5. Rotor Design, Stability & Control and Model Flight Testing by Dr. James Wang

SNUevtolclass@gmail.com

For students to use in the 2022 eVTOL Design Short Course at SNU, please do not reproduce or distribute

Topics

- 1. Rotor design
- 2. How helicopters are controlled
- 3. Controls for different eVTOL Aircraft
- 4. Aircraft stability
- 5. Stability & Control analysis
- 6. Model testing

Different Types of Rotors

Fixed Pitch or Variable Pitch?

Most Quadcopters and Multi-Rotors Use Fixed Pitch Rigid Propellers

Simple Collective Pitch Change Only

(Means all blades change pitch angle together)

Pumping Hydraulic Fluid to Change Pitch

Using Gears to Change Pitch on FWI90

Another Design Using Gears to Change Pitch

A Mechanical Actuator Through Hollow Shaft

Collective + Cyclic Pitch Change

Blade Pitch Change Mechanism

Collective + Cyclic Pitch Change

The Rotor is Mounted to the Main Gearbox

Eurocopter EC225

3 Major Types of Helicopter Rotor Hubs

Fully articulated rotor

Hingeless rotor

Bearingless rotor

Hingeless and Bearingless Rotors

2-Bladed Teetering Rotor

Helicopter and VTOL Flight Control

Multi-rotors are Mechanically simpler than Helicopters. Torque is Balanced When Even Number of Rotors is Used

A multi-rotor has no mechanical control. Pitching, rolling and vertical motions are controlled by varying rotor thrust/rpm. Axi-symmetrical -> No Control Cross-coupling -> Easier Piloting

Rotor Forces in Steady Forward Flight

Yaw Control for Quadcopter (Ex: Yaw Left)

Canting All 4 Rotors Improves Yaw Response by Introducing a Side Force to Spin the Drone

The DJI Phantom 3 drone introduced in April 2015

Helicopter Controls

Different Helicopter Configurations

Single Main and Tail Rotor

NOTAR((NO TAil Rotor)

Tilt Rotor

Tandem Rotor

Coaxial Rotor

Side by Side

Pusher Propeller

Tip Jet

Quad Tilt Rotor

Fore/Aft Cyclic Control

Forward/aft cyclic controls pitch rotation, forward/back translation in hover, and climb/descent in forward flight.

Left/Right Cyclic Control

Left/right cyclic controls roll banking, left/right translation in hover, and veer left/right in forward flight.

Collective Control

Collective/throttle stick controls vertical translation

Yaw Control

Tail rotor controls rotating left/right

Tail rotor is required to counter the main rotor torque

If a main rotor spins counter-clockwise, as viewed from above Anno Anno Tail rotor thrust required to counter main rotor torque Then there is a reaction for the fuselage to spin clockwise

But tail rotor thrust also causes the helicopter to lean left in hover

Side force from main rotor to

Lift

Thrust

Side force

Front View

counter tail rotor thrust

Tail rotor

thrust

Tail rotor thrust

That is why in hover, some helicopters are never sitting level.

Solution: raise tail rotor to same height as main rotor

Now, forces and moments are balanced, helicopter hovers level.

Thrust Equals Weight in Hover

Rotor Forces in Steady Forward Flight

How Does a Helicopter Go Into Forward Flight?

"Needs to rotate the fuselage first"

Two Ways to Produce a Moment at the Helicopter CG

1. Fuselage Moment due to a Rotor Moment at the rotor hub

2. Fuselage Moment due to a Thrust Tilt

Summary on Control Moment

- Weaker compared to moment from hinge offset
- Need at least 3 to 4% flap hinge offset "e" to have good control authority.
- For good agility and aerobatic performance, need 5 to 10% flap hinge offset.

Why helicopters are difficult to fly

(1) They are inherently unstable

(2) They have multiple axis of instability

(3) Each pilot control does multiple functions

(4) Pilot has to anticipate and do 4 orders of math integration in his head

Helicopters are Difficult to Fly Because: (1) They are inherently unstable

Airplanes are inherently stable

Helicopter are inherently unstable

Helicopters are Difficult to Fly Because: (2) They have many axis of instability

- 6 degrees of freedom (DOF)
- Human brain can easily control 2 or 3 DOF instabilities, but 6 is challenging.

