4. Electrostatic Boundary–Value Problems

- A. Poisson's and Laplace's Equations for Boundary–Value Problems (BVPs)
 - 1) Poisson's equation $\begin{cases}
 Ch 3-1, (10) \text{ or } Ch 3-2, (3-63): \nabla \cdot D = \rho_v \implies \nabla \cdot \epsilon E = \rho_v \quad (3-124) \\
 Ch 3-1, (3-4): \nabla \times E = 0 \implies E = -\nabla V \quad (3-26)
 \end{cases}$
 - $\Rightarrow \nabla \cdot (\epsilon \nabla V) = \rho_v \Rightarrow \sum_{\text{Ch 2-3, (54)}} \nabla^2 V = -\frac{\rho_v}{\epsilon} \quad (V/m^2) \quad (3-126)$

where the Laplacian operator ∇^2 is given by (55) in Ch 2-3 D.

2) Laplace's equation

For no free charge ($\rho_v = 0$) in a simple medium,

$$(3-126) \implies \nabla^2 V = 0 \qquad (V/m^2) \qquad (3-130)$$

Note) An electrostatic BVP for electrostatic potential V is set up by a governing equation of Poisson's or Laplace's type subject to the appropriate boundary conditions (BCs) specified at conductor/dielectric (or free space) interfaces to get a unique solution for electrostatics (Uniqueness Theorem).

B. Solutions of BVPs in Electrostatics

1) BVP for a parallel-plate capacitor in Cartesian coordinates

Poisson's equation:

$$\frac{d^2 V(y)}{dy^2} = -\frac{\rho_v}{\epsilon_o} = \frac{\rho_o}{\epsilon_o d} y \quad , \quad 0 \le y \le d \qquad (1)$$

BCs:

$$V(y)|_{y=0} = 0$$
 (2)
 $V(y)|_{y=d} = V_0$ (3)

Integrating (1) twice, general solution: $V(y) = \frac{\rho_o}{6\epsilon_o d} y^3 + C_1 y + C_2$ (4) (2) in (4): $C_2 = 0$ (5) (3), (5) in (4): $C_1 = \frac{V_0}{d} - \frac{\rho_o d}{6\epsilon_o}$ (6) \therefore (6), (5) in (4): $V(y) = \frac{\rho_o}{6\epsilon_o d} y^3 + \left(\frac{V_0}{d} - \frac{\rho_o d}{6\epsilon_o}\right) y$ (3-134)

Consequently, $\boldsymbol{E}(y) = -\hat{\boldsymbol{y}}\frac{dV}{dy} = -\hat{\boldsymbol{y}}\left[\frac{\rho_o}{2\epsilon_o d}y^2 + \left(\frac{V_0}{d} - \frac{\rho_o d}{6\epsilon_o}\right)\right]$ (3-135)

Surface charge densities on the conducting plates:

Ch 3-2B (3-46)
$$\hat{n} \cdot \boldsymbol{E} = \rho_s / \epsilon_o \implies \rho_{sl} = \epsilon_o \hat{y} \cdot \boldsymbol{E}(0) = -\frac{\epsilon_o V_0}{d} + \frac{\rho_o d}{6}$$
$$\rho_{su} = \epsilon_o \left[-\hat{y} \cdot \boldsymbol{E}(d)\right] = +\frac{\epsilon_o V_0}{d} + \frac{\rho_o d}{3}$$

Notes) For no volume charge ($\rho_v = \rho_o = 0$),

$$V(y)=\frac{V_0}{d}y \ , \quad {\pmb E}(y)\!=-\,\hat{\pmb y}\,\frac{V_0}{d} \ , \qquad \rho_{sl}\!=-\,\frac{\epsilon_o V_0}{d}, \quad \rho_{su}\!=+\,\frac{\epsilon_o V_0}{d}$$

2) BVPs in Cylindrical coordinates

a) A long ((b-a) \ll L) coaxial cable with no volume charge ($\rho_v = 0$) Axially symmetric:

$$\frac{\partial}{\partial \phi} = 0$$
FIGURE 3-21
Negligible edge effect $((b-a) \ll L)$:

$$\frac{\partial}{\partial z} = 0$$

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2}$$

$$= \frac{1}{r} \frac{d}{dr} \left(r \frac{\partial}{dr} \right)$$
FIGURE 3-21

Laplace's equation:

$$\frac{d}{dr}\left(r\frac{dV}{dr}\right) = 0 \qquad (1)$$

BCs:

$$V(r)|_{r=a} = V_o \qquad (2)$$
$$V(r)|_{r=b} = 0 \qquad (3)$$

Integrating 1 twice,

$$r\frac{dV}{dr} = C_1 \implies dV = C_1 \frac{dr}{r} \implies V(r) = C_1 \ln r + C_2$$
 (4)

