
민기복

Ki-Bok Min, PhD
서울대학교에너지자원공학과조교수
Assistant Professor, Energy Resources Engineering

Fundamentals of Computer System
- Chapter 14. Structures and Other Data Forms

Homework #6-2

Homework #6-2

scanf()
input

• scanf() function uses whitespace (구분자) to divide the input
into separate fields;

– Enter
– Tabs
– Spaces

• Exception: %c

Final Exam

• 10 June 13:00 – 15:00

• Venue: 302-105 (제2공학관)
• Types of questions;

– Explanation
– Multiple choice
– Short answer
– Correction
– Short programming

• Go through the homeworks you did (Homework #1 ~ #7).

Last Week
Chapter 10 & Chapter 13

• Pointers
– Pointer operations
– Pointers and multidimensional (2D) arrays
– Functions and multidimensional (2D) arrays

• File input and output
– Reading data from a file
– Writing data to a file
– Using Binary file
– Various functions: fopen(), fclose(), fgetc(), fgets(), fputc(), fputs(),

gets(), puts(), fprintf(), fscanf(), rewind(), fseek(), ftell()

Pointers
pointers and arrays

• Two different notations for the same thing.

• 실제로 C언어표준은배열표기를포인터로
서술한다. ar[n]  *(ar+n)

p가포인터변수일때 p+i가
의미하는값은
p + i* sizeof(대상체)이다.

Pointers
Pointers and Arrays (포인터와배열)

pointer2.c

Pointers
Functions that operates on an array

• Suppose you want a function that returns the sum of the
elements of an array, marbles

• Calling a function
– total = sum(marbles); // 가능한함수호출의예

• Prototype (declaration)
– int sum(int * ar) // 대응하는함수프로토타입

배열이름은첫번째원소의주소이기때문에배열이름을 실전달인자로
사용하려면대응하는 여야한다.

Pointers
Pointers and multidimensional arrays

• 값표현
zippo[m][n] == *(*(zippo+ m) + n)

• 주소표현
&zippo[m][n] == (*(zippo+m) + n)

• 2차원배열을나타내는포인터변수에는 *를두개를
써야비로소값을나타낸다. *를하나썼을때여전히
주소를나타냄 2차원포인터.

• 1차원포인터 * zippo값

• 2차원포인터 ** zippo값

Compiler use these form 
faster computation.

Pointers
Pointers and multidimensional arrays

Pointers
Functions and multidimensional arrays

• 2차원배열을전달인자로하는함수의예 (pt가
형식매개변수일때)

• Int junk[3][4] = {{2,4,5,8},{3,5,6,9},{12,10,8,6}};

• …

• void somefunction (int (* pt)[4]); or

• void somefunction(int pt[][4]);

Chapter 13. File I/O
What is a file?

• File: 데이터나프로그램등을디스크상에기록한것
– Text file : composed of text. we (human) can recognize it. Also

called ASCII file
Ex) C source file

– Binary file : composed of codes. Only programs can recognize it.
we (human) have no idea.
Ex) object file

File
Order to handle a file

• Order to handle a file
– Open a file and bring a file pointer
– Read and write a file through a file

pointer
– Close a file

fopen()

Writing a file
an example (helloworld.c)

Reading/Writing a binary File
an example

Double num = 1./3.;
fprintf(fp, “%f”, num);

• Saves num as a string of eight characters: 0.333333. or 0.33
with %.2f specifier results in different values being stored.

• When a data is stored in a file using the sme representation
that the program uses  data is stored in binary form

• 바이너리파일은문자, 행바꿈문자, 제어코드등을
구별하지않고똑같은데이터로취급한다.

• Add ‘b’ in open mode. Ex) fp = fopen(“file4.dat”, “wb”)

Reading/Writing a binary File
an example

Reading/Writing a binary File
an example

fwrite(buf, sizeof(short), 3, fp)

Reading/Writing a binary File
an example (binary.c)

• Binary file has a different way

Binary file 에서는 fwrite()와 fread()를쓴다.

File
Standard Files

• Standard input
– stdin: 키보드로부터입력을
받는파일포인터

• Standard output file
– stdout: 표준출력장치

(모니터)에출력할때의파일
포인터

• Standard error output file
– stderr:
표준에러추력장치(모니터)에
출력할때의파일포인터

File
Standard Files

printf(“%s”,delm);  fprintf(stdout, “%d”, delm)

Summary of functions for I/O

function Definition form Return
(success/fail)

fopen() Open the indicated file fopen(“FILENAME”, “mode”) a file pointer
/NULL pointer

fclose Close the indicated file fclose(FILE *) 0 / EOF
fgetc() Gets the next character from

the indicated input stream
fgetc(FILE *) Character/EOF

fputc() writes the next character from
the indicated input stream

fputc(int, FILE *) Printed
character/EOF

fgets() Gets the next line from the
indicated input stream

fgets(char *s, int n, FILE *) Address of the
string/NULL
pointer

fputs() Writes the character string
pointed to by the first
arguments to theindicated
stream

fputs(const char *s, FILE *) Last
character/EOF

Summary of functions for I/O

function Definition form Return
(success/fail)

gets() gets the next line from the
standard input

gets(char *s) Address/NULL
pointer

puts() writes the string to the
standard output

puts(char *s) Non-negative value/
EOF

fprintf() writes the formatted output to
the indicated stream

fprintf(FILE *, format,
argument)

Number of printed
data/EOF

fscanf() reads formatted input from the
indicated stream

fscanf(FILE *, format,
argument)

Number of scanned
data/EOF

rewind() sets the file-position pointer to
the start of the file

rewind(FILE *) X

fseek() sets the file-position pointer to
the indicated value

fseek(FILE *, offset, whence) 0/non-zero value

ftell() gets the current file position ftell(FILE *) Bytes from the
start/-1L

Today
Chapter 14

• What are C structures?

• Structure templates & Structure variables

• Initialization, access to the members

• Arrays of Structures

• Pointers to structures

• Functions and structures

• typedef

What is ‘structures’? (구조체란
무엇인가?)

• Structure (구조체): a collection of related variables under
one name (여러가지형을하나로모아둔것)

– Can contain variables of different data types

Structure Declaration (구조체선언)

• Structure declaration is the master plan describing how a
structure is put together –윤곽을보여준다.

tag(태그)라고도함.

Compiler finally allocates space for
int no, char name[10] and int age
under a single name list1

Structure Declaration (구조체선언)
- comparison with other variables

struct data {
int no;
char name[10];
int age;

};

struct data list1;

 };

int list1;

Declaration of structure variable Declaration of integer variable

We decide
It’s already decided

Structure Declaration (구조체선언)
Alternative form of declaration

==

Initializing a Structure

• Very similar to the syntax used for arrays.

• Each initializer should match the type of structure member
being initialized.

Access to the members

• Use . to have access to the individual members of a
structure.

– . Is called ‘도트’ 혹은 ‘도트연산자’
– Ex) list1.no list1.name list1.age

Structures
example(book.c)

Arrays of Structures

• If we want to handle more books?
– Obama, Clinton, 노무현, 이명박,…
– We can use an array of structures
– Ex) list[0], list[1], … or library[0], library[1]

Arrays of Structures

• Declaration
– Struct book library[100];
– Library[0], library[1], library[2], …, library[99] are structures with the

same template.

Arrays of Structures

• Access to the members
– Library[0].value
– Library[4].title
– Library.value[2]
– Library[2].title[4]

fifth character in the title at library[2]

Arrays of Structures

Arrays of Structures
Initialization

Arrays of Structures
an example (manybook.c)

Nested Structures

• A structure can contain another structure.

Nested Structures
an example (nested.c)

Array (배열)
assigning (배열에값대입하기)

• 하나의배열을다른배열로통째로 No

• { } 를이용해서?  No

Features of Structures

• Modern C allows you to assign one structure to another
– ex) o_data = n_data

• You can initialixe one structrue to another of the same type
– struct names right_field = {“Ruthie”, “George”};
– struct names captain = right_field;

Pointers to structures
Declaration

Pointers to structures
access to the member using pointer

• Use -> (접근지정자혹은애로우연산자)
– Ex) sp->no sp->name sp->age

Pointers to structures
an example (pointer_structure.c)

Functions and Structures

• Using Structures as an argument
– Passing structure members

ex) sum(stan.bankfund, stan.savefund)
– Using the structure address

ex) sum(&stan)
– Passing a structure as an argument

ex) sum(stan)

When stan is a structure variable

Functions and Structures
Passing the structure members

Functions and Structures
Using the structure address

Functions and Structures
Passing a structure as an argument

Functions and Structures
Using an array of structures as an argument

typedef

• typedef : Creates synonyms (aliases) for previously
defined data types

• Use typedef to create shorter type names

• typedef does not create a new data type

typedef

Homework #7 (last one!)

Today
Chapter 14

• What are C structures?

• Structure templates & Structure variables

• Initialization, access to the members

• Arrays of Structures

• Pointers to structures

• Functions and structures

• typedef

Contents covered during the lectures
Essential components of C (and other
programming languages)
• Ch 1. Getting Ready
• Ch 2. Introducing C

• Ch 3. Data and C (데이터형)
• Ch 4. Character Strings (문자열) and Formatted Input/Output
• Ch 5. Operators, Expressions and Statements
• Ch 6. C Control Statements: Looping
• Ch 7. C control statements: Branching and Jumps

• Ch 9. Functions (함수)
• Ch 10. Arrays and Pointers
• Ch 13. File input and output
• Ch 14. Structures and other data forms

Last Lecture

한학기동안수고했습니다!!!

여름방학재밌고, 보람된일많길
바랍니다.

	Fundamentals of Computer System�- Chapter 14. Structures and Other Data Forms
	Homework #6-2
	Homework #6-2
	scanf()�input
	Final Exam�
	Last Week �Chapter 10 & Chapter 13
	Pointers�pointers and arrays
	Pointers�Pointers and Arrays (포인터와 배열)
	Pointers�Functions that operates on an array
	Pointers�Pointers and multidimensional arrays
	Pointers�Pointers and multidimensional arrays
	Pointers�Functions and multidimensional arrays
	Chapter 13. File I/O�What is a file?
	File�Order to handle a file
	fopen()
	Writing a file�an example (helloworld.c)
	Reading/Writing a binary File�an example
	Reading/Writing a binary File�an example
	Reading/Writing a binary File�an example
	Reading/Writing a binary File�an example (binary.c)
	File�Standard Files
	File�Standard Files
	Summary of functions for I/O
	Summary of functions for I/O
	Today�Chapter 14
	What is ‘structures’? (구조체란 무엇인가?)
	Structure Declaration (구조체 선언)
	Structure Declaration (구조체 선언)�- comparison with other variables
	Structure Declaration (구조체 선언)�Alternative form of declaration
	Initializing a Structure
	Access to the members
	Structures�example(book.c)
	Arrays of Structures
	Arrays of Structures
	Arrays of Structures
	Arrays of Structures
	Arrays of Structures�Initialization
	Arrays of Structures�an example (manybook.c)
	Nested Structures
	Nested Structures�an example (nested.c)
	Array (배열)�assigning (배열에 값 대입하기)
	Features of Structures
	Pointers to structures�Declaration
	Pointers to structures�access to the member using pointer
	Pointers to structures�an example (pointer_structure.c)
	Functions and Structures�
	Functions and Structures�Passing the structure members
	Functions and Structures�Using the structure address
	Functions and Structures�Passing a structure as an argument
	Functions and Structures�Using an array of structures as an argument
	typedef
	typedef�
	Homework #7 (last one!)
	Today�Chapter 14
	Contents covered during the lectures�Essential components of C (and other programming languages)
	Last Lecture