Helicopters have many axis of instabilities, but human brain can manage 2 or 3 DOF instabilities with practice

Balancing a broom stick is a good example

Corollary: the Smaller the More Difficult to Control

Smaller objects have a shorter *"Time Constant " Time constant* is a measure of how fast a system reacts

Helicopters are Difficult to Fly Because: (3) Each control does multiple functions

Unlike airplane, in helicopters there are many cross-coupling

- Forward/aft stick controls pitch rotation, forward/back translation, climb/descent
- Left/right cyclic controls roll rotation and left/right translation
- Rudder pedals control left/right rotation

Cyclic

contro

stick

Helicopters are Difficult to Fly Because: (4) Pilot Has to Anticipate Reactions in His Head

A Pilot Has to Do 4 Math Integrations in His Brain

Starting point: steady hover

Rotated about the vehicle CG

Accelerating away in the x direction

Control Methodology and Trade Study for Other VTOL Configurations

Quadcopters also have to rotate first then translate. The dynamics are similar to helicopters.

Advantage: no mechanical controls reduces design complexity Disadvantage: tilting the vehicle in forward flight can be uncomfortable for passenger

Volocopter X2

415

TPE

41

1

Another advantage: regardless of how many rotors, it still controls like a simple quadcopter Electric power facilitates designing vehicles with many distributed rotors and smaller motors to reduce cost

.

an and

Basic Lift + Cruise Design

Advantages:

- (1) Eliminate heavy mechanical tilting mechanism
- (2) Simplify control laws design by separating hover and forward flight
- (3) Fuselage remains horizontal during transition and forward flight.
- Disadvantages: Carrying two sets of rotors, more drag in forward flight.

Increasing the Complexity Factor by Retracting the Lift Rotors to Reduce Drag

During the Conceptual Design Phase, It is important to analyze complexity versus cost, schedule, and reliability

Tiltrotors Increases Control Laws Complexity During Transition Flight Regime. But Minimizes Drag in Forward Flight.

Example: Project Zero's Controls in Hover

Heave: synchronous collective pitch

Pitch: longitudinal cyclic coupled with rotor_symmetric tilting

Roll: differential collective pitch

Yaw: differential longitudinal cyclic coupled with rotor differential tilting

Project Zero's Controls in Forward Flight

Thrust: synchronous collective pitch

Pitch: synchronous elevon deflection

Roll: differential elevon deflection

Yaw: differential collective pitch

Lilium Jet's Control Surfaces

Lilium Jet's Controls in Hover

Roll: differential thrust by rpm (left & right)

Pitch: differential thrust (fore & aft) & thrust vectoring

Yaw: differential thrust vectoring

Lilium Jet's Controls in Forward Flight

Thrust: thrust change by varying rpm

Roll: differential ducted canards & wing fans acting as aileron

Pitch: ducted canards & wing fans acting as elevator

Yaw: differential thrust (left & right)

Airbus Vahana (Tiltwing)

EXPERIMENTAL

3

Vahana Controls in Hover

Vahana Controls in Forward Flight

To yaw right, increase thrust in motors 3,4,7,8 and decrease thrust in motors 1,2,5,6

Source: <u>https://acubed.airbus.com/blog/vahana/exploring-control-allocation-for-e-vtol-vehicles/</u>

Joby S4

Joby S4's Rotor Tilting Mechanism

Source: VFS Nov 2020 eVTOL News, Sustainableskies and Joby patent

Joby S4's Controls in Hover

Heave: synchronous rotor thrust control by collective pitch

Roll: differential thrust (left & right)

Pitch: differential thrust (fore & aft) & can tilt the fore and aft pylons. Many flexibilities

Yaw: rotor nacelle tilting (disclosed in Joby patent)

