5. Helicopter
Aeroelasticity




Helicopter Aeroelasticity

- Single D.O.F. flutter
blade motion (flap, lag, torsion) coupling
hub
divergence, flutter (freq. coalescence)
(e.a., c.g., whirl flutter)
- Isolated blade instability (hover) <«—— collective pitch
- stall instability (forward flight) < cyclic pitch|ongitudinal

lateral
- aeromechanical instability (rotor, fuselage)

- active control
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C, NACA 0012 /
\
| f T
. & h ~
211 v Th'"“‘i NPT
16 ~ 1075 ST« Shaft b
130 140 O )j—?@
“hysteresis”™———» feed energy into system lw "

- limit cyclic not destructive

- vibration load T

Bearingless rotor hub.

flexbeam

Rotor Type

a) Semi-articulated or teetering(2-bladed,bell) blace
b) Fully-articulated |flapping, pitch, lag |

elastomeric bearing L bt came
- - - pitc between torque tube
c) Hingeless ——>» feathering hinge only kot e

d) Bearingless
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Isolated Blade Dynamics
- Articulated Rigid Blade Motion

First let’s consider a single blade with only flapping motion
2, (hinge located at the axis of rotation)

Zg N Y, Ys

Xg Yg Zg ---- rotating axis (Q2)
X, ¥,z ---- B¢ inclination

Bs ---- Flapping angle

Flapping hinge
 Rotor blade structural blade dynamics modeling

- rigid blade + spring concentrated at hub

- elastic blade + geometric coupling
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- complete cross-section shape
flapping, pitch, lag

Assumption ) :
elastomeric bearing

From dynamics

dIHp M | : Inertia HP - Angular momentum
dt

[} R
HP+QP><HP:j rxdF,
0
Th_e blade is slender, assume

|B ~| = (rotational inertia)

AN AN AN

If Qg =pgly +0g Jg + kg

—
B — —

I"gTB :(IB qB)jB T (IBrB)kB

:
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From dynamlcs

I—|/: +|I/J +|I k
0

(dyadic)

/;1 +lj 22] +j| K +...

YB

. A . A R oo .
‘IB(qB_pBrB)JB—I_IB(rB+quB)kB :Io r><d|:A

B ——

To relate Q) with Q, ﬁ.S

P COSﬁS 0 sin ,Bs —> opposite to yg
d qB S = 0 1 0 <0 & +<§>
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Pg =QsIn 183 , Ug :_ﬂs; I's :QCOSﬂS
and the equation of motion

I (=, —Q2C0s B,5in )iy + 15 (-2Qsin 5, ) o =[ TxdF,
For aerodynamics “Hover”

dL

g, P

v= inflow
Strip theory =) “plade element theory”

Inflow <— Momentum theory
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dF, =dLk, +(-dD—¢gdL) j, ¢ = small

dLZ%p(Qf)Z (c-dr)Cy, (0-9)

dD:% p(Qr) (c-dr)C,,
%Profile drag co-efficient

. r f.+v
Qr
Introduce non-dimensional variables

r
Xe—

R

v :
A=——o . inflow parameter
QR
4

* :pCLa CR : Lock no. .... blade motion sensitivity

/4
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/
2
gL sr<2 0— Ps 2 |y Y
R Q X < n
\ N e
2 \\ r’f
_ IBI’Q (CdO XZdX \‘ l i ;/ Ar
R kCLa V+v !

From total thrust ‘T’ ,

|
T :bjdL b — No. of blades | |
LA
0 b — -2
C V+V

2C; :Q+£ where, O =—— : Solidity ratio
3 2

C. o
C T

- Thrust co-efficient

T = p7ZR2 (QR)Z
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Flapping egn. of motion

,§+G—,B +Q° cos A, sin B, —TQZ{@JF%JL}

and linearizing it

Q P
,6’+7/ B+QB =222 0+ 2 < Hover >
8 3
T 2 — O2 Resonant
Damping ratio 5:2 C.F. :Nat.freq. o = Q7 == System

16
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e Coupled Flap-Lag Equation =) “Lead-lag instability”

(pg] | cosé  siné O](0] |O| T :
Qg r=|-sin& cosé& 0[40++507 '_ - -
I 0 0 111Q . |
\ B J L — \§ J kgs‘
As before 5
° —>‘/e L Lead-lag

e: Hinge offset — 5% R

S R_, - -
Ho+QgxHp=[rxd Fat ExMgag
0

This accounts for the acceleration

at hinge point

where, Mg : mass of the blade

—_—

_ ] ] d IZE>
a2 - acceleration of hinge point =
P

° ° ° dt ¢
:E/XQX E+Q X(E/XQX E)= Qx(QxE)+QxE
0 0]
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 Neglect the hinge offset for aerodynamic calculation
Then, —_ _

dL:lp[(més)r]zc.dr-c,a oLtV
) 2 Q&) )
) E, a, = ?
_ | = by — — > >
\V} =d E=ﬁ+QxE=QxE

P dt o
|
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The eqn. of motion for 2-DOF system

