
민기복

Ki-Bok Min, PhD
서울대학교에너지자원공학과조교수
Assistant Professor, Energy Resources Engineering

Fundamentals of Computer System
- chapter 13. File input and output

Last Week
Chapter 10. Arrays and Pointers (배열과포인터)

• Arrays – initialization, assignment,

• Multidimensional arrays

• Pointers and arrays

• Functions, Arrays, and Pointers

• Pointer operations

Pointers: a first look
What is it?

• Pointer: a variable whose value is a memory address

• 포인터는주소를값으로가지는변수이다.
– Char형변수문자
– int형변수정수
– 포인터변수주소

• People: a name and a value

• Computer: an address (a computer’s version of name) and a
value

Pointers: a first look
the indirection operator(간접연산자)

ex)
a = 3;

p = &a; //a를가리키는포인터
b = *p; //p이가리키고있는주소의

값을 b에대입

b = a
p = &a;
b = *p;

p가가리키는주소의값

Pointers
Pointers and Arrays (포인터와배열)

• Array is simply a disguised use of pointers. (배열표기는
실제로는포인터의변장된사용에불과하다)

• 배열명은곧그배열의시작주소이다.
• Pointers can do array subscripting operations.

• For an array flizny, the following is true.
– flizny == &flizny[0]
– Both flizny and &flizny[0] represent the memory address of first

element. Both are constants because they remain fixed.

Pointers
pointers and arrays

• With an array dates,
dates + 2 == &dates[2] /* 주소가같다.*/
(dates + 2) == dates[2] / 값이같다.*/

• Close connection between arrays and pointers!!!

• Use a pointer to identify an individual element of an array and
to obtain its value.

• Two different notations for the same thing.

• 실제로 C언어표준은배열표기를포인터로
서술한다. ar[n]  *(ar+n)

Pointers
Pointers and Arrays (포인터와배열)

pointer2.c

Pointers
pointers and arrays

• 포인터에 1을더하면 C는하나의기억단위를더한다
(short – 2 byte,int – 4 byte, double – 8 byte).

• 즉, 주소가다음바이트가아니라다음
원소(element)의주소로증가한다 –포인터가
가리키는객체의종류를선언해야하는이유.

• 데이터객체(data object)는값을저장하는데사용할
수있는데이터저장영역을일반적으로지칭하는
용어
p가포인터변수일때 p+i가
의미하는값은
p + i* sizeof(대상체)이다.

Pointers
pointers and arrays

pointer3.c

Pointers
Functions that operates on an array

• Suppose you want a function that returns the sum of the
elements of an array, marbles

• Calling a function
– total = sum(marbles); // 가능한함수호출의예

• Prototype (declaration)
– int sum(int * ar) // 대응하는함수프로토타입

배열이름은첫번째원소의주소이기때문에배열이름을 실전달인자로
사용하려면대응하는 여야한다.

Pointers
Functions that operates on an array

• Definition
int sum(int * ar)
{

int i;
int total = 0;

for (i = 0; i < 10; i++) // 원소가 10개라고가정
total += ar[i]; // ar[i]는 *(ar + i)와같다.

return total;
}

Use array notation with a pointer
포인터에배열표기를사용

형식매개변수의선언에사용될때
다음과같이써도된다.
int ar[]

Pointers
Usinig Pointer Parameters

int sum(int * ar, int n);
int sum(int * , int);
int sum(int ar[], int n);
int sum(int [], int) ;

int sum(int * ar, int n)
{ …}

int sum(int ar[], int n)
{ …}

Four prototypes are identical

Two definitions are identical

Pointers
Using Pointer Parameters

Use two pointers to describe the array

Pointers
Pointer operations

• Assignment
– ptr1 = urn; //assign an address to a pointer

• Value finding

• Taking a pointer address

• Adding an integer to a pointer

• Incrementing a pointer

• Subtracting an integer from a pointer

• Decrementing a pointer

Pointers
Pointer operations

• Differencing

• Comparisons

Pointers
Pointers and multidimensional arrays

• int zippo[3][4]

• zippo는그배열의첫번째원소의주소
 zippo ==&zippo[0]
 zippo[0] == &zippo[0][0]
*(zippo[0]) ==zippo[0][0]
*(zippo) == zippo[0]

• **zippo = zippo[0][0]

Pointers
Pointers and multidimensional arrays

• 값표현
zippo[m][n] == *(*(zippo+ m) + n)

• 주소표현
&zippo[m][n] == (*(zippo+m) + n)

• 2차원배열을나타내는포인터변수에는 *를두개를
써야비로소값을나타낸다. *를하나썼을때여전히
주소를나타냄 2차원포인터.

• 1차원포인터 * zippo값

• 2차원포인터 ** zippo값

Compiler use these form 
faster computation.

Pointers
Pointers and multidimensional arrays

Pointers
Pointers and multidimensional arrays

4 byte x 2 = 8 byte
4 byte x 1 = 4 byte
4 byte x 1 = 4 byte

2차원배열을가리키는포인터변수의선언
int형두개짜리배열

4 byte x 2 = 8 byte
4 byte x 1 = 4 byte

4 byte x 1 = 4 byte

Pointers
Functions and multidimensional arrays

• 2차원배열을전달인자로하는함수의예 (pt가
형식매개변수일때)

• Int junk[3][4] = {{2,4,5,8},{3,5,6,9},{12,10,8,6}};

• …

• void somefunction (int (* pt)[4]); or

• void somefunction(int pt[][4]);

Pointers
Functions and multidimensional

• 행과 행과열의합을각각구하는프로그램

Chapter 10. Arrays and Pointers (배열과포인터)

• Pointers and arrays

• Functions, Arrays, and Pointers

• Pointer operations

• Pointers and multidimensional (2D) arrays

• Functions and multidimensional (2D) arrays

• Try to understand the following files which are available in the
eTL

– pointer1.c, pointer2.c, pointer3.c, poiner4.c, order.c, zippo1.c,
zippo2.c, array2d.c

Chapter 13. File I/O
What is a file?

• File: 데이터나프로그램등을디스크상에기록한것
– Text file : composed of text. we (human) can recognize it. Also

called ASCII file
Ex) C source file

– Binary file : composed of codes. Only programs can recognize it.
we (human) have no idea.
Ex) object file

File
High level Input/Output

• Low-level I/O: fundamental I/O services provided by the
operating system

• Standard high-evel I/O: standard package of C library
functions and stdio.h header file definition ANSI C.

– Many specialized functions handling different I/O problems
– Buffer (an intermediate storage area, 512 Byte ~ 16 MByte) is

used for input & output.  greatly increase the data transfer rate

File
Order to handle a file

• Order to handle a file
– Open a file and bring a file pointer
– Read and write a file through a file pointer
– Close a file

Reading a file
A simple example (read.c)

Fp는 FILE을가리키는포인터

fopen()

• fopen()
– used to open a file.
– Already declared in stdio.h
– fopen() returns a file pointer (ex. fp). Returns NULL when it cannot

open the file.
– FILE is a structure (will be covered next week)
–

fopen()
open mode

fopen()
open mode

fclose()

• fclose()
– Closes the file
– flushes buffers as needed
– Returns a value of 0 if successful, and EOF if not.
– Ex)

if (fclose(fp) != 0)

Printf(“%s 파일을닫는데에러가발생했습니다.\n”, argv[1]);

– Fclose() can file if
The disk is full, the floppy disk has been removed or there has been an I/O

error

Other functions
fgets(), feof()

• fgets()
– Reads input through the first new line character until one fewer

than the upper limit of character is read, or until the end of file is
found. (한줄씩읽는다)

– fgets(buf, MAX, fp); ex) fgets(s,256,fp)

• feof()
– Returns nonzero if the last input detected the end-of-file (true).
– Returns zero otherwise (false) ex) feof(fp)

Name of char array

Maximum size of the string

Pointer to FILE

Other functions
getc(), putc()

• getc(): get a character from a file
– ch = getc(fp); //need to tell which file you are using
– ch = getchar();

• putc(): put the character into the file
– putc(ch, fp);
– putchar(ch); = putc(ch,stdout);

End-Of-File (EOF)

• The getc() function returns the special value EOF when it
reach the end of the file

• To avoid problems attempting to read an empty file, use an
entry-condition loop for file input.

Writing a file
an example (helloworld.c)

Writing a file
another example (write.c)

Reading/Writing a binary File
an example

Double num = 1./3.;
fprintf(fp, “%f”, num);

• Saves num as a string of eight characters: 0.333333. or 0.33
with %.2f specifier results in different values being stored.

• When a data is stored in a file using the sme representation
that the program uses  data is stored in binary form

• 바이너리파일은문자, 행바꿈문자, 제어코드등을
구별하지않고똑같은데이터로취급한다.

• Add ‘b’ in open mode. Ex) fp = fopen(“file4.dat”, “wb”)

Reading/Writing a binary File
an example

Reading/Writing a binary File
an example

fwrite(buf, sizeof(short), 3, fp)

Reading/Writing a binary File
an example (binary.c)

• Binary file has a different way

Binary file 에서는 fwrite()와 fread()를쓴다.

Appending

fclose(fp) returns zero when it succeed

Appending

File
Standard Files

• In C, printer, monitor, keyboards can be considered as a ‘file’
--???

• There are three file pointers: stdin, stdout, stderr

File
Standard Files

• Standard input
– stdin: 키보드로부터입력을
받는파일포인터

• Standard output file
– stdout: 표준출력장치

(모니터)에출력할때의파일
포인터

• Standard error output file
– stderr:
표준에러추력장치(모니터)에
출력할때의파일포인터

File
Standard Files

printf(“%s”,delm);  fprintf(stdout, “%d”, delm)

Random access
fseek(), ftell() – reverse.c

Random access
fseek(), ftell()

• fseek(FILE pointer, offset, mode) ex) fseek(fp, 2L, SEEK_END)

• Ex)
• fseek(fp, 0L, SEEK_SET); // go to the beginning of the file
• fseek(fp, 10L, SEEK_SET): // go 10 bytes into the file
• fseek(fp, -10L, SEEK_END); // back up 10 bytes from the end of the file

How far to move from the starting point, in long type

SEEK_SET : Beginning of file
SEEK_CUR : Current position
SEEK_END : End of file

Random access
fseek(), ftell()

• Ftell() returns the current file location.

Summary of functions for I/O

function Definition form Return
(success/fail)

fopen() Open the indicated file fopen(“FILENAME”, “mode”) a file pointer
/NULL pointer

fclose Close the indicated file fclose(FILE *) 0 / EOF
fgetc() Gets the next character from

the indicated input stream
fgetc(FILE *) Character/EOF

fputc() writes the next character from
the indicated input stream

fputc(int, FILE *) Printed
character/EOF

fgets() Gets the next line from the
indicated input stream

fgets(char *s, int n, FILE *) Address of the
string/NULL
pointer

fputs() Writes the character string
pointed to by the first
arguments to theindicated
stream

fputs(const char *s, FILE *) Last
character/EOF

Summary of functions for I/O

function Definition form Return
(success/fail)

gets() gets the next line from the
standard input

gets(char *s) Address/NULL
pointer

puts() writes the string to the
standard output

puts(char *s) Non-negative value/
EOF

fprintf() writes the formatted output to
the indicated stream

fprintf(FILE *, format,
argument)

Number of printed
data/EOF

fscanf() reads formatted input from the
indicated stream

fscanf(FILE *, format,
argument)

Number of scanned
data/EOF

rewind() sets the file-position pointer to
the start of the file

rewind(FILE *) X

fseek() sets the file-position pointer to
the indicated value

fseek(FILE *, offset, whence) 0/non-zero value

ftell() gets the current file position ftell(FILE *) Bytes from the
start/-1L

Exercise
Homework 6.

• Homework 6.1.
– Rewrite your program for homework 5.1 so that the main tasks are

performed by functions instead of in main(). Please refer to
array2d.c in the textbook.

Exercise
Homework 6.

• Homework 6.2.
– Rewrite your program for homework 5.1 using file input and output.

Make a input text fie based on the temperature data and make a
program that generate the output as a file format.

Today
Chapter 13

• File input and output

• Reading data from a file

• Writing data to a file

• Using Binary file

• Various functions: fopen(), fclose(), fgetc(), fgets(), fputc(),
fputs(), gets(), puts(), fprintf(), fscanf(), rewind(), fseek(), ftell()

	Fundamentals of Computer System�- chapter 13. File input and output
	Last Week�Chapter 10. Arrays and Pointers (배열과 포인터)
	Pointers: a first look�What is it?
	Pointers: a first look�the indirection operator(간접연산자)
	Pointers�Pointers and Arrays (포인터와 배열)
	Pointers�pointers and arrays
	Pointers�Pointers and Arrays (포인터와 배열)
	Pointers�pointers and arrays
	Pointers�pointers and arrays
	Pointers�Functions that operates on an array
	Pointers�Functions that operates on an array
	Pointers�Usinig Pointer Parameters
	Pointers�Using Pointer Parameters
	슬라이드 번호 14
	Pointers�Pointer operations
	Pointers�Pointer operations
	Pointers�Pointers and multidimensional arrays
	Pointers�Pointers and multidimensional arrays
	Pointers�Pointers and multidimensional arrays
	Pointers�Pointers and multidimensional arrays
	슬라이드 번호 21
	Pointers�Functions and multidimensional arrays
	Pointers�Functions and multidimensional
	�Chapter 10. Arrays and Pointers (배열과 포인터)
	Chapter 13. File I/O�What is a file?
	File�High level Input/Output
	File�Order to handle a file
	Reading a file�A simple example (read.c)
	fopen()
	fopen()�open mode
	fopen()�open mode
	fclose()
	Other functions�fgets(), feof()
	Other functions�getc(), putc()
	End-Of-File (EOF)
	Writing a file�an example (helloworld.c)
	Writing a file�another example (write.c)
	Reading/Writing a binary File�an example
	Reading/Writing a binary File�an example
	Reading/Writing a binary File�an example
	Reading/Writing a binary File�an example (binary.c)
	Appending
	Appending
	File�Standard Files
	File�Standard Files
	File�Standard Files
	Random access�fseek(), ftell() – reverse.c
	Random access�fseek(), ftell()
	Random access�fseek(), ftell()
	Summary of functions for I/O
	Summary of functions for I/O
	Exercise�Homework 6.
	Exercise�Homework 6.
	Today�Chapter 13