Joby S4's Controls in Forward Flight

Thrust: thrust change by varying rpm & variable pitch propellers

Roll: differential wing ailerons

Pitch: tail ruddervators deflection

Yaw: ruddervators & differential thrust (left & right)

Hyundai Supernal S-A1's Controls in Hover

Heave: synchronous rotor thrust control by collective pitch and rpm

Roll: differential thrust (left & right)

Pitch: forward tilting rotors & differential thrust (fore & aft)

Yaw: rotor tilting angle (left & right) & differential rpm change

Hyundai Supernal S-A1 Control Surfaces

Hyundai S-A1's Controls in Forward Flight

Thrust: thrust change by varying pitch

Pitch: tail ruddervators deflection

Roll: differential wing ailerons deflection

Yaw: differential thrust (left & right) & ruddervator deflection

Beta Technologies Alia

Beta Technologies Alia's Controls in Hover

Roll: differential thrust (left & right)

Pitch: differential thrust (fore & aft)

Yaw: differential rpm change

Beta Alia's Controls in Forward Flight

Thrust: rear thrust change by varying rpm

Pitch: tail elevators deflection

Bell Nexus 4EX's Controls in Hover

Heave: synchronous thrust change by varying pitch

Roll: differential thrust (left & right)

Pitch: differential thrust (fore & aft) & ducted control vanes

Yaw: differential rpm change & ducted control vanes

Bell Nexus 4EX's Control Surfaces

Bell Nexus 4EX's Controls in Forward Flight

Thrust: thrust change by varying pitch

Pitch: tilting rotors & ducted vanes deflection

Roll: differential tilting rotors, ailerons & ducted vanes deflections

Yaw: tail rudder deflection & differential thrust (left & right)

Wisk Cora Control Surfaces

Wisk Cora Controls in Hover

Roll: differential thrust (left & right)

Pitch: differential thrust (fore & aft)

Yaw: differential rpm change & lateral forces

Wisk Cora Controls in Forward Flight

Thrust: thrust change by varying rpm

Pitch: tail elevator deflection

Roll: differential ailerons deflection

Yaw: tail rudders deflection

Wisk Cora Lift Rotors are all Canted

Wisk Cora Yaw Controls in Hover

Section The

Example, Yaw Left

Wisk Cora's Angled Rotors

Increased yaw control effectiveness with rotor cant angle

Boeing PAV eVTOL also tilts the lift fans for enhancing yaw controls in hover

Archer Aviation Maker

Vertical Aerospace VA-X4

Archer Aviation Maker and Vertical Aerospace VA-X4

Summary of eVTOL Models Studied

Assumed Control Capabilities

Control Strategy	Lilium Jet	Joby S4	Hyundai SA-1	Bell Nexus 4EX	Beta Alias	Wisk Cora
Hover Controls	Multirotor + Thrust Vectoring Capabilities	Multirotor + Thrust Vectoring Capabilities	Multirotor + Thrust Vectoring Capabilities	Multirotor + Thrust Vectoring Capabilities	Multirotor	Multirotor
Forward Flight Controls	Tilting ducted rotors on canard and wing like control surfaces	Ailerons & Ruddervators	Ailerons & Ruddervators	Ailerons & Control Vanes	Ailerons & Ruddervators	Ailerons, Rudders Elevator
Transition Modes	Rotor Tilting Vectored Thrust	Rotor Tilting Vectored Thrust	Rotor Tilting Vectored Thrust & Lift + Cruise	Rotor Tilting Vectored Thrust	Lift + Cruise	Lift + Cruise
Weight Challenge	Many motors, inverters, wires	6 tilting rotor, variable pitch, +control surfaces	4 tilting rotor, boom structures, +control surfaces	4 massive duct tilting rotor, +control surfaces	Boom structures and 4 lift rotors for hover only	12 rotors and pylons for hover only
Control Challenges	In hover rely on rpm change, could be delay	Require automatic scheduling nacelle tilting vs airspeed	Require automatic scheduling nacelle tilting vs airspeed	Require automatic scheduling duct tilting vs airspeed	Transfer/blend multirotor and airplane controls during transition	Transfer/blend multirotor and airplane controls during transition

V-Tail

Left ruddervator also causes roll right

Taylor Mini IMP

Aircraft Forward Flight Stability

I recommend design your eVTOL aircraft to be stable in forward flight first. Preferably it can be flown in forward flight without any SAS (stability augmentation system).

