Engineering Economic Analysis

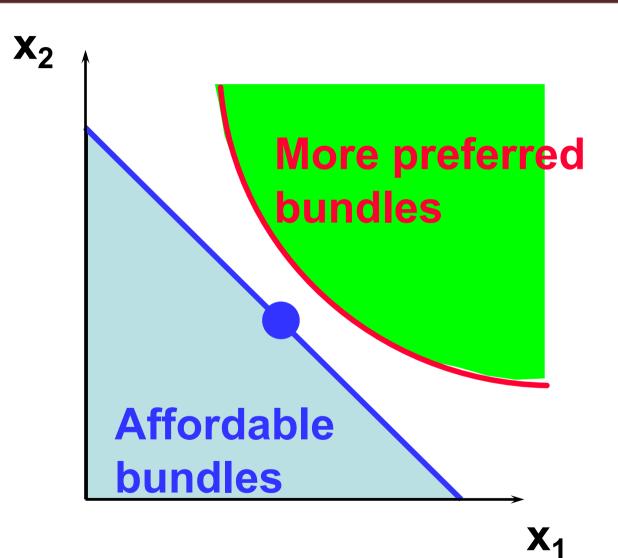
2019 SPRING

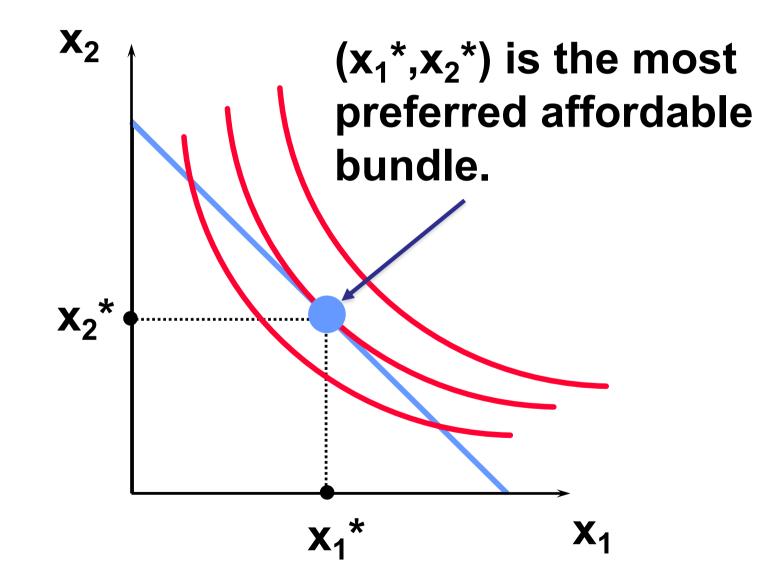
Prof. D. J. LEE, SNU

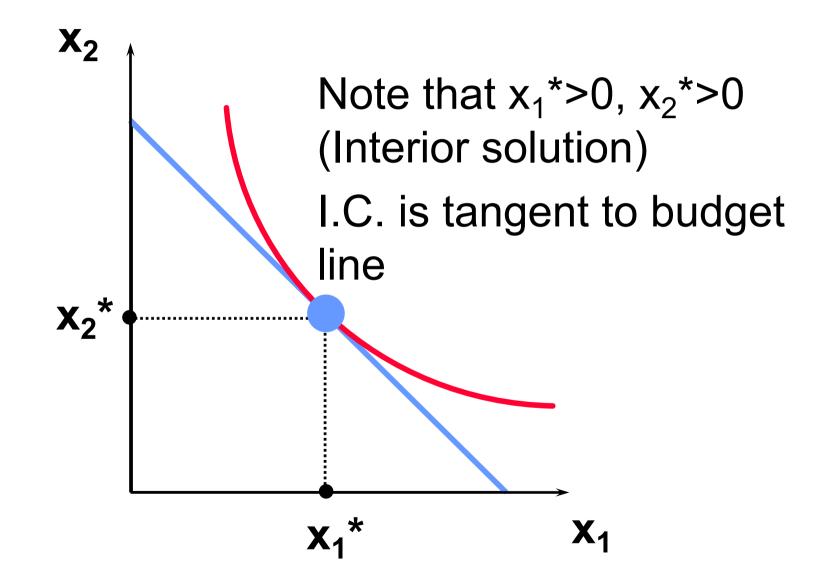
Chap. 5 CHOICE

Economic Rationality

- The principal behavioral postulate is that a decision maker chooses its most preferred alternative from those available to it.
- Utility maximization with budget constraint







