
5. Transport layer security (TLS)

Many slides from Jinyuan Sun@U. of Tennessee

1

http vs https

http

• Hypertext Transfer

Protocol

• No certificate

• No encryption

• TLS not used

• No privacy

https

• Hypertext Transfer

Protocol Secure

• Certificate

• Encryption

• Use TLS

• Privacy

2

Portion of https traffic

3

What is SSL/TLS?

• Transport Layer Security (TLS) protocol, De facto

standard for Internet security

– “The primary goal of the TLS protocol is to provide privacy and
data integrity between two communicating applications”

– In practice, used to protect information transmitted between
browsers and Web servers

• Based on Secure Sockets Layer (SSL)
– Same protocol design, different algorithms

• Deployed in every Web browser

4

Application-Level Protection

5

Secure

Transport Layer

TCP

IP

TLS

Insecure Transport

Layer

TCP

IP

Application Application

Sockets

Source: Andreas Steffen@ITA

History of the Protocol

• SSL 1.0
– Internal Netscape design, 1994

– Not publicly released

• SSL 2.0
– Published by Netscape, 1995

– Several weaknesses

• SSL 3.0

– Designed by Netscape and Paul Kocher, 1996

• TLS 1.0
– IETF makes RFC 2246 based on SSL 3.0, 1999

– Not interoperable with SSL 3.0
• TLS uses HMAC instead of MAC; can run on any port

6

TLS history
• TLS 1.1, 2006

– RFC 4346

– Protection against cipher-block chaining (CBC) attacks

• TLS 1.2, 2008

– RFC 5246

– More options in cipher suite

• Eg. SHA 256, AES-related

• TLS 1.3, 2018

– Published as RFC 8446

– Some insecure ciphers removed (RC4, DES,...)

– streamline RTT handshakes (e.g. 0-RTT mode)

7

HMAC: Constructing MAC from Hash Fn.

• Let H be a hash function

• MAC(K,M) = H(K || M), where || denotes
concatenation

– K is key

– Insecure if H() has Merkle–Damgård

construction

– Length extension attack

8

Merkel Damgård construction

• Assume key is already prepended into m

– Secret||original_msg = m

• Attacker doesn’t know secret or original_msg

• Yet she wishes to append w after m

• What if string w is appended after m?

• h(H(m),w) vs. H(m||w)

9

h h h

m[0] m[1] m[2] m[3]

h
IV

(fixed)

H(m)

e.g. h is a compression fn. like MD5 – 512 bit block

m

w

Append w?

Hash-based MAC (HMAC)
• HMAC = H((K+  opad) || H((K+  ipad)||m))

10

Source: wikipedia

TLS Basics

• TLS consists of two main protocols

– Familiar pattern for key exchange protocols

• Handshake protocol

– Use public-key cryptography to establish a shared

secret key between the client and the server

• Record protocol

– Use the secret key established in the handshake
protocol to protect communication between the client

and the server

• We will focus on the handshake protocol

11

TLS Protocol Architecture

12

Handshake
Change

CipherSpec

Application

Application Data (messages)

TLS - Record Protocol (records)

TCP

IP

Source: Andreas Steffen@ITA

Alert

TLS Handshake Protocol

• Two parties: client and server

• Negotiate version of the protocol and the set of

cryptographic algorithms to be used

– Interoperability between different implementations of

the protocol

• Authenticate server and client (optional)

– Use digital certificates to learn each other’s public
keys and verify each other’s identity

• Use public keys to establish a shared secret

• Symmetric key is generated from the secret

• The following is based on TLS 1.1 & 1.2
13

Handshake + ChangeCipherSpec

14
* Indicates optional or situation-dependent messages that are not always sent.

ClientHello

C

ClientHello

S

Client announces (in plaintext):

• Protocol version he is running

• Cryptographic algorithms he supports

15 The following message flows are common from SSL 3.0 to TLS 1.2

struct {

 ProtocolVersion client_version;

 Random random;

 SessionID session_id;

 CipherSuite cipher_suites;

 CompressionMethod

compression_methods;

} ClientHello

ClientHello
Highest version of the protocol

supported by the client

Session id (if the client wants to
resume an old session)

Set of cryptographic algorithms
supported by the client (e.g.,

RSA or Diffie-Hellman)

16

ServerHello

C

Versionc, suitec, Nc

ServerHello

S
Server responds (in plaintext) with:

• Highest protocol version supported by

 both client and server

• Strongest cryptographic suite selected

 from those offered by the client

17

Certificate and/or

ServerKeyExchange

C

Versions, suites, Ns,

Certificate and/or

ServerKeyExchange

S Server sends his public-key certificate

containing either his RSA, or

his Diffie-Hellman public key

(depending on chosen crypto suite)

Versionc, suitec, Nc

18

ClientKeyExchange

C

Versions, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

Versionc, suitec, Nc

ClientKeyExchange

Client generates some secret key material

and sends it to the server encrypted with

the server’s public key (if using RSA)

19
S: server identity, Ks : server’s public key, sigca(): CA’s signature cert

Handshake: server certificate with RSA

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

Versionc=3.0, suitec, Nc

{Secretc}Ks

switch to key derived

from secretc, Nc, Ns

If the protocol is correct, C and S share

some secret key material (secretc) at this point

switch to key derived

from secretc, Nc, Ns

20
secretc : premaster secret, Ks : server’s public key

Handshake Protocol Structure

C

ClientHello

ServerHello,

[Certificate],

[ServerKeyExchange],

[CertificateRequest],

ServerHelloDone

S [Certificate],

ClientKeyExchange,

[CertificateVerify]

Finished

switch to negotiated cipher

Finished

switch to negotiated cipher
Hash(record of all sent and

received handshake messages)

21 Hash(record of all sent and

received handshake messages)

encrypted

encrypted

Generating master secret & keys

22

Version Rollback Attack (SSL case)

C

Versions=2.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

Versionc=2.0, suitec, Nc

{Secretc}Ks

C and S end up communicating using SSL 2.0

(weaker earlier version of the protocol that

does not include “Finished” messages)

Server is fooled into thinking he
is communicating with a client
who supports only SSL 2.0

23

3.0
Eve

“Chosen-Protocol” Attacks

• Why do people release new versions of security

protocols? Because the old version got broken!

• New version must be backward-compatible

– Not everybody upgrades right away

• Attacker can fool someone into using the old,

broken version and exploit known vulnerability

– Similar: fool victim into using weak crypto algorithms

• Defense is hard: must authenticate version early

• Many protocols had “version rollback” attacks

– SSL, SSH, GSM (cell phones)

24

Version Check in SSL 3.0

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

Versionc=3.0, suitec, Nc

{Versionc,Secretc}Ks

If the protocol is correct, C and S share

some secret key material secretc at this point

“Embed” version
number into secret

Check that received version is equal to
the version in ClientHello

switch to key derived

from secretc, Nc, Ns

switch to key derived

from secretc, Nc, Ns

25 In TLS 1.2, Finished message has the hash of all handshake messages

forward secrecy

• Uses a different key for each session

• Prevents an NSA-style attack

– Store all the traffic to an encrypted site

– Get the server’s private key later with a court
order, or a bribe, or by hacking in

– Decrypt all the stored traffic

• Solution: DHE_* ciphers available in TLS

– Diffie-Hellman ephemeral (DHE)

26

RSA, DH_RSA, DHE_RSA
• RSA

– In the prior message flow

• DH_RSA

– Server's "permanent" key pair is a DH key pair

• certificate should have a DH key pair (not RSA)

– Client’s sends her DH public key (gC mod p)

– CA sign is generated by RSA

• DHE_RSA

– gS mod p from server

• signed by RSA private key: prevent MITM

– gC mod p from client

– Ephemeral keys (gS mod p & gCS mod p) are discarded

after session

– Forward secrecy!
27

SSL/TLS Record Protection

Use symmetric keys
established in handshake protocol

28

Other TLS/SSL Protocols

• Alert protocol.

– Management of SSL/TLS session, error messages.

– Fatal errors and warnings.

• Change cipher spec protocol.

– Not part of Handshake Protocol.

– Used to indicate that entity is changing to recently

agreed ciphersuite.

• Both protocols run over Record Protocol

29

TLS 1.3

• faster speeds

• improved security

– some handshake messages are encrypted

– forward secrecy

• session ID is obsoleted

– remove insecure cipher suites

• even RSA!! (RSA cert is fine)

30

TLS1.3 handshake

• 2 RTTs → 1 RTT

31

encrypted

0-RTT

32

• resumption

• replay attack!

NewSessionTicket

(from server)