Then use SAS to stabilize hover. Helicopters can hover without SAS, but it is almost surely your eVTOL aircraft will require SAS for hovering.

Static Stability

Static stability of a body is an initial tendency of that body to return to its equilibrium state after a disturbance.

Static Stability

Dynamic Stability

An aircraft is said to be dynamically stable if, after a disturbance, it eventually returns to its equilibrium state.

Aerodynamic Center of an Airfoil

The aerodynamic center (AC) of an airfoil, or a wing, is defined as that point on the airfoil where the aerodynamic moment (M) does not depend on angle of attack (α)

Neutral Point of an Aircraft

The neutral point (NP) is defined as that point on the longitudinal axis of an aircraft where the aerodynamic moment (M) does not depend on angle of attack α of the aircraft.

To have a stable aircraft, $C_{M\alpha}$ must be negative

To have a stable aircraft, $C_{M\alpha}$ must be negative

Even for Arrow, Wants CG to be Ahead of CP

The center of pressure (CP) is the point where the total sum of a pressure field acts on a body.

Static Margin

 The static margin is the distance between the center of gravity (CG) and the neutral point (NP). It is usually quoted as a percentage of the Mean Aerodynamic Chord. A desirable value is between 0.05 to 0.30

• The center of gravity must lie ahead of the neutral point for positive stability (positive static margin).

Static Margin for Several Aircraft

Cessna 172	0.19		
Learjet 35	0.13		
Boeing 747	0.27		
North American P-51	0.05		
Convair F-106	0.07		
General Dynamics F-16A	-0.02		
General Dynamics F-16C	0.01		
Grumman X-29	-0.33		
Your eVTOL	?		

Case Study: Tandem Wing eVTOL Configuration

Challenging to design

Summary on Static Margin

- Some combat aircraft have the CG behind the NP and they are intentionally designed to be longitudinally unstable so they will be highly maneuverable. They rely on flight computer to stabilize the aircraft.
- There are many eVTOL aircraft configurations, some of these configuration may have poor static margin and must rely on flight computer to make the aircraft controllable.
- Ultimately, the position of the center of gravity relative to the neutral point determines the stability, control forces, and controllability of the vehicle.
Stability & Control Analysis and Control Laws

- Equations of Motions (EOM)
- Stability derivatives
- Feedback loop

Let's Derive the Equations of Motion for a Helicopter

Aircraft's Equations of Motion (EOM)

 The forces and moments acting on any aircraft can be described by 6 EOM and 6 degrees of freedom (three x, y, z translations and three rotations: pitch, roll, yaw).

 The forces and moments acting on the aircraft are produced by aerodynamics acting on the wing, horizontal stabilizer, vertical fin, fuselage, main rotor, tail rotor and any other surfaces.

1st Step, Draw Force and Moment Diagrams

2nd Write the 3 Forces and 3 Moments Due to Equations Horizontal Due to Tail stabilizer Due to Due to in rotor rotor Main rotor rotor Aircraft pitch angle $X_M + X_T + X_H + X_V + X_F = G.W. \sin \Theta$ Longitudinal force (forward) Lateral $Y_M + Y_T + Y_V + Y_F = -G.W. \sin \Phi$ force (right) Vertical $Z_M + Z_T + Z_H + Z_V + Z_F = -G.W. \cos \Theta$ force (down) $R_{M} + Y_{M}b_{M} + Z_{M}y_{M} + Y_{T}b_{T} + Y_{V}b_{V} + Y_{F}b_{F} + R_{F} = 0$ Rolling moment (down to right) $M_{M} - X_{M}b_{M} + Z_{M}l_{M} + M_{T} - X_{T}b_{T} + Z_{T}l_{T} - X_{H}b_{H} + Z_{H}l_{H}$ Pitching moment $-X_{\nu}h_{\nu} + M_{\mu} + Z_{\mu}l_{\mu} - X_{\mu}h_{\mu} = 0$ (nose-up) $N_{M} - Y_{M}l_{M} - Y_{T}l_{T} - Y_{V}l_{V} + N_{F} - Y_{F}l_{F} = 0$ Yawing moment (nose to right)