- (x₁*,x₂*) satisfies two conditions:
 - the budget is exhausted;

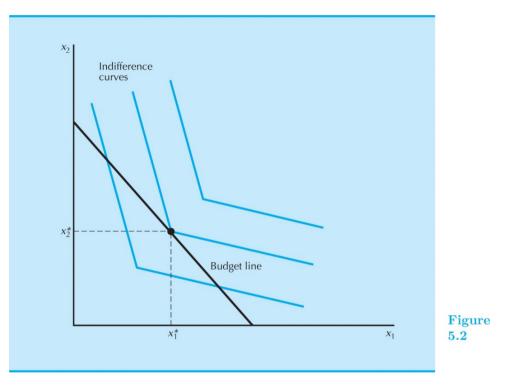
 $p_1 x_1^* + p_2 x_2^* = m$

the slope of the budget constraint, -p₁/p₂, and the slope of the indifference curve containing (x₁*,x₂*) are equal at (x₁*,x₂*).

$$MRS = \frac{dx_2}{dx_1} = \frac{MU_1}{MU_2} = \frac{p_1}{p_2}$$
 at (x_1^*, x_2^*)

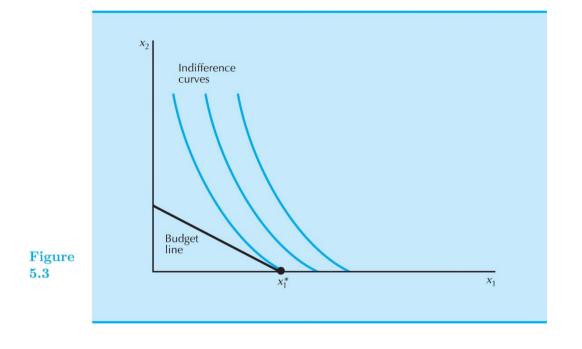
 Are these conditions always hold at the optimal choice? (Necessary & sufficient condition?)

Kinky tastes



I.C. has a kink at (x₁*,x₂*), there is no tangency!

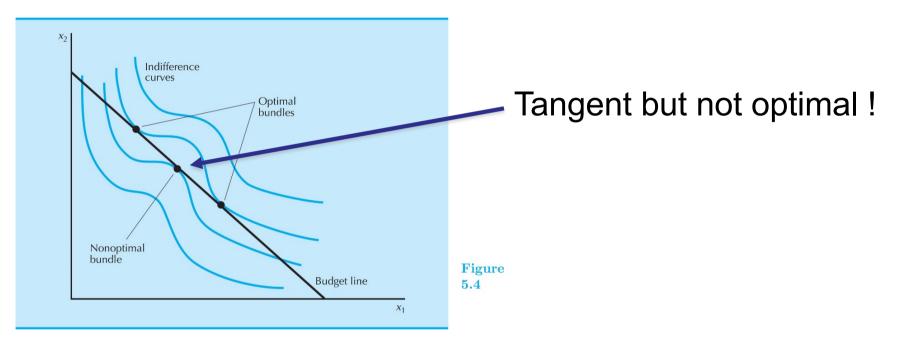
 Boundary optimum (corner solution): optimal point occurs where some x_i*=0



• No tangency since $MRS \neq \frac{p_1}{p_2}$ at (x_1^*, x_2^*)

- By ruling out the kinky case (non-differentiable case),
- Necessary condition of the optimal choice: If the optimal choice is an interior point, then necessarily the I.C. will be tangent to the budget line
- Sufficiency?

