
민기복

Ki-Bok Min, PhD
서울대학교에너지자원공학과조교수
Assistant Professor, Energy Resources Engineering

Fundamentals of Computer System
- C control statements: LOOPING



Mid-term exam

• 22 April 13:00 – 15:00

• Venue: 302-105 (제2공학관)
• Types of questions;

– Explanation
– Multiple choice
– Short answer
– Correction
– Short programming



Last week

• Operator (연산자):
=   - *   %   ++   --

operator precedence (우선순위)

• while loop

• Automatic type conversion, Type cast (데이터형캐스트)
• Functions that uses arguments – void pound(n)



Operator (연산자)
++ -- (example)

• Increment Operator(증가연산자): increases the value of its operand by 1.
a++;  a = a + 1;

• Two types;
– Prefix (전위모드): ++a
– Postfix (후위모드): a++



Expression (수식) and Statement(명령문)
Expression

• Every expression has a value

• With = sign, the same value in the left

• Relational expression (q>3): 
– True: 1
– False: 0

expression Value
-4+6 2

c = 3 + 8 11
5 > 3 1

6 + (c = 3 + 8) 17
q = 5 * 2 10

Looks strange but legal in C



Type Conversion (형변환) & Cast 
operator (캐스트연산자)

• If you mix types, C uses a set of rules to make type conversions
automatically.

– char & short  int (promotions, 올림변환)
– Any two types  higher rankings 

 (High to low) Double - float – unsigned long – long – unsigned int - int

– Final result of the calculations  type of the variables

– When passed as function arguments, 
char and short int float double

• mice = 1.6 + 1.7;
• mice = (int) 1.6 + (int) 1.7;



while statement
general form and structure

• General form
while (expression)

statement One statement without {} or 
a block with {}

Status ==1

sum = sum + num
Printf (“Please enter…
status =scanf(…

Printf(“Those integers sum…
…

while

true

false



Today
Chapter 6. C primer Plus

• C control statements: Looping
– for 
– while
– do while

• What is true/nested loop

• Introduction to array
• Using a function return value

Entry-condition loop

Exit-condition loop



while statement
general form and structure

• General form
while (expression)

statement One statement without {} or 
a block with {}

Status ==1

sum = sum + num
Printf (“Please enter…
status =scanf(…

Printf(“Those integers sum…
…

while

true

false



while Loop
terminating

index = 1;
while (index < 5)
printf(“Hello, world!\n”);

index = 1;
while (--index < 5)
printf(“Hello, world!\n”);

• We need the value to make the expression false to escape 
the loop



while Loop
An entry-condition Loop

index = 10;
while (index++ < 5)

printf(“Hello, world!\n”);

• To execute the loop;
index = 3;



while Loop
Infinite Loop

• Only the single statement (simple or compound) is part of the 
loop

• The statements runs from while to ; or } (compound 
statement)



while Loop
null statement

• Remembering that while loop ends with first ; or } 
(compound), what would be the output of the following 
program.

• Null statement does nothing but while loop ends there.

Null statement



while loop 
relational expression/operator

• Relational expressions (관계수식): make comparisons
• Relational operator: appear in relational expressions

while(ch != ‘$’)
{

count++;
scanf(“%c”,&ch);

}

operator Meaning
< Is less than

<= Is less than or equal to
== Is equal to
>= Is greater than or equal to
> Is greater than
!= Is not equal to 

Characters can be also used



while loop 
what is truth?

• Recall that an expression in C always has a value.

• An infinite while loop
While (1)

{  … }

expression Value
-4+6 2

c = 3 + 8 11
5 > 3 1

6 + (c = 3 + 8) 17
q = 5 * 2 10



while statement
what else is true?

• True: All nonzero values, -1, 5, 1000

• False: 0



while loop 
what else is true?

while(n != 0)
while(n)

while (expression)
statement

One statement with ; or 
a block with {}

Status ==1

sum = sum + num
Printf (“Please enter…
status =scanf(…

Printf(“Those integers sum…
…

while

true

false

Status = 1
Infinite loop!!!

the same!



while loop 
tip to avoid errors

• n = 5; assigns the value 5 to n.