Stability Derivatives

- Measure of how much a force or moment changes when there is a small change in flight condition parameters
- 10 flight parameters can be considered

<u>6 DOF</u>

- pitch angle, θ
- Longitudinal translation, x Lateral translation, y
- roll angle, ϕ Lateral tran
- Yaw angle, ψ
- Vertical translation, z

4 pilot control inputs

- Longitudinal Cyclic Pitch, B₁
- Lateral Cyclic Pitch, A₁
- Collective Pitch, Θ_{0_M}
- Tail Rotor Pitch, $\Theta_{0_{T}}$

Stability Derivatives

How to interpret these stability derivatives physically?

Example: $\frac{\partial X}{\partial \dot{x}}$ is a measure of how much a small change in longitudinal velocity affects the longitudinal force experienced by the helicopter.

Matrix form for the 6 EoM

Matrix form for the 6 EoM

Matrix form for the 6 EoM

Matrix form for the 6 EoM

Minimal contribution to longitudinal & lateral motion (coupled effects)

- Can be usually ignored
- With computer analysis, can be left in

The 6x6 Matrix

- models the natural characteristics of the aircraft/helicopter (plant)
- The eigenvalues of the 6x6 matrix reveals the natural stability of the plant.
- Can plot the eigenvalues (poles and zeros) on a root locus plot → The plant is stable if all poles are on the left half side of the root locus plot.

Matrix form for 4 Control inputs that generates the Rotor Forces and Moments

6 DOF 6x4 matrix of Control derivatives 4 pilot controls

How To Implement the Theory and do Flight Simulation

- There are off-the-shelf software to do stability and feedback analysis.
- Can model the equations in **Matlab**, and use **Simulink** to do a simulation of the system.
- Then link Simulink to FlightGear to do the graphic display
- FlightLab is a professional software developed by ART to model the complete flight mechanics of different helicopters and airplanes.

FlightGear Simulator

- Free open source flight simulator
- Visualise position and attitude of aircraft model, whilst rendering surrounding environment
- Information in Simulink model sent to FlightGear for 3D rendering/visualisation
- Customised aircraft model exported from Blender (graphic software) into FlightGear and simulated using transition model in Simulink

Example Simulink Model for an Hover eVTOL

Components of Transition Model Using Switch

Switch tool

- Switches between cruise and hover modes, depending on the control input provided from controller
- A 6x1 matrix (F & M) from both cruise and hover models are input to this switch (top & bottom)
- Middle input is from controller

X-Plane Flight Simulator Software

- Latest release: X-Plane 11.55 (2021)
- X-Plane differentiates itself from other simulators by incorporating **Blade Element Theory** to compute lift forces
- "Plane Maker" software allows users to customise their aircraft and fly without input equations
- ➤Shape body of aircraft
- ➤Work with aircraft system
- Modify aircraft properties
- ➢ Perform flight tests
- Starting at under \$100 for a personal version

Physical Flight Simulators

- Flight simulators have different level of qualifications depending its complexity
- It ranges from Level A to D where A has a motion system with at least 3 degrees of freedom and D has all degrees of freedom with a digital display of at least 150 degrees which provides realistic visuals and sound.