No convex case



 In general, the tangency condition is only a necessary condition for optimality, not a sufficient one

- However, the convex preference is the case where the tangency condition is sufficient
- Uniqueness?
- If the I.C.s are strictly convex, then there will be only one optimal choice on each budget line

Economic meaning of tangency condition

$$MRS = \frac{dx_2}{dx_1} = \frac{MU_1}{MU_2} = \frac{p_1}{p_2}$$
 at (x_1^*, x_2^*)

- MRS = the rate of change at which the consumer is just willing to substitute
- p₁/p₂ = the rate of change the consumer can do in the market
- If MRS> $p_1/p_2 \rightarrow p_2 dx_2 > p_1 dx_1 \rightarrow Buy x_1$ more! and vice versa
- Thus at MRS = p_1/p_2 , there will be no more exchange
- Consumer equilibrium condition

Utility maximization problem

 $Max \quad u(x)$ s.t. $p \cdot x \le m$ $x \in X, p \in R^n_+$

Demand function

- the solution of 'Utility maximization problem'
- The function that relates the optimal choice to the different values of prices and income

$$x_{j}^{*}(p_{1},...,p_{n},m)$$
 for $j=1,...,n$

Two-good case with equality constraint

 $\max_{x_1,x_2} U(x_1,x_2)$

 $s.t. p_1 x_1 + p_2 x_2 = m$

- Lagrangian function $L = u(x_1, x_2) - \lambda(p_1x_1 + p_2x_2 - m)$
- First-order conditions (F.O.C.)

Optimal choice: demand function

Consumer equilibrium condition

• By Eq. (1) & (2),

$$\lambda = \frac{MU_1}{p_1} = \frac{MU_2}{p_2}$$
$$\therefore \frac{MU_1}{MU_2} = \frac{p_1}{p_2} = MRS$$

Second-order (sufficient) condition

- Bordered Hessian matrix should be negative definite (ND) (positive definite (PD) when min. problem)
- Bordered Hessian: matrix of second derivatives of the Lagrangian

$$\bar{\mathbf{H}} = \mathbf{D}^{2}L(\lambda, x_{1}, x_{2}) = \begin{pmatrix} \frac{\partial^{2}L}{\partial\lambda^{2}} & \frac{\partial^{2}L}{\partial\lambda\partial x_{1}} & \frac{\partial^{2}L}{\partial\lambda\partial x_{2}} \\ \frac{\partial^{2}L}{\partial x_{1}\partial\lambda} & \frac{\partial^{2}L}{\partial x_{1}^{2}} & \frac{\partial^{2}L}{\partial x_{1}\partial x_{2}} \\ \frac{\partial^{2}L}{\partial x_{2}\partial\lambda} & \frac{\partial^{2}L}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}L}{\partial x_{2}^{2}} \end{pmatrix} = \begin{pmatrix} \mathbf{0} & -p_{1} & -p_{2} \\ -p_{1} & U_{11} & U_{12} \\ -p_{2} & U_{21} & U_{22} \end{pmatrix}$$

• ND: naturally ordered principal minors must alternate in sign starting from (-) to (+) to (-)

$$\det(\overline{\mathbf{H}}) = \begin{vmatrix} 0 & -p_1 & -p_2 \\ -p_1 & U_{11} & U_{12} \\ -p_2 & U_{21} & U_{22} \end{vmatrix} > 0$$

 PD: naturally ordered principal minors must have the same sign of (-1)^k, where k is the number of constraints

