CHAPTER 1. INTRODUCTION

Reading assignments: Cheng Ch.1, Ulaby Ch.1,

1. Electromagnetics in Plasmas

A. Plasma Electrodynamics

Plasma state: The 4th state of matter

- Thermal (Arc): $T_i \approx T_e \approx T_a$ (LTE), high n, high heat (hot)

- Non-equilibrium (Glow, Corona): $T_e > T_i$, T_a ; low n, low heat (cold) Fusion plasmas: High *T*, fully-ionized, high power (≥ 100 MW) Space & astrophysical plasmas: Low *T*, low *n*; Atm. & astro spaces High *T*, high *n*; Stars

Plasma dynamics \Rightarrow Electromagnetics + Fluid or Statistical mechanics (Thermodynamics) Ţ Maxwell's eqs. + Fluid eqs. Kinetic eq. (w/ therm. laws & coeffs.) Lorentz's force eq. (POT) or Fluid (MHD) eqs. (Fluid theory) Maxwell's eqs. Self-consistent fields or Boltzmann eq. (Kinetic theory ICs E, B(D, H)Plasma motions BCs r_k, v_k or $n_s(\mathbf{r}, t), \mathbf{u}_s(\mathbf{r}, t)$ or $f_{o}(\mathbf{r}, \mathbf{v}, t)$ Field sources $\sum_{s=1}^{\infty} q_s n$ $\sum q_s n_s u$

B. Role of Electromagnetics in Plasmas and Nuclear Engineering

- Fundamental plasma properties (Debye shielding, plasma oscillation,

quasi-neutrality, ...)

- Basic plasma behavior in e.m. fields (lab, industry, fusion, space)
- Plasma generation by discharges (electrode, electrodeless,

arc, glow, corona ...)

- Control of fusion and processing plasmas (circuits, devices, sensors)
- Magnetic confinement of plasmas (J x B forces, orbit motions,

field coils, magnets, magnetic flux surfaces, divertors, ...)

- Plasma waves (O, X, R, L, Afven, magnetosonic, ...)
- Plasma instabilities (current driven, resistive, disruption, ...)
- Plasma heating and current drive by RF (LH, ICRF, ECRF, ..., transmission lines, wave guides, antennas)
- Radiation losses (bremsstrahlung, cyclotron, impurity, ...)
- Plasma diagnostics by charged particles and waves (beams, MW, lasers, spectroscopy, Langmuir & magnetic probes, ...)
- Plasma processing (radical generation, surface modification, physical and chemical reactions, decomposition, ...)
- Radiation detection and shielding in nuclear engineering
- Nuclear reactor control and instrumentation
- Generation, transmission, and supply of electric power

2. Electromagnetics and Electromagnetic Model

A. Electromagnetics (Electromagnetism)

Electromagnetics:

Study of (static or time-varying) electric and magnetic phenomena by the effects (fields) of electric charges at rest (charge densities) or in motion (currents).

Maxwell's equations:

Integral form	<u>Vector</u> form		
(global expression)	(point expression)		
$\oint_{S} \boldsymbol{D} \cdot d\boldsymbol{s} = \int_{V} \boldsymbol{p}_{v} dv$	$\nabla \cdot D = p_v$	Gauss's law	Ch.3
$\oint_{S} \boldsymbol{B} \cdot d\boldsymbol{s} = 0$	$\nabla \cdot \boldsymbol{B} = 0$	No isolated mag. pole	∍ Ch.5
$\oint_C \boldsymbol{E} \cdot d\boldsymbol{l} = -\int_S \frac{\partial \boldsymbol{B}}{\partial t} \cdot d\boldsymbol{s}$	$ abla imes \boldsymbol{E} = - \frac{\partial \boldsymbol{B}}{\partial t}$	Faraday's law Ch	ıs.3,4,6
$\oint_{C} \boldsymbol{H} \cdot d\boldsymbol{l} = \int_{S} \left(\boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t} \right) \cdot d\boldsymbol{s} $	$ abla imes H = J + rac{\partial D}{\partial t}$	Ampere's law	Chs.5,6

where constitutive relations are

 $D = \varepsilon E, \quad B = \mu H, \ (J = \sigma E: Ohm's law)$ for linear isotropic medium $D = \overleftrightarrow{\epsilon} \cdot E, \quad B = \overleftrightarrow{\mu} \cdot H, \quad (J = \overleftrightarrow{\sigma} \cdot E)$ in general Notes)

- i) $\epsilon = \epsilon_o$ in free space; scalar in dielectric medium; $\overleftarrow{\epsilon}$ in plasma, some crystal, ... $\mu = \mu_o$ in free space and plasmas; scalar in magnetic medium
 - $\sigma = 0$ in free space; scalar in conductor; $\overleftarrow{\sigma}$ in plasma
- ii) In general, all fields and sources are functions of position $m{r}$ and/or time t.

