts nodes in the same order as they are fuitin
= Least Cost (or Max Profit)
= The live node list - min heap (or max heap)
= The next E-node — the live node with least cost (@aximum profi)

)

SNU Internet DatzBase Lab. \—/

(
(

S
s

Backtracking vs. Branch and Bound

Backtracking Branch and Bound
_ Breadth-first or
Depth-first Search order
Least cost
More Execution time Less
Less: stack Space requirement .More: qgeue
O(length of longest path) O(size of solution space)

It might be expected to examine fewer nodes onymrgouts in a max-profit or least-cost
branch and bound

« Backtracking may never find a solution if tree ttegs infinite

* FIFO branch and bound finds solution closest td ro

 Least-cost branch and bound directs the searphrts of the space most likely to contain
the answer> So it could perform generally better than backtiagk

(D :

SNU Internet DatzBase

m
—
w

=

i Table of Contents

= The Branch and Bound Method

= Application
= Rat in a Maze
= Container Loading

w

=

[

2

(]

o

-

@
U'
o

b

m

2
n

o
rI'
w

=

Rat In a Maze

3 rat-in-a-maze instance

entrance() () (O 0 road
O 1 1 1 : obstacle
00O exit

= A maze is a tour puzzle in the form of a complexbhang passage through
which the solver must find a route

= Path of a maze is a graph
= S0, we can traverse a maze using DFS / BFS
= Branch and Bound Einding solution using BFS

= Worst-case time complexity of finding path to thetetin*n maze is O®)
[

SNU Internet DatzaBase Lab.

Branch and Bound Iin “Rat in a Maze”

Prepare an empty queue and an empty 2D array

Initialize array elements with 1 where obstacles @relsewhere

. Start at the upper left corner and push the posit the queue

.Pop a positiofrom the queue and set current position to it

. Set the array value of current position to 1

. Check adjacent (up, right, down and left) celt®mse value is zero
andpush themnto the queue

7. If we found such cellgush their positionmto the queue

8. If we haven't reach to the goadpeat from 4

oOUAWNER

w

=

[

2

(]

e

-

@
U'
]

b

m

2
n

o
rI'
w

=

Code for Rat iIn a Maze

Prepare an empty queue and an empty 2D array
Initialize array elements with 1 where obstacles are, 0 elsewhere

i1
] 1

Repeat until reach to the goal {

if (][E]][J+1] =0) { put (i,j) into the queue
++;

if (a[i+1][j]==0) { E)ut (i,j) into the queue

++;

if (a[i][j-1]==0) { Iput (i,j) into the queue

if (a[i-1][j]==0) { qut (i,j) into the queue

pop (i,j) from the queue

w

=

c

5

& @
|

-

o

U '
=

(1]

m

2

m

o

b |'
w

C

i Rat In a Maze Example (1)

= Organize the solution space

path obstacle

10

i Rat In a Maze Example (2)

s FIFO Branch and Bound

w
=
c
Fl
o
3
e
o
n
i

m
o
wm
o
&
e

00
00

Push (1,2) and (2,

E-node

(1,1)

1) // Branch

Live node queue

L

11

& Rat In a Maze Example (3)

s FIFO Branch and Bound

Live node queue

L

(2,1)
(1,2)

ép—- B Pop (1,2) and Move (Bound) to (1,2)

i Rat In a Maze Example (4)

s FIFO Branch and Bound

Live node queue

L

(2,1)

? - Push (1,3) // Branch 1

* Rat In a Maze Example (5)

s FIFO Branch and Bound

Live node queue

L

(1,3)
(2,1)

14

* Rat In a Maze Example (6)

s FIFO Branch and Bound

Live node queue

L

(1,3)

m— B Push (3,1) // Branch

i Rat iIn a Maze Example (7)

s FIFO Branch and Bound

Live node queue

E-node
(2,1)
(3,1)
(1,3)
- Pop (1,3) & Move (Bound) to (1,3); no more progress

* Rat In a Maze Example (8)

s FIFO Branch and Bound

Live node queue

L

(8.1)

0o
&D- B Pop (3,1) and Move (Bound) to (3,1)

SNU Inte

* Rat In a Maze Example (9)

s FIFO Branch and Bound

Live node queue

L

- - Push (3,2) // Branch

i Rat In a Maze Example (10)

s FIFO Branch and Bound

Live node queue

L

E-node

(3.1)

(3.2)

* Rat iIn a Maze Example (11)

s FIFO Branch and Bound

Live node queue

L

? - Push (3,3) // Branch 1

* Rat iIn a Maze Example (12)

s FIFO Branch and Bound

Live node queue

L

(3.3)

21

Rat In a Maze Example (13)
= FIFO Branch and Bound

Live node queue

i

1,2 (1,8 oo

(3,3)

(2,2) (2,3)

§

©-@-0-06-9

= Observation
o = FIFO search solution e shortest patfrom the entrance to the exit

éfﬁﬁ- Remembethat backtracking solution may not be a shortest pat

i Table of Contents

= The Branch and Bound Method

= Application
»« Rat in a Maze
» Container Loading

w

=

[

2

(]

o

-

@
U'
o

b

m

2
n

o
rI'
w

=

23

Container Loading

= Container Loading Problem
= 2 ships andh containers

= The ship capacity:,cc,
= The weight of containar w, ><

n
s @ g

= Is there a way to load allcontainers?

= Container Loading Instance
= N=4
= ¢,=12,6=9
= W=[8, 6,2, 3]
&:%ig..’gl a subset of the weights with sum as close &3 possible

24

i Solving without Branch and Bound

= We can find a solution with brute-force search

1. Generate n random numbers x;, X, ..., X,
wherex. =0or1 (i=1,..,n)

2. If x. = 1, we put i-th container into ship 1
If x, = 0, we put i-th container into ship 2

3. Check if sum of weights in both ships are less
than their maximum capacity

3-1. If so, we found a solution!

3-2. Otherwise, repeat from 1

= Above method are too naive and not duplicate-free

=» Branch and bound provides a systematic way to searsibkesolutions
(still NP-complete, though)

(D

SNU Internet DatzaBase Lab.

Container Loading and Branch & Bound

= Container loading is one of NP-complete problems
= There are 2possible partitionings

= |f we represent the decision of location of each @metr with aboranch, we
can represent container loading problem witrea

= SO0, we can traverse the tree using DFS / BFS
= Branch and bound Finding solution using BFS
= Worst-case time complexity is O)af there are n containers

= FIFO branch and bound findslution closest to root
= Ratin Maze

= Least-cost branch and boudidects the search to parts of the space most
likely to contain the answer

= Container Loading
v

(D .

SNU Internet DatzaBase Lab.

i Considering only One Ship

= Original problem: Is there any way to load n corgasnwith

QW g, QP w <G

I belongsto ship; I belongsto ship,
n
= Because ZWi + ZVVi =ZWi IS constant,
i belongsto ship; i belongsto ship, i=1

max(Y w)=min(> w)

i belongsto ship; i belongsto ship,

= SO, all we need to do is trying to load contain¢ishg 1 as much as
e possible and check if the sum of weights of remaicmgainers is less than

Eeual to
(D £ o7

SNU Internet DataB:

ranch and Bound in Container Loading

1. Prepare an empty queue Q & a complete binaryltrgigh depthn
2. Initialize themax to zero
3. Start from root of T and put the root node ithi® queue
4.Pop a nodérom the queue and seto it
5. If we haven't visit left child and have spacéotd Wy,
then load itpusht into Q and move to left child
6. If we haven't visit right childyush t into Cand move to right child
7. If current sum of weights is greater thraax, updatemax
8. Repeat from 4 until we have checked all nodes

w

=

[

2

(]

o

-

@
U'
o

b

m

2
n

o
rI'
w

=

28

Container Loading Code

Consider n, cl1, c2, w are given

Construct a complete binary tree with depth n
Prepare an empty max-priority queue

max < 0

sum < 0

X < root node of the tree

while(true){

|
1
|
I
|
1
|
I
|
1
|
if (x.depth < n && Ix.visitedLeft && c1 — sum = w[x.depth]) { -
sum < sum + w[x depth] !