• n == 5; check to see whether n has the value 5.

• 5 = n; syntax error.

• 5 == n; check to see whether n has the value 5.
Can avoid unwanted errors by putting the 
constant in the left.



while loop _Bool

• _Bool: variables representing true (1) or false (0)
• 1 bit variables  save memory



while loop
precedence of relational operators

• x > y + 2 ↔ 

• x = y > 2 ↔

• ex !=  wye == zee ↔

operator Associativity
() 

+   - ++   -- sizeof 

*    / 

+   - (binary) 

<      >     <=     >= 

==     != 

= 

x > (y+2)

x = (y > 2)

(ex !=  wye)  == zee



for loop
Limitation of while

• Three actions are involved;
1. Initialization, 
2. Comparison
3. The counter is incremented

Can be combined



for loop
Form of for loop

for (initialize; test; update)

statement

• Loop continues until test becomes 0 or false

Initializing, testing, updating



for loop
Form of for loop

for (initializing; test; upgrade)
statement

• The first line of for loop tells us immediately all the information 
about the loop parameters.

One statement with ; or 
a block with {}

count<= number;

printf (“Mid-term Exam one 
week Away!\n”)

Return 0;

for

true

false

count  = 1;

count ++;

done at the 
end of loop



for loop
Flexibility 

• Use decrement operator to count down

• --secs ???



for loop
Flexibility

– Count by twos, tens, etc. 
for (n = 2; n <60; n = n + 13)

– Count by characters instead of by numbers
for (ch = ‘a’; ch <= ‘z’; ch++)

– Test some condition other than the number of iterations
for (num = 1; num*num*num <=216; num++)

– Let the quantity increase geometrically(기하급수적으로) 
instead of arithmetically

for (debt = 100.0;debt < 150.0; debt = debt *1.1)



for loop
Flexibility

– Use any legal expression for the third expression.
for (x = 1; y <=75; y = (++x *5) + 50)

– Leave one or more expression blank
for (n = 3; ans <= 25;  )

- But in this case, you need some statement to finish the loop

– The first expression need not initialize a variable. It could be 
something like printf()

for (printf(“Keep entering!\n”);   num!=1;   )

– The parameters of the loop expressions can be altered by actions 
within the loop

for (n = 1; n < 10000; n = n + delta)



for loop
Flexibility – an example



More assignment operators
+= -= *= /= %=

scores += 20 ↔

dimes -= 2 ↔

bunnies *= 2 ↔

time /=  2.73 ↔

reduce %= 3 ↔

x *= 3 * y + 12 ↔

scores = score + 20

dimes = dimes +2

bunnies = bunnies *2

time = time / 2.73

reduce = reduce % 3

x = x * (3 * y + 12)

These assignment operators has low priorities as =



More assignment operators
The comma operator

• Can include more than one initialization or update expression
for (ounces= 1, cost=FIRST_OZ; ounces <=16; ounces++, cost+ = NEXT_OZ)

• Expressions are evaluated  (left to right)
– Ex) ounces++, cost = ounces * FIRST_OZ



do while
An exit-condition loop

• while loop & for loop : entry-condition loop
– Test is checked before each iteration
– The statement in the loop may not execute

• do while loop: exit-condition loop
– The statements are executed at least once



do while
An exit-condition loop

while loop  - a little longer



do while
Form of do while loop

do
statement

while (expression);

One statement with ; or 
a block with {}

Code != secret;Congratulations! You got 
admission to SNU

do

true

false

scanf(“….)
Note a semicolon!



Which loop?
while, for, do while

• In general, entry-condition loop (while, for) better than exit-
condition loop (do while);

– Better to look before you leap
– Easier to read a program when a test is in the beginning
– In many cases, it is important that the loop be skipped entirely if 

the test is not initially met



Which loop?
while versus for

• Initializing & updating  for
• Other than this  while

Ex) while (scanf(“%ld”, &num)==1)
For(count = 1; count<=100;count++)

initialize;
while(test)
{

body;
update;

}

for (initialize; test; update)
body;

for ( ; test ; ) while (test)↔

↔



Nested loop (중첩루프)

• Nested loop: one loop inside another loop

• Useful for many cases; e.g.) data in rows and columns

outer loop

inner loop

Run 10 times for each iteration of outer loop



A nested variation

depends on outer loop



Introducing arrays
- very brief introduction

• Arrays (배열): important! & Useful!
• Array: a series of values of the same type stored sequentially. 