Static: $\partial/\partial t = 0$ (Stationary charges \rightarrow Electrostatics - Ch.3;

Steady currents \rightarrow Magnetostatics - Ch.5)

Vector magnetic potential A and scalar electric potential V defined by

$$B = \nabla \times A$$
, $E = -\nabla V - \frac{\partial A}{\partial t}$

in Maxwell's equations yield the wave equations for potentials A and V:

$$\left(\nabla^{2} - \frac{1}{\mu\epsilon} \frac{\partial^{2}}{\partial t^{2}}\right) \left\{ \begin{array}{c} V \\ \boldsymbol{A} \end{array} \right\} = \left\{ \begin{array}{c} -\rho_{v}/\epsilon \\ -\mu \boldsymbol{J} \end{array} \right\}$$

Notes) In static cases, $\nabla^2 \left\{ \begin{array}{c} V \\ \boldsymbol{A} \end{array} \right\} = \left\{ \begin{array}{c} -\rho_v / \varepsilon \\ -\mu \boldsymbol{J} \end{array} \right\}$: Poisson's equations

- Maxwell's equations or wave equations are subject to the appropriate initial and boundary conditions in the e.m. system
 - \Rightarrow (Initial) Boundary Value Problems for E, B or A, V

- Lorentz's force on an individual charge: $F = F_e + F_m = q(E + u \times B)$ Electromagnetic body force in plasmas: $f = f_e + f_m = \rho_v E + J \times B$
- Electromagnetic energy:

$$W = W_e + W_m = \frac{1}{2} \int_{V'} (\boldsymbol{D} \cdot \boldsymbol{E} + \boldsymbol{H} \cdot \boldsymbol{B}) \, dv = \frac{1}{2} \int_{V'} \left(\epsilon E^2 + \frac{B^2}{\mu} \right) dv$$

Electromagnetic energy density:

$$w = w_e + w_m = \frac{1}{2} (\boldsymbol{D} \cdot \boldsymbol{E} + \boldsymbol{H} \cdot \boldsymbol{B}) = \frac{\epsilon E^2}{2} + \frac{B^2}{2\mu}$$

Conservation of electric charge (Equation of current continuity):

Gauss's law in $\nabla \cdot$ (Ampere's law) $\Rightarrow \nabla \cdot J = -\frac{\partial \rho_v}{\partial t}$ For steady currents $(\partial \rho_v / \partial t = 0)$,

$$\nabla \cdot \boldsymbol{J} = 0 \Rightarrow \oint_{S} \boldsymbol{J} \cdot d\boldsymbol{s} = 0 \Rightarrow \sum_{j} I_{j} = 0$$
: Kirchhoff's current law

Conservation of electromagnetic energy = Poynting's theorem: H ⋅ (Faraday's) - E ⋅ (Ampere's) ⇒ Energy conservation

$$\nabla \cdot (\mathbf{E} \times \mathbf{H}) + \frac{\partial}{\partial t} \left(\frac{\mathbf{E} \cdot \mathbf{D}}{2} + \frac{\mathbf{H} \cdot \mathbf{B}}{2} \right) + \mathbf{E} \cdot \mathbf{J} = 0$$

Notes)

- i) $E \times H \equiv S$: Poynting vector = e.m. power flux
- ii) energy inflow rate + e.m. energy accumulation rate + Joule dissipation = 0

B. Electromagnetic Model

- 1) Theoretical approaches to electromagnetics Inductive approach
 - Obtains general principles from particular facts or phenomena.
 - ▷ Experimental observations → inferring laws & theorems from them (Experimental laws → generalizing them in steps

 \rightarrow synthesizing in the form of Maxwell's eqs.)

Deductive (axiomatic) approach

- Conclusion reached from general laws to a particular case
- Postulates (axioms) of fundamental relations for an idealized model

 → derive particular laws & theorems
 - \rightarrow verified with experimental observations

(Maxwell's eqs. \rightarrow identifying each with the appropriate experimental law \rightarrow specializing general eqs. to static & time-varying analysis)

cf.) Circuit model:

Lumped elements (DC/RF sources, resistor, capacitor, inductor, ...) Basic circuit quantities (V, I, R, L, C, ...)

Field (Electromagnetic) model:

Distributed space sources (ρ_v rest charges, J moving charges) Basic field quantities (E, D, H, B, J, $\eta(1/\sigma)$, μ , ϵ , ...)

2) Axiomatic approach in three steps for developing a field theory

- Step 1) Define the basic quantities of electromagnetics
- Step 2) Specify the rules of mathematical operation

```
(Vector algebra & calculus, PDEs, Integrals, ... )
```

Step 3) Present fundamental postulates (axioms) in electrostatics, magnetostatics, and electromagnetics.