Examples: Cobb-Douglas

$$u(x_1, x_2) = x_1^c x_2^d$$

- By monotonic transformation, $\ln u(x_1, x_2) = c \ln x_1 + d \ln x_2$
- Utility max. problem; max $c \ln x_1 + d \ln x_2$

s.t. $p_1 x_1 + p_2 x_2 = m$

• Lagrangian;

$$L = c \ln x_1 + d \ln x_2 - \lambda (p_1 x_1 + p_2 x_2 - m)$$

• F.O.C.
$$\begin{cases} \frac{\partial L}{\partial x_1} = \frac{c}{x_1} - \lambda p_1 = 0 \quad (1) \\ \frac{\partial L}{\partial x_2} = \frac{d}{x_2} - \lambda p_2 = 0 \quad (2) \\ \frac{\partial L}{\partial \lambda} = m - p_1 x_1 - p_2 x_2 = 0 \quad (3) \end{cases}$$

Examples: Cobb-Douglas

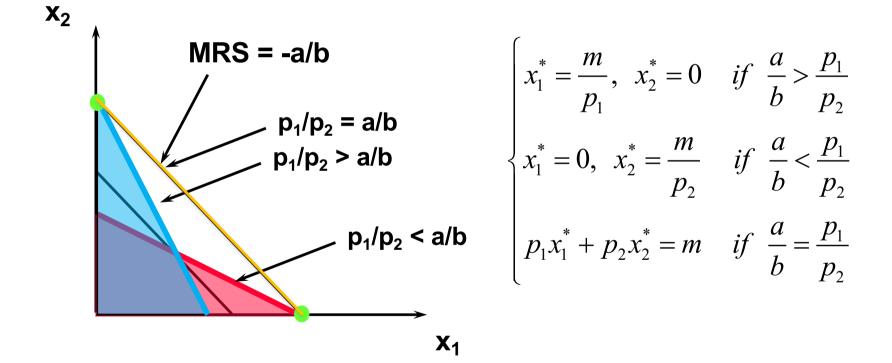
Demand function

$$\begin{cases} x_1^*(p_1, p_2, m) = \frac{c}{c+d} \cdot \frac{m}{p_1} \\ x_2^*(p_1, p_2, m) = \frac{d}{c+d} \cdot \frac{m}{p_2} \end{cases}$$

• To check S.O.C.

