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1. Fabrication of
High entropy alloy foams




OUTLINE

1) What is the thermal shield material ?
2) Needs and problems of metal matrix thermal shield

1) Alloy design for fabricating HEA foam : Phase separating HEA
2) Fabricating method : Dealloying process

1) Porous structure of HEA foam
2) Thermal and Mechanical properties of HEA foam
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Thermal shielding property : Resistance to thermal flux

> High strength, large ductility and high formability are needed !
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Advantages of porous structure

Metallic materials

l.i

e Strong & Ductile
 High formability

e Heavy

Constituted with heavy elements

e High conductivity

Due to the free electrons

Porous
structure

Insulative
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High entropy alloy

Traditional alloy Minor High entropy alloy

element 3

Major
element ...

Minor Major
element 2 element 3
Major Major
element element 1
Minor Major
element 1 element 2
number of elements T < configurational entropy 1
ASconfig. = Rin(n)
(1) Thermodynamics : high entropy effect (2) Kinetics : sluggish diffusion effect
(3) Structure : severe lattice distortion effect (4) Property : cocktail effect

> HEA is stable especially at high temperature

AGconfig. — AHconfig. - TASconfig.
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Dealloying process

Due to the high phase stability and high melting point of HEA,
it is hard to fabricate foam with conventional methods.

Dealloying process
Metal Index (V)
Most cathodic
g Gold -0.00
’ e Copper -0.35
" W | lron -0.85
‘ Zinc -1.25
' d Magnesium -1.85
Ce.!(e Wi ‘ Most anodic

is a corrosion type in some solid alloys, when in suitable conditions
a component of the alloys is preferentially leached from the material.
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Alloy design : Phase separating HEA
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FeCoCrNi-Cu alloy

1) SEM / EPMA analysis

EPMA data Cu Fe Ni Co Cr
Inter-dendrite 84.43 2.87 6.52 3.38 2.80
Dendrite 8.31 22.57 22.05 23.54 23.52

2 Cu-rich region is separated even at high entropy condition.

intensity (a.u.)

2) XRD pattern

Vv Inter-dendrite
Vv Dendrite

2 theta (deg)
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HEA foam fabricated by dealloying process

1) SEM image (tilted 45°) 2) XRD pattern

. .

Vv Inter-dendrite
v Dendrite v

v v

fﬁ:ﬁﬁiﬁg&iiﬁfiiiiiiiff{Niﬁ::iiﬁi
(1) As-cast

(2) Dealloyed

intensity (a.u.)

1 1 1

40 45 50 55
2 theta (deg.)

2 Dendritic directional pores are fabricated after dealloying.

Need to confirm ‘ 3-D tomography
connectivity of pores by serial sectioning
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Microstructure confirmation : 3-D tomography

FeCoCrNi
(Dendrite structure)

HEA foam dealloyed from FeCoCrNiCu

Copper content (at.%) 10 20 30 40

Calculated porosity (%) 8.7 18.3 27.6 39.2

Measured porosity (%) 111 19.4 29.3 38.5

P Porosity values are similar between calculated and measured one.

. . . . Pore structure
» The pore structure of interdendrite area is fully interconnected. (Inter-dendrite structure)
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Pseudo-binary phase diagram of PS-HEA
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> Pseudo-binary system between FeCoCrNi and Cu shows
monotectic reaction having liquid separation region.
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Compressive yield strength of HEA foam
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» At low porosity, HEA foam preserves its yield strength which was about 200 MPa.

» However, after about 25 % of Cu content, the yield strength drops severely.
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Pseudo-binary phase diagram of PS-HEA
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> Pseudo-binary system between FeCoCrNi and Cu shows
monotectic reaction having liquid separation region.
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Strength drop due to monotectic reaction

a) Hypo-monotectic reaction (20 at.% of Cu)
l.__.l = Liquid
Nuclei ofFCCI‘ \Onger than 100 pm

~
T
I\ (5

Thick & Long dendrites

Dendritic growth of FCC 1

Nucleation of FCC 1
Dendrites of hypo-monotectic condition are interconnected well

» High strength

b) Hyper-monotectic reaction (40 at.% of Cu)
O O O .
Shorter than 30 ym

Thin and short dendrites

Dendritic growth of FCC 1

Liquid phase separation

Each small dendrite is separated in short period, since
each of it is nucleated after liquid separation.