3) Source quantities

Cheve Constants

diversity of the last of

Electric charge q (or Q) exists only in positive of negative integral multiples of an electron charge

$$e = 1.60 \times 10^{-19}$$
 (C), (1-1)

Charge sources at rest:

.

$$\rho_v = \lim_{\Delta v \to 0} \frac{\Delta q}{\Delta v} \quad (C/m^3), \quad \text{volume charge density}$$
(1-2)

$$\rho_{s} = \lim_{\Delta s \to 0} \frac{\Delta q}{\Delta s} \qquad (C/m^{2}), \quad \text{surface charge density} \tag{1-3}$$

$$\rho_{\ell} = \lim_{\Delta \ell \to 0} \frac{\Delta q}{\Delta \ell} \qquad (C/m). \qquad \text{line charge density} \tag{1-4}$$

Current / is defined by

$$I = \frac{dq}{dt} \qquad (C/s \text{ or } A), \tag{1-5}$$

Charge sources in motion (moving charges):

$$J = \lim_{\Delta s \to 0} \frac{\Delta I}{\Delta s} = nq u = \rho_v u$$
 (A/m²), current density

4) Field quantities

A field is a spatial distribution of a quantity generated by a charge source, which may of may not be a function of time.

Symbols and Units for Field Quantities	Field Quantity	Symbol	Unit
Electric	Electric field intensity	Е	V/m
	Electric flux density (Electric displacement)	D	C/m²
Magnetic	Magnetic flux density	В	т
	Magnetic field intensity	Н	A/m

3. Units and Universal Constants

A. SI (International System of Units) or MKSA Units

- 1) Dimension: defines physical characteristics
 - Fundamental dimensions: length(L), mass(M), time(T), electric current(I), temperature(ℑ), luminous intensity(J)
 - ▷ Other dimensions can be defined in terms of these fundamental dims. (e.g.) volume – L^3 , velocity – L/T, force – ML/T^2
- 2) Unit: Reference for numerical expression of dimension

Quantity	Unit	Abbreviation	
Length	meter	m	
Mass	kilogram	kg	
Time	second	s 🗲 I	MKSA
Current	ampere	A	
emperature	kelvin	К	
uminous intensity	candela	cd	

TABLE 1-2 FUNDAMENTAL SI UNITS

 Other units used in electromagnetics are derived units expressed in terms of m, kg, s, and A.

(e.g.) i) Units in Table 1-1:

C = A \cdot s, V/m = kg \cdot m/A \cdot s³ , T = kg/A \cdot s²

ii) Units of derived quantities: Appendix A-2

Other unit systems: Gaussian, Electrostatic(esu), Electromagnetic(emu)

B. Universal Constants

The velocity of light in free space:

$$c \approx 3 \times 10^{8} \quad (\text{m/s}). \quad (\text{in free space}) \tag{1-6}$$

$$c = \frac{1}{\sqrt{\epsilon_{0}\mu_{0}}} \quad (\text{m/s}), \quad (\text{in free space}) \tag{1-10}$$

TABLE	1-3	UNIVERSAL	CONSTANTS II	N SI	UNITS
-------	-----	-----------	--------------	------	-------

Universal Constants	Symbol	Value	Unit
Velocity of light in free space	С	$\approx 3 \times 10^8$	m/s
Permeability of free space	μ_0	$4\pi \times 10^{-7}$	H/m
Permittivity of free space	ϵ_0	$\simeq \frac{1}{36\pi} \times 10^{-9}$	F/m
		\cong 8.854x10 ⁻¹²	

C. Symbols and Notation

Physical quantities: scalar, *italic*; q, ρ_v , n, c, ϵ_o , R, L, ... L/T, ML/T^2 ... Dimensions: scalar, *italic*; scalar, roman; C, V/m = kg \cdot m/A \cdot s³, K... Units: scalar, roman; Appendix A-3: $G(10^9)$, $M(10^6)$, $k(10^3)$, Metric prefixes: $m(10^{-3}), \mu(10^{-6}), n(10^{-9})$ Fields & Positions: vector, boldface; E, D, B, H, v, ..., r boldface with a hat on it; $\hat{r}, \hat{x}, \hat{\theta}, \hat{B}$ (or $a_r, a_x, a_{\theta}, a_B$) Unit vectors: Cartesian (Rectangular) coordinates (x, y, z) Coordinate systems: Cylindrical coordinates (r, ϕ, z) Spherical coordinates (R, θ, ϕ) cf.) In toroidal plasmas, Toroidal coordinates (r, θ, ϕ) Flux coordinates (ψ, χ, ϕ)