,55+Q2(1+§5j,85+2,65 §.SQ
2 ~—~—__ , Coriolis’ coupling
2 [ J [} n B
_7<2 9+fz—&+(2e+fzj§ where, €=
8 3 Q 3 /O

°
R

gs+§692§s _Zﬂs ﬂ.s )

, .
7% —(9+§ﬁ)&— ZE—ﬂiQ é:s—cd°+ﬂ/10+2/12
8 370 |'c 377 )a c 3
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Linearize about equilibrium (small perturbation)

ﬂs:ﬂo_l_ﬂ
é:s:é:o"'? ~
B, = yg_ 9%1
81+ej- -
2
PR R L Py YL
12e| C, 3 )

( :Bo = coning angle)

_l}/ ZCQ
3e C o

C, : rotor torque co-efficient
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The perturbed equations are

7ﬂ Y 4
,B+ (1+Zejﬁ+{2ﬁo 8(26’+3ij§} 0

8| Cc 3

o

e (2C——fw}§ £ 2 e§+[ 2,6.’0+(6’+§/1)]sz

~- €
——=-=1+—-e, —==—-€&, e=—
Q" 2 R
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Helicopter Aeroelasticity

—]

AN

/ 3/rev

/ second out-of-plane mode

2/rev

first out-of-plane mode

-
|~ 1/rev
/

first inplane mode

l«—— normal operating range

Q (rpm)

Fan Diagram

— 6 >0 (positive coupling)

- 0 <0

>

*“ Geometric coupling”
0
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o Stall flutter in rotorcraft aeroelasticity (Dowell Sec. 7.2)

Single DOF instability in rotorcraft ..... “ Stall flutter”
primarily associated with high speed flight, maneuvering
does not constitute a destructive instability, but rather
produces a limit cycle behavior

Rotor disc in forward flight ..... AOA on the advancing side
IS considerably smaller than those on the retreating side
(Typical AOA distribution at p=0.33 .... Fig 7.13
Retreating side ..... large AOA and changes rapidly with

azimuth angle airload prediction needs to include unsteady

effects
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o Stall flutter in rotorcraft aeroelasticity (Dowell Sec. 7.2)
- Since the stalled region is only encountered over a portion
of the rotor disk, it will not be continuing unstable motion
- complexity of the flow field around a stalled airfoil

- experimental data
¥ =180°

=S

RETREATING SIDE y=270°y v=90° ADVANCING S I<

: 2
N o *®
4*
" Vad ) a=0*
. DIRECTION OF
= ROTATION

y=0°
A.O.A distribution of helicopter rotor at 140 knots (u=0.33)
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o Stall flutter in rotorcraft aeroelasticity (Dowell Sec. 7.2)

- Single DOF blade motion assumed

. 2 2
a+w,a= p(gzli) ¢
0

—> Energy eqn. multiply by da and integrating over one cycle
(9 9

2 2 2 .
A 1w L[ PORI S e (o da
2 2 21,

. J

- Fig. 7.14 ..... time history of the{ pitching moment coeff.

Cy (@)

normal force coeff.

as a function of AOA for an airfoil oscillating at reduced

frequency typical of 1/rev at three mean AOA’s.
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Stall flutter in rotorcraft aeroelasticity (Dowell Sec. 7.2)

.5—

’—
c <
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- large hysteresis loop ..... in the dynamic case when the

mean AOA is small




Helicopter Aeroelasticity

o Stall flutter in rotorcraft aeroelasticity (Dowell Sec. 7.2)
- pitching moment behaviour ..... in the vicinity of lift stall
—> average pitching moment increased markedly
(“moment stall”)
—2 time history looks like figure ‘eight 8’
change in energy over one cycle — ICM (0.5) do
- value of this integral = area enclosed by the loop

loop is traversed in a counter-clockwise direction .....

integral is negative, dissipation, positive damping.
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o Stall flutter in rotorcraft aeroelasticity (Dowell Sec. 7.2)
Moment stall occurs statically ... no net dissipation of energy
or energy is being fed into the structure (integral is positive)

—> “stall flutter”

-loss of damping at stall
large torsional motion , 2.3 cycles

-marked change in average of the torsion

pitching moment
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o Stall flutter in rotorcraft aeroelasticity (Dowell Sec. 7.2)
Fig. 7.15 ..... Typical time history of blade torsional motion
when stall flutter is encountered.

—>» marked increase in the vibratory loads in the blade pitch

control system

ADVANCING RETREATING
v SIDE SIDE
tﬂ is T T
© PITCH ANGLE P, .
w 12 vammee ol
o ’ v
: BE\/\T/\\ fy\] A 75% BLADE
la, A Y
s T NIRRT Y R
= 41— 7
< ‘\ I/\\‘ /”
W 0 =
o
woo-4
O
< -8
<
0 90° 180° 270°* 360°

BLADE AZIMUTH POSITION

Active Aeroelasticity and Rotorcraft Lab.
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« Aeromechanical instability in rotorcraft (Dowell Sec. 7.3)
Fig. 7.28 ..... Typical Coleman plot of the rotor-fuselage

coupling. will induce ground/air resonance.
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