» Low strength
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Thermal diffusivity /conductivity of HEA foam

LFA: ASTM E1461

110 __® ® pure Copper — 8
083-___ m  FeCoCrNi g
—_ . 004 5 . _ v (FeCoCrNi), Cu,, o~ 4
o 103.6 e A HEAfoam E i
2 100L 1022 " ~-go__ <,
o 1001 "T--e__ g
9843 ""~--e__ 2 |
96.64 E 2
— s
-'B’ ————————— = g§4T. = g 1
= 14.9 é
é 131 137 14.3 : . | . |
= 0 10 20 30 40
10E Cu contents (at. %)
E 42 44 45 300K, 1atm
) L 3. : 4.0 4.1 :
ﬁ ___3:3____32 ------ m------- m------- BEELLILL W------- Lo Material a(mm?/s)
! } L 0.92 0.93 0.96 1.0
0 0 .81 0§3 04_88 A A A A C.alrbon 216.5
Silver 165.63
Te rature Molybdenum 54.3
I (OC) Air 19
o Steel, 1% C 11.72
Cu contents (%) 0 10 20 30 40 Quartz 14
Thermal cond. 15.4 5.1 2.6 0.68 0.35 Sandstone 115
_ Brick, common 0.52
Thermal diff. 4.9 1.6 0.81 0.22 0.13 Glass, window 0.34
HEA foam 0.1~5
P Thermal diffusivity decreases exponentially against Rubber 0.089 - 0.13
the composition of Cu which is proportional to porosity. Wood 0.082
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Low thermal diffusivity of HEA foam

Thermal diffusivity (o) - mm’ /sec
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2> HEA foam shows similar thermal diffusivity value with ceramic foams
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2. Fabrication of
Biocompatible Co-Cr foams




Outline

> Fabrication of porous Co-Cr alloy by LMD process

* Introduction of bio-compatible Co-Cr alloy
= Fabrication method : Liquid metal dealloying process, LMD
= Microstructure optimization - Process condition control

> Properties of Co-Cr alloy foams

= Biocompatibility
» Hydrophilic test : Water drop test
» Osteoblast cultivation on Co-Cr alloy foam

= Mechanical properties
» Compressive properties of Co-Cr alloy foam
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Porous Co-Cr alloy for biomedical applications
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v’ Excellent bio-compatibility

v' High corrosion and fatigue resistance

v" Good mechanical properties - fracture toughness and strength

+ Porous structure?

> Porous Co-Cr alloy can be a good candidate for implant materials
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Limitation of sintering for porous Co-Cr alloy

M.T. Dehaghani et al. / Materials and Design 88 (2015) 406-413

spol Magn. .,

31

v Porous Co-Cr alloy is normally fabricated by sintering powder
= Itis hard to control property of porous structure with sintering technique - Connectivity

* A material developed by sintering is normally exhibiting brittleness due to defects

2 New method to fabricate porous structure of Co-Cr alloy is needed !
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Liquid metal dealloying process - Thermodynamics for pore fabrication

I
Miscible

[ ]
Immiscible

Dealloying by metallic melt

Takeshi Wada *, Kunio Yubuta, Akihisa Inoue, Hidemi Kato

Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980-8577, Japan

1
Dissolution|
-

Metallic melt
ARTICLE INFO ABSTRACT
f‘-mdf-’ history: Dealloying, which commonly involves corrosion processes in aqueous solutions, is a promising technique for
Received 14 December 2010 preparing functional nanoporous metals. While this technique is ideal for preparing nanoporous noble metals

Accepted 18 January 2011

- ) such as of Au, it is not readily applicable to less-noble metals, Here, we propose a novel dealloying method
Available online 25 January 2011

employing a metallic melt, instead of an aqueous solution, as the dealloying liquid for a preparing of
nanoporous metals. An atomic interaction among alloy components and metallic melt causes specific
component to dissolve out from the alloy solid into the melt with self-organizing nanoporous structure by the

Keywords:
Porous materials

Metal and alloys remaining component. The dealloying method can be applied for preparation of nanoporous less-noble metal
Composite materials such as of Ti for the development of functional materials such as fluid filters, gas absorption media, and
biomaterials.