if (sum > max) max = sum; -
Put (x,sum) into the queue ;
x.visitedLeft < true; I

X < X.leftChild; ;
|

1

|

I

|

1

|

I

|

1

|

I

|

1

|

I

|

1

bs
If (x.depth < n && Ix.visitedRight) {
Put (x,sum) into the queue
x.visitedRight < true;
y X < X.rightChild;
if (the queue is empty) {
If sum(w) — max <= c2, max is the optimal weight
Otherwise, it is impossible to load all containers
o Quit the program }
— Pop (x,sum) from the queue

}

| 29
SNU Internot DataBaselah. mm we on on on on o o e o o e e e e e Em En En Em Em En En En En En En En En Em En Em En Em Em Em Em Em Em Em Em Em Em Em Em Em

Container LoadingExample(1)

= Organize the solution space: 4,g=12,6=9w=8, 6, 2, 3]
= Max Profit Branch Boune® Priority Queue

@ 1 : selection

1 0 . .

/ 8 0 : non-selection
6 1 0

Push A to Live Node Queue

Live node queue
(max-priority)

Container Loadingexample(2)

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

priority = upper weight

= node weight n
+ remaining container weight r
A : 0/19
1 0
e

000000@

Pop A and Move to A

nir

31

SI\.IUIl et Dat B & Lab.

Live node queue
(max-priority)

Container Loadingxample(3)

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

priority = upper weight

= node weight n
+ remaining container weight r A:0
= \{% =

Push B and C // Branch

nir

32

Live node queue
(max-priority)

Container Loadinggxample(4)

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

priority = upper weight

= node weight 77 C:0/11
+ remaining container weight - B 8/11
O

Pop B and Move (Bound) to B

nir

33

SI\.IUIl et Dat B & Lab.

Container Loadingxample(5)

MaXx Profit Branch Boundn =4;¢=12,6=9w =8, 6, 2, 3]

priority = upper weight

= node weight n

+ remaining container weight r
e
6
2

Too big!

- - Push E // Branch
/DB I

Live node queue

(max-priority)

nir

C:0/11

max = 0

34

Live node queue

Container Loadingxample(6) ‘| oy 1

nir

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

priority = upper weight
= node weight n

C:0/11
+ remaining container weight s @ E :8/5

X {8}

D Q (2 G
P 1000000600000
o

Pop E and Move (Bound) to E

i

?:

SNU Internet DatzaBase Lab.

35

Live node queue
(max-priority)

Container Loadingxample(7)

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

priority = upper weight

= node weight n
+ remaining container weight r ® C:0/11
E
{8} G e
X 6
E
: (7 G
2
010101010

[
&ﬁ—-" Push J and K // Branch

nir

i

36

Live node queue

Container Loadingxample(8) ‘| by

nir

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

o , K:8/3
priority = upper weight
= node weight n

C:0/11
+ remaining container weight r @ J:10/3

©
max = 0
8
X 18} 5
E:8
o oo
2
P 1000000000000
o

Pop J and Move (Bound) to J

i

?:

SNU Internet DatzaBase Lab.

37

Live node queue

Container Loadingxample(9) ‘| oyt

nir

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

priority = upper weight
= node weight n

K:8/3
+ remaining container weight r @ C:0/11

- o=
D C O G
JoloJololo
s
1000060600000
. .

Too big!
éﬁg Push U // Branch

i

38

Live node queue

Container Loadingxample(10)"" b

nir

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

o , U : 10/0
priority = upper weight
= node weight n

K:8/3
+ remaining container weight r @ C:0/11

©
max = 0
8
X {8} 5
EO
o oo
2
I 00000000000
o

&ﬁ—-" Pop C and Move (Bound) to C

I

39

Live node queue

Container Loadingxample(11)"|" "

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

priority = upper weight

nir

= node weight n U: 10/0
K:8/3

+ remaining container weight r

1

[
éﬁ - Push F // Branch

Live node queue

Container Loadingxample(12)|" 5

nir

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

o , U : 10/0
priority = upper weight
= node weight n

F:6/5
+ remaining container weight s @ K:8/3

?é? @ max = 0
6
XD L >é
.
2
@ (OO @ G
-0 e
[

é”ﬁ_‘ Pop K and Move (Bound) to K

5

41

Live node queue

Container Loadingxample(13)"|" o

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

priority = upper weight

= node weight 7 | U: 10/0
+ remaining container weight r @ E-6/5
- max = 0
X {8} 5
D £ XG
{8}
2
K:8
3
X
T 0060000 | |
o

Too small!

(D
_ Push V // Branch 42

nir

Live node queue

Container Loadingxample(14) |~ 2"

nir

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

o , U : 10/0
priority = upper weight
= node weight n

V:11/0
+ remaining container weight r @ F:6/5

{Bé? @ max = 0
6
XD F %3<
18}

K:8

@ 0 (D@ €

G 100 ...0 e
[

&ﬁ—-" Pop F and Move (Bound) to F

1

43

Live node queue
(max-priority)

Container Loadinggexample(15) | .

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

priority = upper weight

= node weight 77 U :10/0
+ remaining container weight - VvV 11/0
max = 0

5 B

o
W
é’ﬁ_ Push L // Branch 44

Live node queue

Container Loadingxample(16)"" o\

nir

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

o , U : 10/0
priority = upper weight
= node weight n

L:8/3
+ remaining container weight r @ V:11/0

?:8 @ max = 0
E
D @ A
@ C (O @ G G
T oc o0 [l
[

&ﬁ—-" Pop V and Move (Bound) to V

1

45

Live node queue

Container Loadingxample(17)"}" o

nir

= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]

priority = upper weight
= node weight n

U :10/0
+ remaining container weight r ® L:8/3

?:8 @ max = 0
A a X
D @
@ C (L) W o
(D .. el

max

.- T
>
) o

_ Set max€11, Pop L and Move (Bound) to L 16

Live node queue

Container Loadingxample(18) " &

n/r
= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]
priority = upper weight
= node.vyeight n .
+ remaining container Welgh’[[U : 10/0
max = 11
: X,
H N @)
L L R € d e
o max Too small!
. .
é@ Push X // Branch

47

Live node queue

Container Loadingxample(19) " oo

nir
= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]
priority = upper weight
= node weight 7 | U: 10/0
+ remaining container Welgh’[[X : 11/0
max = 11
D G
H N .
- Q R - d e
max
. .
é@ Pop X and Move (Bound) to X

48

Live node queue

Container Loadingxample(20) " 5

nir
= Max Profit Branch Boundn=4;g=12,6=9w =18, 6, 2, 3]
priority = upper weight
= node.vyeight n . .
+ remaining container weight r U - 10/0
max = 11
5 X
H N @)
P L R c d e
max
. .
é”ﬁ Pop U and Move (Bound) to U

49

Live node queue

Container Loadingxample(21) |~ 0

nir

MaXx Profit Branch Boundn =4;¢=12,6=9w =8, 6, 2, 3]

priority = upper weight
= node weight n

+ remaining container weight r @

{Bé? @ max = 11
o = X
18}
® 0 @ (o

X rax

i

010\
PllallR | s T{8’2}i8’3WY e
[

ship1
é”ﬁ; ship2: {8,6,2,3}-{8,3}={6,2}

50

i BIRD'S-EYE VIEW

= A surefire way to solve a problem is to makgst of all candidate answers and
check them

= If the problem size is big, we can not get the answezasonable time using
this approach

= List all possible cases® exponential cases

= By a systematic examination of the candidate listcarefind the answer
without examining every candidate answer

= Backtracking andBranch and Bound are most popular systematic algorithms

= Branch and Bound

= Searches a solution space that is often organizadras (like backtracking)

= Usually searches a tree ibgeadth-first / least-costanner (unlike
o backtracking)

51

i Table of Contents

= The Branch and Bound Method

= Application
« Rat in a Maze
= Container Loading

w

=

[

2

(]

o

-

@
U'
o

b

m

2 [
n

o
rI'
w

=

52