Examples: Perfect substitutes

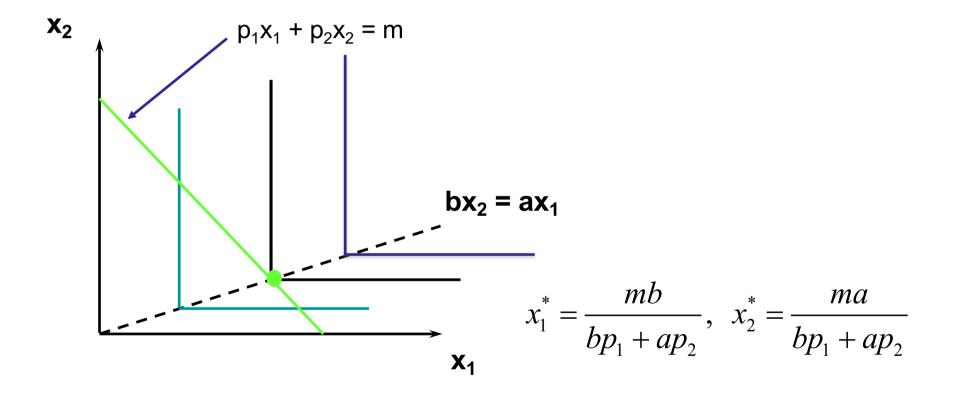
$$u(x_1, x_2) = ax_1 + bx_2$$



Boundary solution case

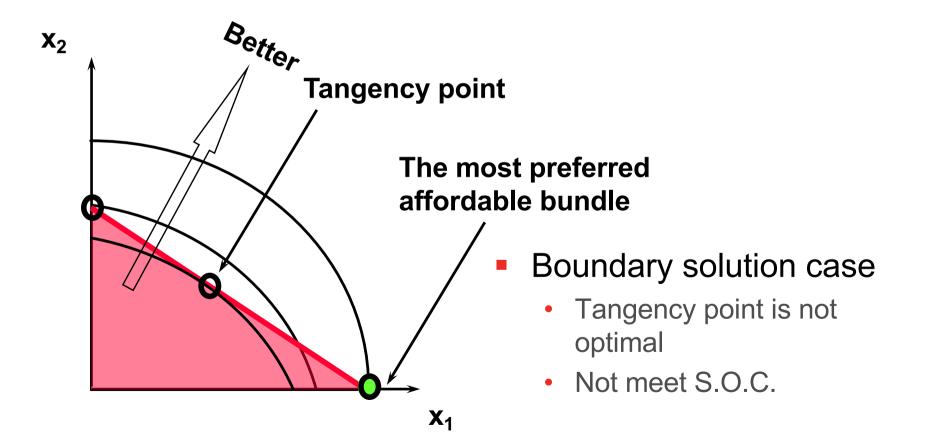
Examples: Perfect complements

$$u(x_1, x_2) = \min\{ax_1, bx_2\}$$



Examples: Concave preference

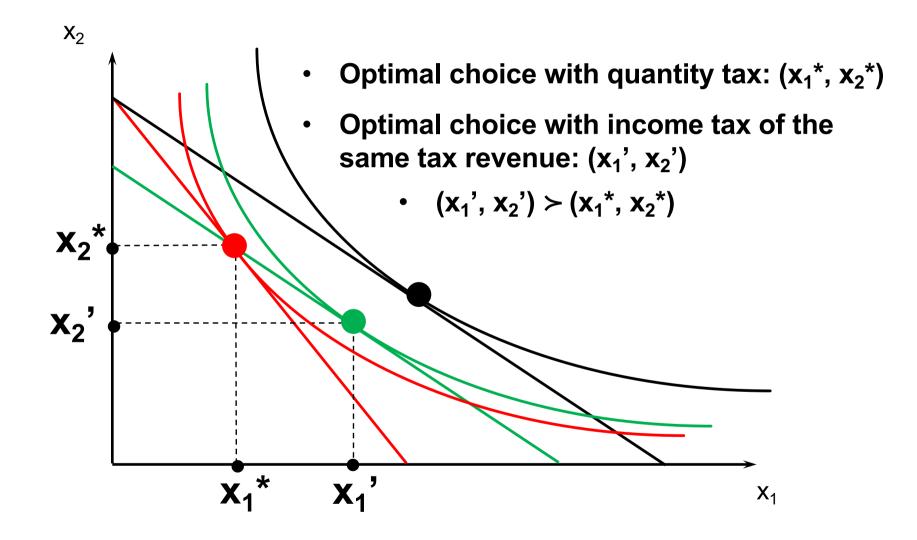
$$u(x_1, x_2) = x_1^2 + x_2^2$$



Choosing taxes

- If the government wants to raise a certain amount of revenue, is it better to raise it via quantity tax or an income tax?
- Imposition of quantity tax on good 1 with a rate t
 - Budget constraint changes with price increase from p_1 to $(p_1 + t)$
 - Let (x_1^*, x_2^*) be the optimal choice under the new budget set
 - Then we know that $(p_1+t)x_1^* + p_1x_2^* = m$ and tax revenue= tx_1^*
- Imposition of income tax which raises the same amount of tax revenue
 - Budget constraint changes with income decrease from m to m-tx₁*

Choosing taxes



Income tax is superior to the quantity tax !

