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CHOICE



Economic Rationality

§ The principal behavioral postulate is that a 
decision maker chooses its most preferred 
alternative from those available to it.

§ Utility maximization with budget constraint

1



Optimal Choice

Affordable
bundles

x1

x2

More preferred
bundles
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Optimal Choice

x1

x2

x1*

x2*

(x1*,x2*) is the most
preferred affordable
bundle.
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Optimal Choice

x1

x2

x1*

x2*

Note that x1*>0, x2*>0 
(Interior solution) 
I.C. is tangent to budget 
line
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Optimal Choice

§ (x1*,x2*) satisfies two conditions:
• the budget is exhausted;

p1x1* + p2x2* = m
• the slope of the budget constraint, -p1/p2, and the 

slope of the indifference curve containing (x1*,x2*) 
are equal at (x1*,x2*).
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      at ( , )dx MU p
MRS x x
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= = =

§ Are these conditions always hold at the optimal 
choice? (Necessary & sufficient condition?)
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Optimal Choice

§ Kinky tastes

§ I.C. has a kink at (x1*,x2*), there is no tangency!
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Optimal Choice

§ Boundary optimum (corner solution): optimal 
point occurs where some xi*=0 

§ No tangency since * *1
1 2

2

      at ( , )p
MRS x x

p
¹
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Optimal Choice

§ By ruling out the kinky case (non-differentiable 
case), 

§ Necessary condition of the optimal choice: If 
the optimal choice is an interior point, then 
necessarily the I.C. will be tangent to the 
budget line

§ Sufficiency?
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Optimal Choice

§ No convex case

Tangent but not optimal !

§ In general, the tangency condition is only a 
necessary condition for optimality, not a 
sufficient one
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Optimal Choice

§ However, the convex preference is the case 
where the tangency condition is sufficient

§ Uniqueness?

§ If the I.C.s are strictly convex, then there will be 
only  one optimal choice on each budget line
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Optimal Choice

§ Economic meaning of tangency condition
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• MRS = the rate of change at which the consumer is 
just willing to substitute

• p1/p2 = the rate of change the consumer can do in 
the market

• If MRS> p1/p2 → p2dx2>p1dx1 → Buy x1 more!  
and vice versa

• Thus at MRS = p1/p2, there will be no more exchange
• Consumer equilibrium condition 



Utility maximization & Demand function

§ Utility maximization problem
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Max u x
s t p x m
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§ Demand function
• the solution of ‘Utility maximization problem’
• The function that relates the optimal choice to the 

different values of prices and income
*
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Utility maximization & Demand function

§ Two-good case with equality constraint
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• Lagrangian function
1 2 1 1 2 2( , ) ( )L u x x p x p x ml= - + -

• First-order conditions (F.O.C.)
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• Optimal choice: demand function



Utility maximization & Demand function

§ Consumer equilibrium condition
• By Eq. (1) & (2),
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Utility maximization & Demand function
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§ Second-order (sufficient) condition
• Bordered Hessian matrix should be negative definite 

(ND) (positive definite (PD) when min. problem)

• Bordered Hessian: matrix of second derivatives of the 
Lagrangian
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Utility maximization & Demand function
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• ND: naturally ordered principal minors must alternate in 
sign starting from (-) to (+) to (-) …..

• PD: naturally ordered principal minors must have the 
same sign of (-1)k , where k is the number of constraints



Examples: Cobb-Douglas

• By monotonic transformation, 
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• Lagrangian; 
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• F.O.C.  
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Examples: Cobb-Douglas

• Demand function 
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• To check S.O.C. 
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Examples: Perfect substitutes
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MRS = -a/b

p1/p2 < a/b

p1/p2 > a/b
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p1/p2 = a/b

§ Boundary solution case



Examples: Perfect complements
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p1x1 + p2x2 = m
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Examples: Concave preference
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1 2 1 2( , )u x x x x= +

x1

x2

The most preferred
affordable bundle

Tangency point

Better

§ Boundary solution case
• Tangency point is not 

optimal
• Not meet S.O.C.



Choosing taxes

§ If the government wants to raise a certain amount of 

revenue, is it better to raise it via quantity tax or an 

income tax? 
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§ Imposition of quantity tax on good 1 with a rate t 

• Budget constraint changes with price increase from p1 to (p1 +t) 

• Let (x1*, x2*) be the optimal choice under the new budget set

• Then we know that (p1+t)x1* + p1x2* =m and tax revenue=tx1*

§ Imposition of income tax which raises the same amount of 

tax revenue

• Budget constraint changes with income decrease from m to m-tx1*



Choosing taxes

x2

x1

x2*

x1* x1’

• Optimal choice with quantity tax: (x1*, x2*)

x2’

• Optimal choice with income tax of the 
same tax revenue: (x1’, x2’)

• (x1’, x2’) ≻	(x1*, x2*)

§ Income tax is superior to the quantity tax ! 



Indirect utility function/ Expenditure function

§ Utility maximization problem
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§ Local non-satiation preference
       0,  

            
Given any x in X and any

then there is some bundle y in X with x y such that y x

e
e

>
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§ Under the local non-satiation assumption, a utility-max. 
bundle must meet the budget constraint with equality. 



Indirect utility function/ Expenditure function

§ Indirect utility function
• The max. utility achievable at given prices and income
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§ Expenditure function
• Inverse of indirect utility function w.r.t. income m

( , )m e p u=

• the minimal amount of income necessary to achieve 
utility u at p

( , ) min
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e p u p x
s t u x u
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Hicksian demand function

§ Hicksian demand function:
• Expenditure-minimizing bundle necessary to achieve 

utility level u at prices 
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Some important identities

§ Utility max. 
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Some important identities
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Roy’s identity

§ Utility max. 

29

max ( )

. .
x
u x

s t p x m× =

*( , ) :Marshallian 
               demand function
ix p m ( ),v p m u=

§ Expenditure min. 
min
. . ( )
p x

s t u x u
×
³

*( , ): Hicksian demand 
              function
ih p u ( ),e p u m=

Inverse

( , )( , )i
i

e p uh p u
p

¶
=

¶

?Roy’s identity



Roy’s identity

§ Roy’s identity  
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Roy’s identity
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Utility max. vs. Expenditure min.

§ Utility max. 
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Examples

§ Cobb-Douglas utility
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