
민기복

Ki-Bok Min, PhD
서울대학교에너지자원공학과조교수
Assistant Professor, Energy Resources Engineering

Fundamentals of Computer System
- Lecture 2 (Introducing C)



Last Lecture

Object file contains 
machine language, but 
not ready to run

Interface between your 
computer & operation 
system (DOS or Linux?). 

Collection of useful 
functions

Executable program!

Linker bring together 
object file, startup code 
and library code

The compiler we will use – which is MS Visual C++ express ed – starts linker automatically. 

시동코드



Today’s content

• Putting together a simple C program

• Functions (함수): main(), printf()
• Creating variables, assigning them values, and

displaying those values on screen

• The newline character (개행문자), Operator (연산자): =
• Comments in your program, creating programs with more 

than one functions, and finding program errors

• Keywords – vocabulary of C



1. First C program

last week

this week



1. First C program

• Tells the compiler to include the information found in the file stdio.h.
• stdio.h: a standard part of all C compiler packages, support for 

keyboard input and for displayinig output

• #include : preprocessor instructions (전처리지시자)

Include another file



1. First C program

• C program consist of one or more functions (함수).
• This particular program (first.c) consists of one function called main.
• The parenthesis identify main() as a function name

• int → main() returns an integer, void → main() doesn’t have argument (전달인자)
• main() is always the first function called.
• Old compiler → int main() :pre ISO/ANSI C compiler

a function name



1. First C program

• The symbols /* and */ enclose comments.
• Clarify a program.
• They are intended for the reader only
• Ignored by the compiler

a comment (주석)



1. First C program

• Opening and closing brace marks make up the function

Beginning & finishing of the body of the function



1. First C program

• Announces that you are using a variable called num
• num will be an int (integer) type

A declaration statement
선언명령문



1. First C program

• Assigns the value 1 to the variable called num

an assignment statement
(대입명령문)



1. First C program

• Displays the phrase I am a simple on your screen
• Leaves the cursor on the same line

• printf() is called function and is part of the standard C library

• Using a function in the program is termed calling a function (함수호출)

a function call statement
(함수호출명령문)



1. First C program

• Prints the value of num embedded in the phrase in quotes.
• %d instructs the computer ‘where’ and ‘in what form’ to print the value 

of num

last function call statement
(마지막함수호출명령문)



1. First C program

• a C function can furnish (or return) a number to the agency that used it.

• ISO/ANSI C requirement for a properly written main() function.

a return statement
(리턴명령문)



2. Program Details
#include directives and Header Files

• #include<stdio.h>
– An example of C preprocessor directive (C 전처리지시자)
– Preprocessing (전처리): C compiler perform some preparatory 

work on source code

– Same as typing the entire stdio.h file (~300 lines) into your file
– stdio.h stands for Standard input/output header
– Contains information about input and output functions, ex) printf()
– A collection of information at the top of a file: header

Library: contains actual code for a function, 
header files: help guide the compiler in putting your program together 



2. Program Details
#include directives and Header Files

• Why wasn’t this automatically included???



2. Program Details
the main() function

• C always begins execution with the function called main().
• You are free to choose names for other functions, but main()

must be there to start things.

• int is the main() function’s return type. 

• Parenthesis enclose information being passed along to the 
function. 

– In this particular example, nothing is being passed along, so ‘void’.
– main() or void main() may or may not work in 

your compiler. But don’t use this old format.



2. Program Details
Comments

• Everything between /*  and */  is ignored by the compiler.

• Valid and invalid comment
/* This is a C comment. */
/* This comment is spread over 

TWO LINES. */
/*
You can do this, too.
*/
/* Hopefully, this works. Not valid



2. Program Details
Comments

// : confined to a single line

Ex)
// Here is a comment
int rigue;   //such comments can go here, too. 

/*
I hope this works.
*/
x = 100;
y = 200;
/* now for something else. */



2. Program Details
Braces (중괄호)

• Only { } 

• 중괄호만쓸것!!!



2. Program Details
Declaration (선언명령문)

• One of C’s most important features

• Does two things;
– 1. Somewhere in the function, you have a variable called num
– 2. int proclaims num as an integer (정수형) (there are other 

types, ex) character, floating-point,…)

• Compiler uses this info for suitable storage space in memory

• ; identifies the line as C statement.
• int is a keyword – reserved for C, so don’t use it for your 

name of a function or a variable.



2. Program Details
Declaration (선언명령문)

• num is called an identifier (식별자) – name selected for a 
variable, a function, or some other entity. Declaration 
connects a particular identifier with a particular location in 
computer memory

• All variables must be declared before they are used.
Ex)

int main() // C99 rules
{
// some statements

int doors;
doors = 5;  // first use of doors

// more statements
int dogs;
dogs =3 //first use of dogs
// other statements

}

As long as it is declared before 
its first use  okay
But, it is a good practice to 
declare variables from the 
beginning.



2. Program Details
Declaration (선언명령문)

• The maximum number of characters for variables: 63
The_maximum_number_OF_characters_for_variables_is_63_the_rest_will_be

– Valid names: snu2 Snu2 Hot_Tub _kcab
– Invalid names: $Z]** 2cat Hot-Tub don’t

• Avoid starting with _ (not an error but confusing with other C 
library identifiers)

• Case sensitive

- Use lowercase or uppercase letters, digits, & underscore. 
- The first character cannot be a digit.

The rest will be simply 
ignored



2. Program Details
Declaration (선언명령문)

• Four reasons to declare variables
– Easier for a reader to grasp what the program is about
– Encourages you to do some planning before you plunging into 

writing a program
– Prevent hard-to-find bugs, 
Ex) Radius1 = 20.4

Circum = 6.28 * Radiusl
– Compiler won’t work without declaration!



2. Program Details
Assignment (대입명령문)

• Assign the value 1 to the variable num.

• You can assign num a different value later – that’s why is it a 
variable

• Assigns the value from the right side to the left side.

• Statement is completed with semicolon ;



2. Program Details
The printf() function

• ()  printf is a function

• I am a simple is passed to printf().

• Printf(“I am a simple”);

• When the program reaches this line, control is to function is 
executed. After function is finished, control is returned to the 
original (calling) function – main() in this case.

Argument (전달인자)



2. Program Details
The printf() function

printf(“computer. \n”);

printf(“My favorite number is %d because it is first.\n”,num)

• % alert the program that a variable is going to be printed

• d tells it to print as a decimal integer

Newline character (개행문자) – a escape sequence
Start a new line at the left = pressing ‘enter’ key.



2. Program Details
Return statement

• int main(void)  main() function is supposed to return an 
integer

• Return 0;

• Even if you don’t do this, it will work. 

• Don’t worry too much about this.



3. The structure of a simple program 
A function consists of a header and a body

#include <stdio.h>
int main(void)

{
int q;
q = 1;
printf(“%d is neat. \n”, q);
return 0;
}

Header

Body
{
…
return 0;
}

Preprocessor instructions (전처리지시자)
Function name (함수이름)

Declaration statement (선언명령문)
Assignment statement (대입명령문)
Function statement (함수호출명령문)



4. Tips  on making a readable program
Style matters

• A readable program is much easier to understand, to correct 
or modify

– Choose meaningful variables
– Use comments as much as possible
– Use blank lines to separate one section from another
– Use one line per statement – C has a free-form format and allows 

for multiple statements per line
#include <stdio.h>
int main(void)  { int q; q = 1; printf(“%d is neat. \n”, q); return 0; }

This program works okay but this a bad program!!



5. Taking another step
Calculation & multiple variables

Begins with a comment

Printing multiple variables

calculation.    feet = 6 × 2

Declares two variables instead of just one, 
Use comma ,

Printing a value (not just a variable)



5. Taking another step
Multiple functions

• butler() function appeared three times: prototype, function call, function definition
• void butler(void)

• Prototype: - a declaration telling the compiler that you are using a function.
- specifies properties of the function

• The location of function definition does not matter. But it’s nice to put main() first.

prototype

Function call

Function definition

butler() executed here!!!

no return value no argument



5. Taking another step
Debugging – Syntax errors

• Bugs: program errors.
• Debugging: finding and fixing the errors.
• Syntax error = Grammatical error in C, compiler will find these (but don’t 

just rely on that)~ grammatical error in English

*/ 

;

{

}

int n, n2, n3; or
int n; int n2; int n3;



5. Taking another step
Debugging – semantic errors

• Semantic errors: errors in meaning
• Compiler does not detect semantic errors  don’t violate C rules.
• You have to find these errors.

N3 = n2 * n;



5. Taking another step
Debugging – Program state

• Tracing the state
– Follow the program steps one by one
– Use extra (temporary) printf() to monitor the selected variables at key points
– Use debugger

Tracing a program



5. Taking another step
Keywords and reserved identifiers

• Keywords : vocabulary of C – not your vacabulary and we can’t use 
them as identifier
Ex) int float do void if long …

– There will be syntax errors if you use them.

• Reserved identifiers: no syntax errors but you shouldn’t use. Reserved
Ex) printf(), _Bool (those beginning with _)



Summary

• Putting together a simple C program

• Functions (함수): main(), printf()
• Creating variables, assigning them values, and

displaying those values on screen

• The newline character (개행문자), Operator (연산자): =
• Comments in your program, creating programs with more 

than one functions, and finding program errors

• Keywords – vocabulary of C


	Fundamentals of Computer System�- Lecture 2 (Introducing C)
	Last Lecture
	�Today’s content
	1. First C program
	1. First C program
	1. First C program
	1. First C program
	1. First C program
	1. First C program
	1. First C program
	1. First C program
	1. First C program
	1. First C program
	2. Program Details�#include directives and Header Files
	2. Program Details�#include directives and Header Files
	2. Program Details�the main() function
	2. Program Details�Comments
	2. Program Details�Comments
	2. Program Details�Braces (중괄호)
	2. Program Details�Declaration (선언 명령문)
	2. Program Details�Declaration (선언 명령문)
	2. Program Details�Declaration (선언 명령문)
	2. Program Details�Declaration (선언 명령문)
	2. Program Details�Assignment (대입 명령문)
	2. Program Details�The printf() function
	2. Program Details�The printf() function
	2. Program Details�Return statement
	3. The structure of a simple program �A function consists of a header and a body
	4. Tips  on making a readable program�Style matters
	5. Taking another step�Calculation & multiple variables
	5. Taking another step�Multiple functions
	5. Taking another step�Debugging – Syntax errors
	5. Taking another step�Debugging – semantic errors
	5. Taking another step�Debugging – Program state
	5. Taking another step�Keywords and reserved identifiers
	�Summary