Indirect utility function/ Expenditure function

Local non-satiation preference

Given any x in X and any $\varepsilon > 0$,

then there is some bundle y in X with $|x - y| < \varepsilon$ such that y = x

- Under the local non-satiation assumption, a utility-max. bundle must meet the budget constraint with equality.
- Utility maximization problem

 $Max \quad u(x)$ s.t. $p \cdot x = m$ $x \in X, p \in R^n_+$

Indirect utility function/ Expenditure function

Indirect utility function

• The max. utility achievable at given prices and income $v(p,m) = Max \ u(x)$

s.t.
$$p \cdot x = m$$

- Expenditure function
 - Inverse of indirect utility function w.r.t. income m = e(p, u)
 - the minimal amount of income necessary to achieve utility u at p

 $e(p,u) = \min p \cdot x$ s.t. $u(x) \ge u$

Hicksian demand function

- Hicksian demand function: $h_i(p, u)$
 - Expenditure-minimizing bundle necessary to achieve utility level *u* at prices *p*

$$h_i(p,u) = \frac{\partial e(p,u)}{\partial p_i}$$

Proof) Let h^* be a expenditure-minimizing bundle that gives utility u at prices p^* . Then define the function,

$$g(p) = e(p,u) - p \cdot h^*$$

Since e(p,u) is the cheapest way to achieve u, this function is always nonpositive. At $p = p^*$, $g(p^*) = 0$. Since this is a maximum value of g(p), its derivative must be zero by F.O.C.:

$$\frac{\partial g(p^*)}{\partial p_i} = \frac{\partial e(p^*, u)}{\partial p_i} - h_i^* = 0 \qquad i = 1, \dots, n$$

Note that $x_i(p,m)$: Marshallian demand function

Some important identities

Utility max.

s.t. $p \cdot x = m$

demand function

 \checkmark v(p,m) = u

Expenditure min.

 $\min_{\substack{s.t.u(x) \ge u}} p \cdot x \qquad \qquad h_i^*(p,u): \text{ Hicksian demand} \qquad \qquad p \quad e(p,u) = m$

Some important identities

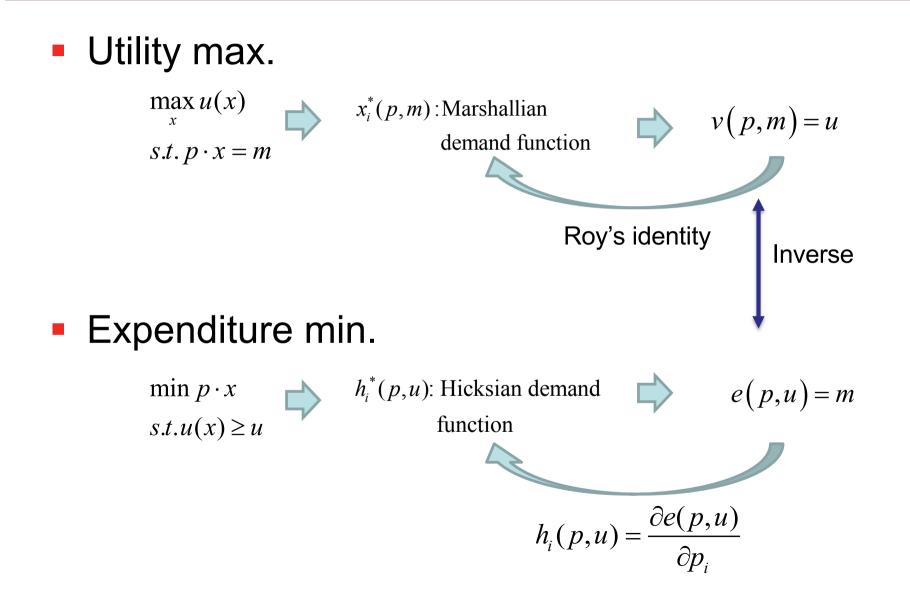
(1) $e(p,v(p,m)) \equiv m$

• the min expendicture necessary to reach utility $v(\tilde{p}, m)$ is m

(2) $v(p, e(p, m)) \equiv u$

- the max utility from income $e(\tilde{p}, u)$ is u
- (3) $x_i(p,m) \equiv h_i(p,v(p,m))$
 - the Marshallian demand at income m is the same as the Hicksian demand at utility v(p,m)
- (4) $h_i(p,u) \equiv x_i(p,e(p,u))$
 - the Hicksian demand at utility u is the same as the Marshallian demand at income $e(\tilde{p}, u)$

Roy's identity



Roy's identity

Roy's identity

$$x_i(p,m) = -\frac{\partial v(p,m) / \partial p_i}{\partial v(p,m) / \partial m} \quad \text{when } p_i > 0, m > 0$$

• Proof

The indirect utility function is given by $v(p,m) \equiv u(x(p,m))$, where $x = (x_1,...,x_n)$

If we differnetiate this w.r.t p_j , we find $\frac{\partial v(p,m)}{\partial p_j} = \sum_{i=1}^n \frac{\partial u(x)}{\partial x_i} \cdot \frac{\partial x_i}{\partial p_j}$ Since x(p,m) satisfies F.O.C. for utility max such that $\frac{\partial u(x)}{\partial x_i} - \lambda p_i = 0$, $\frac{\partial v(p,m)}{\partial p_i} = \lambda \sum_{i=1}^n p_i \frac{\partial x_i}{\partial p_i}$ (1)

And also x(p,m) satisfies the budget constraint, $p \cdot x(p,m) \equiv m$ Differentiating this identity w.r.t. p_j gives $x_j(p,m) + \sum_{i=1}^n p_i \frac{\partial x_i}{\partial p_j} = 0$ (2)

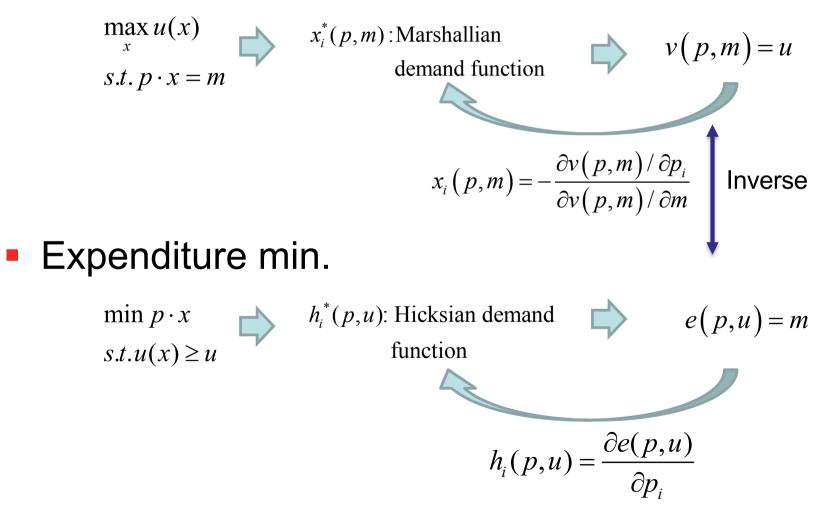
Roy's identity

Substitute (2) into (1),
$$\frac{\partial v(p,m)}{\partial p_j} = -\lambda x_j(p,m)$$

Now we differentiate $v(p,m) \equiv u(x_1(p,m),...,x_n(p,m))$ w.r.t. *m* to find
 $\frac{\partial v(p,m)}{\partial m} = \sum_{i=1}^n \frac{\partial u(x)}{\partial x_i} \cdot \frac{\partial x_i}{\partial m} = \lambda \sum_{i=1}^n p_i \frac{\partial x_i}{\partial m}$ (3)
Differnetiating $p \cdot x(p,m) \equiv m$ w.r.t. *m*, we have
 $\sum_{i=1}^n p_i \frac{\partial x_i}{\partial m} = 1$ (4)
Substituting (4) into (3) gives us
 $\frac{\partial v(p,m)}{\partial m} = \lambda$
Finally, $x_j(p,m) = -\frac{\partial v(p,m)}{\partial p_j}/\lambda = -\frac{\partial v(p,m)/\partial p_j}{\partial v(p,m)/\partial m}$

Utility max. vs. Expenditure min.

Utility max.



Examples

Cobb-Douglas utility