The whole arrays bears a single name.

• 배열: 동일한데이터형을가진여러값들이
연속적으로저장되어있는것. 배열전체가하나의
이름사용.

• int score[10];

• score is an array with 10 elements. Each of element can hold 
a type int value

Index, subscript(첨자) or offset



Introducing arrays
- very brief introduction

72 75 80 25 120 1685 0 -56 2567 23

score[0] score[1] score[2] score[3] score[4] score[5] Score[6] score[7] score[8] score[9]

• Numbering starts from 0 (not 1!!!).

• Each element can be assigned a int value.
score[4] = 120;  score[9]=23;

• 배열원소를같은데이터형의일반변수를사용하는것과
동일한방식으로사용가능

scanf(“%d”, &score[4]);

• C doesn’t check whether you use a correct index.
score[10] = 15; score[23]=253;  wrong but compiler does not detect this.

int score[10]



Introducing arrays
- very brief introduction

• An array can be of any data type.
– float nannies[22]; /* holds 22 floating numbers */
– Char alpha[26]; /* holds 26 characters */
– Long big[500]; /* hold 500 long integers */

• Strings are a special case of char array. 
– String < char array

y o u d o i t .

y o u d o i t . \0

Char array(O), string (X)

Char array(O), string (O)



Introducing arrays
- very brief introduction

• Using a for loop with an array



Function with argument (last week)

argument (전달인자)
n: formal argument 
(형식전달인자)

Times5: actual 
argument (실질전달인자)

Used type cast

No return value



Loop using a function return value



Loop using a function return value

same results



Today
Chapter 6. C primer Plus

• C control statements: Looping
– for 
– While
– Do while

• What is true/nested loop

• Introduction to array
• Using a function return value

Entry-condition loop

Exit-condition loop



29 April
Chapter 7. C primer Plus

• C control statements: Branching and Jumps
– if, else 
– Switch
– Continue, break, goto

• Logical operators: &&   ||   

• Character I/O functions: getchar() and putchar()



Mid-term exam

• 22 April 13:00 – 15:00

• Venue: 302-105 (제2공학관)

• Good Luck for your exam!!!


	Fundamentals of Computer System�- C control statements: LOOPING
	Mid-term exam�
	Last week
	Operator (연산자)�++	--	(example)
	Expression (수식) and Statement(명령문)�Expression
	Type Conversion (형변환) & Cast operator (캐스트 연산자)
	while statement�general form and structure
	Today�Chapter 6. C primer Plus
	while statement�general form and structure
	while Loop�terminating
	while Loop�An entry-condition Loop
	while Loop�Infinite Loop
	while Loop�null statement
	while loop �relational expression/operator
	while loop �what is truth?
	while statement�what else is true?
	while loop �what else is true?
	while loop �tip to avoid errors
	while loop _Bool
	while loop�precedence of relational operators
	for loop�Limitation of while
	for loop�Form of for loop
	for loop�Form of for loop
	for loop�Flexibility 
	for loop�Flexibility
	for loop�Flexibility
	for loop�Flexibility – an example
	More assignment operators�+=	-=	*=	/=	%=
	More assignment operators�The comma operator
	do while�An exit-condition loop
	do while�An exit-condition loop
	do while�Form of do while loop
	Which loop?�while, for, do while
	Which loop?�while versus for
	Nested loop (중첩루프)
	A nested variation
	Introducing arrays�- very brief introduction
	Introducing arrays�- very brief introduction
	Introducing arrays�- very brief introduction
	Introducing arrays�- very brief introduction
	Function with argument (last week)
	Loop using a function return value
	Loop using a function return value
	Today�Chapter 6. C primer Plus
	29 April�Chapter 7. C primer Plus
	Mid-term exam�

