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Helicopter Aeroelasticity

- Single D.O.F. flutter

blade motion (flap, lag, torsion) coupling

hub 

divergence, flutter (freq. coalescence)

(e.a., c.g., whirl flutter) 

- isolated blade instability (hover) collective pitch

- stall instability (forward flight) cyclic pitch

- aeromechanical instability (rotor, fuselage) 

- active control 

longitudinal
lateral
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Helicopter Aeroelasticity

Blade angle       Flapping 
θ β

“90o phase lag”

Resonance systemRetreating side Advancing side
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Helicopter Aeroelasticity

“hysteresis” feed energy into system

- limit cyclic not destructive

- vibration load 

Rotor Type 

a) Semi-articulated or teetering(2-bladed,bell)

b) Fully-articulated

c) Hingeless           feathering hinge only 

d) Bearingless

flapping, pitch, lag 
elastomeric bearing

13o 14o

16 ~ 17o
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Flapping hinge

z
ΩzB y, yB

xB

r

βs ---- Flapping angle

• Isolated Blade Dynamics

- Articulated Rigid Blade Motion 

First let’s consider a single blade with only flapping motion 

(hinge located at the axis of rotation)

• Rotor blade structural blade dynamics modeling 

- rigid blade + spring concentrated at hub 

- elastic blade + geometric coupling 

box-beam

Helicopter Aeroelasticity

xB yB zB ---- rotating axis (Ω)
x, y, z ---- βs inclination

x
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Helicopter Aeroelasticity

- complete cross-section shape

Assumption 

From dynamics 
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Helicopter Aeroelasticity

From dynamics 

To relate with Ω,  
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c

θ

Φ Ωr
•

sβ

zB

yB

dL

dD

v= inflow

Helicopter Aeroelasticity

For aerodynamics “Hover”

and the equation of motion 
sBsBsB rqp βββ cos;;sin Ω=−=Ω=

•
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Strip theory “blade element theory”

Inflow       Momentum theory 

r
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Helicopter Aeroelasticity

Introduce non-dimensional variables

≈ small
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: Lock no. ….   blade motion sensitivity
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Helicopter Aeroelasticity

From total thrust ‘T’ 
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Helicopter Aeroelasticity

Flapping eqn. of motion 
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Helicopter Aeroelasticity

• Coupled Flap-Lag Equation “Lead-lag instability”
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This accounts for the acceleration 

at hinge point

where, MB : mass of the blade
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Helicopter Aeroelasticity

• Neglect the hinge offset for aerodynamic calculation

Then, 
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Helicopter Aeroelasticity

The eqn. of motion for 2-DOF system 
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Helicopter Aeroelasticity

Linearize about equilibrium (small perturbation)
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Helicopter Aeroelasticity

The perturbed equations are 
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Lead
iω

σ
“ Geometric coupling”

θs
(pitch –lag)

θξ >0 (positive coupling)
------ θξ <0

Helicopter Aeroelasticity

Fan Diagram

Ω (rpm)

(Hz) ν

Flap
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Helicopter Aeroelasticity

• Stall flutter in rotorcraft aeroelasticity (Dowell Sec. 7.2) 

- Single DOF instability in rotorcraft ….. “ Stall flutter”

- primarily associated with high speed flight, maneuvering 

- does not constitute a destructive instability, but rather 

produces a limit cycle behavior 

- Rotor disc in forward flight ….. AOA on the advancing side 

is considerably smaller than those on the retreating side

(Typical AOA distribution at μ = 0.33 …. Fig 7.13

- Retreating side ….. large AOA and changes rapidly with 

azimuth angle airload prediction needs to include unsteady 

effects
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Helicopter Aeroelasticity

• Stall flutter in rotorcraft aeroelasticity (Dowell Sec. 7.2) 

- Since the stalled region is only encountered over a portion 

of the rotor disk, it will not be continuing unstable motion

- complexity of the flow field around a stalled airfoil 

experimental data

A.O.A distribution of helicopter rotor at 140 knots (μ = 0.33 )
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Helicopter Aeroelasticity

• Stall flutter in rotorcraft aeroelasticity (Dowell Sec. 7.2) 

- Single DOF blade motion assumed 

Energy eqn. multiply by dα and integrating over one cycle

- Fig. 7.14 ….. time history of the   pitching moment coeff.

normal force coeff.

as a function of AOA for an airfoil oscillating at reduced 

frequency typical of 1/rev at three mean AOA’s.
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Helicopter Aeroelasticity

• Stall flutter in rotorcraft aeroelasticity (Dowell Sec. 7.2) 

- large hysteresis loop ….. in the dynamic case when the 

mean AOA is small
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Helicopter Aeroelasticity

• Stall flutter in rotorcraft aeroelasticity (Dowell Sec. 7.2) 

- pitching moment behaviour ….. in the vicinity of lift stall

average pitching moment increased markedly 

(“moment stall”)

time history looks like figure ‘eight 8’

change in energy over one cycle ~ 

- value of this integral = area enclosed by the loop

loop is traversed in a counter-clockwise direction ….. 

integral is negative, dissipation, positive damping.

∫
•

αα dCM )(
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Helicopter Aeroelasticity

large torsional motion , 2.3 cycles 
of the torsion

• Stall flutter in rotorcraft aeroelasticity (Dowell Sec. 7.2) 

Moment stall occurs statically … no net dissipation of energy

or energy is being fed into the structure (integral is positive)              

“stall flutter”  

-loss of damping at stall

-marked change in average

pitching moment 
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Helicopter Aeroelasticity

• Stall flutter in rotorcraft aeroelasticity (Dowell Sec. 7.2) 

Fig. 7.15 ….. Typical time history of blade torsional motion 

when stall flutter is encountered.

marked increase in the vibratory loads in the blade pitch    

control system 
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Helicopter Aeroelasticity

• Aeromechanical instability in rotorcraft (Dowell Sec. 7.3) 

Fig. 7.28 ….. Typical Coleman plot of the rotor-fuselage 

coupling. will induce ground/air resonance.
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