Use models for flight testing and for validating configuration

Small RC Models Can provide Insights

Transition Mode with Rotor Thrust Line at 45°

Modified the flight controller to allow inflight changing rotor tilt to any angle

Hovering with Rotor Thrust Line at 45°

With a wing, an eVTOL becomes much more sensitive to gust, especially from the lateral direction

Our Indoor Testing Room

Our artificial wind gust generator

Arm with 6-Axis Balance

Flight Controllers
KK2 Controller (about US\$25)

Pixhawk 4 Controller (about US\$400)

Main FMU Processor	STM32F765 32 Bit Arm Cortex-M7, 216Mhz, 2MB Memory, 512KB RAM
IO Processor	STM32F100 32 Bit Arm Cortex-M3, 24Mhz 8KB SRAM
Sensors	2 3-axis Accel/Gyro 1 Magnetometer 1 Barometer 1 GPS (External Module)
Interfaces	8-16 PWM outputs (8 IO, 8 FMU)3 dedicated PWM/Capture inputs on FMU5 general purpose serial ports
Open Source AP	ArduPilot, PX4, Paparazzi

Many Companies Make Pixhawk Hardware

Source: Pixhawk Orange Cube

PX4 is the Control Laws Software

- An open source flight control software for drones and other unmanned vehicles
- Runs on NuttX RTOS
- Software can be setup using Ground Station software or built using an IDE or console

PX4 Built-in Configurations

PX4 QGroundControl

PX4 QGroundControl

- Ground Station Software for MAVLink Protocol
- Firmware installation
- Calibration and Setup of Drone
- Allows you to send commands to drone from the ground
- Functions such as: Waypoints, GPS, Flightpath
- Provides various telemetry data

PX4 QGroundControl

ي 🎭 🕲	2 🛷 🗟 🖪 🛪	10 0.0 📥 🖃 📋 100%	6 Hold Disarmed	בזק אאנאנאני
Vehicle Setup	Search:	Clear		Tools
Summary	Component #: 1	BAT_A_PER_V	15.39103031	Battery current per volt (A/V)
Firmware	*Default Group	BAT_CAPACITY	-1 mA	Battery capacity
Times -	Battery Calibration	BAT_CNT_V_CURR	0.00080566	Scaling from ADC counts to volt on the ADC input (battery current)
Airframe	Camera trigger	BAT_CNT_V_VOLT	0.00080566	Scaling from ADC counts to volt on the ADC input (battery voltage)
Radio	Circuit Breaker	BAT_CRIT_THR	7 %	Critical threshold
	Commander	BAT_EMERGEN_THR	5 %	Emergency threshold
((•)) Sensors	Data Link Loss	BAT_LOW_THR	15 %	Low threshold
Flight Modes	EKF2	BAT_N_CELLS	3S Battery	Number of cells
	FW Attitude Control	BAT_R_INTERNAL	-1.000 Ohms	Explicitly defines the per cell internal resistance
Power	DULL Carbol	BAT_SOURCE	Power Module	Battery monitoring source
Safety	FW LI Control	BAT_V_CHARGED	4.05 V	Full cell voltage (5C load)
Surcey	FW Launch detection	BAT_V_DIV	10.17793941	Battery voltage divider (V divider)
Tuning	FW TECS	BAT_V_EMPTY	3.40 V	Empty cell voltage (5C load)
Camera	Follow target	BAT_V_LOAD_DROP	0.30 V	Voltage drop per cell on full throttle
	GPS Failure Navigation	BAT_V_OFFS_CURR	0.00000000	Offset in volt as seen by the ADC input of the current sensor
Parameters	Geofence			
	Land Detector			

PX4 Logging Telemetry

- Flight Data containing aircraft state and sensor data are automatically logged and stored on the Pixhawk SD card.
- Can be downloaded via QGroundControl
- Log Analysis access is available when log file is uploaded through PX4 flight review tool (http://logs.px4.io)

ArduPilot is another flight control software and also comes with a mission planner tool

PX4 Recorded Flight Controls of a L+C Model

5. Rotor Design, Stability & Control and Model Flight Testing by Dr. James Wang

SNUevtolclass@gmail.com

For students to use in the 2022 eVTOL Design Short Course at SNU, please do not reproduce or distribute