© 2011 Elsevier B.V. All rights reserved.
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2 Metallic materials can be dealloyed by a liquid metal as well as an etchant
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Alloy design for LMD precursor - (Co,Cr,)-Ni “single solid solution alloy”

2000

FCC solid solution

1200 ¢

Temperature (K)
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element /

Solid solution
=~, former

A : Melt
B-C : Precursor

v" To obtain target composition which is Co,Cr, precursor was prepared with composition of Co,Cr-Ni.

v The precursor alloy was ternary single solid solution of cobalt, chromium and nickel.

2 Ternary alloy was designed with consideration of thermodynamic correlation
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Microstructure analysis of porous Co-Cr alloy : Co,,Cr,,Ni-, (50% porosity)

1) SEM image 2) XRD pattern
> Vv Co-Cralloy
Vv Ca-rich phase
v Oxide
Y V v v

v v v v

(3) after etching

(2) after LMD

Intensity (a.u)

(1) (CosCr)Ca

20 30 40 50 60 70 80 90 100
2 thtea (deg.)

v" The precursor alloy, Co,,Cr;,Nis,, was immersed in 1000°C Ca melt for 10 minutes
v’ After LMD process, well-connected Ca rich phase was formed in several mm depth
v Etched in 0.3M nitric acid, the Ca-rich phase disappeared and only Co-Cr alloy phase remains

> Porous Co-Cr alloy was successfully fabricated by LMD process
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Porosity control by changing precursor composition

Co Cr Ni Ca Co Cr Ni Ca Co Cr Ni Ca
Content Content Content
(at.%) 68.79  25.79 5.42 0.00 (at.%) 68.47 24.30 6.89 0.34 (at.%) 66.57 25.77 7.65 0.00
Relative density : 0.784 Relative density : 0.561 Relative density : 0.320

v" The porosity was successfully controlled by changing Ni content
»  which has negative enthalpy of mixing with Ca.
v" Very small amount of Ni is still remaining in Co-Cr alloy foam.
» Because Ni has solubility limit, 7at.%, to Co-Cr alloy, small amount of Ni can be remained.

* And the ratio between Co and Cr was changed to 3:1 after LMD process

> Itis possible to control porosity by changing composition of precursor
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Surface morphology control by changing etchant - Water etching

Free energy of dealloying

F=ac(1-c) -l K -T[clnc + (1-c)In(1-c)] I

a=6(E,, - (1/2)(E, .+ Egy))

[A71[H;0%]

Ko = THAlH, 0]

e Ca+2H,0=Ca(0OH),+H,

» Ko o0 = 1014 : Meaningless value

e 4Ca+10HNO,
=4 Ca(NO,), + N,0 + 5 H,0

> K a 2o = 20 : Considerable influence

W,

> Etchant can affect surface morphology
of Co-Cr alloy foam
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Hydrophilic test for Co-Cr alloy foam with various pore structure

DI water droplet (1g)

Hydrophlllc property ‘
| ~ 1/wettmg angle

Biocompatibility X

o

CoCr 25N 50N 75N 25W 50W 75W

Contact angle (deg.)

v Every foam is more hydrophilic than Co-Cr alloy because of its porous structure

» Thisis because of not only intrinsic property of Co-Cr alloy but also the porous structure

2 Biocompatibility can be enhanced by surface morphology of porous structure
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Osteoblast cultivation on Co-Cr alloy foams

o :'. R -
'm,z_ % =
il T i e} U

v Co-Cr alloy shows very high bio-compatibility itself - Several cells are well-attached on the surface

v Every sample with various porosity shows good bio-compatibility which is similar to Co-Cr alloy
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Mechanical test : Compressive stress-strain curve

— (Co-Cr)75Nizs
— (Co-Cr)s0Niso
600 —— (Co-Cr)2sNi7s

_____________________________
______________
_________________________
—————————

Compressive stress (MPa)
S
S

Compressive strain (%)

v Elastic modulus of Co-Cr alloy foam decreased according to increase of porosity

v Compressive strength of Co-Cr alloy foam was enough high by comparison with Ti alloy foam
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