(2) in (4): $C_2 = V_o - C_1 \ln a$ (5)

(3), (5) in (4):
$$C_1 = -V_o/\ln(b/a), \quad C_2 = V_o \ln b / \ln(b/a)$$
 (6)

:. (6) in (4): $V(r) = \frac{V_o \ln (b/r)}{\ln (b/a)}$

Consequently, $\boldsymbol{E}(r) = -\hat{\boldsymbol{r}} \frac{dV}{dr} = \hat{\boldsymbol{r}} \frac{V_o}{r \ln (b/a)}$

b) Two infinite insulated conducting plates maintained at constant V_o

Infinite plates :
$$0 < r < \infty$$
,
 $-\infty < z < \infty$
 $\Rightarrow \quad \frac{\partial}{\partial r} = 0 \text{ and } \frac{\partial}{\partial z} = 0$
 $\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2}$
 $= \frac{1}{r^2} \left(\frac{d^2}{d\phi^2} \right)$

Laplace's equation:

$$\frac{d^2 V}{d \phi^2} = 0 \ , \quad 0 \le \phi \le \alpha \ \text{and} \ \alpha \le \phi \le 2\pi$$
 (1)

BCs:
$$V(\phi)|_{\phi=0,2\pi} = 0$$

 $V(\phi)|_{\phi=\alpha} = V_o$

Integrating ① twice, general solution: $V(\phi) = K_1 \phi + K_2$ ④ (1) For $0 \le \phi \le \alpha$, ② at $\phi = 0$, ③ in ④: $K_2 = 0$, $K_1 = V_o / \alpha$ ⑤ \therefore ⑤ in ④: $V(\phi) = \frac{V_o}{\alpha} \phi$ & $E(\phi) = -\hat{\phi} \frac{1}{r} \frac{dV}{d\phi} = -\hat{\phi} \frac{V_o}{\alpha r}$ (3-143) (2) For $\alpha \le \phi \le 2\pi$, ③ in ④ at $\phi = \alpha$: $V(\alpha) = \alpha K_1 + K_2 = V_o$ ③* ② in ④ at $\phi = 2\pi$: $V(2\pi) = 2\pi K_1 + K_2 = 0$ ②*

$$\implies \quad K_1 = -\frac{V_o}{2\pi - \alpha} \quad , \qquad K_2 = \frac{2\pi V_o}{2\pi - \alpha} \qquad (5)^*$$

(2)

(3)

: (5)* in (4):
$$V(\phi) = \frac{V_o}{2\pi - \alpha} (2\pi - \phi)$$
 & $E(\phi) = \hat{\phi} \frac{V_o}{(2\pi - \alpha)r}$ (3-146)

3) BVPs in spherical coordinates

a) Two concentric conducting shells maintained at constant potentials

Spherically symmetric:

$$\frac{\partial}{\partial \theta} = \frac{\partial}{\partial \phi} = 0$$

$$\nabla^2 = \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial}{\partial R} \right)$$

$$+ \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

$$= \frac{1}{R^2} \frac{d}{dR} \left(R^2 \frac{d}{dR} \right)$$

Laplace's equation:

$$\frac{d}{dR} \left(R^2 \frac{dV}{dR} \right) = 0, \quad R_i \le R \le R_o \qquad (1)$$

BCs:

$$V(R)|_{R=R_i} = V_1$$

$$V(R)|_{R=R_o} = V_2$$
(2)
(3)

Integrating 1 twice,

$$R^2 \frac{dV}{dR} = C_1 \implies dV = \frac{C_1}{R^2} dR \implies V(R) = -\frac{C_1}{R} + C_2$$
 (4)

(2) in (4):
$$C_2 = V_1 + C_1 / R_i$$
 (5)

(3), (5) in (4):
$$C_1 = -\frac{R_o R_i (V_1 - V_2)}{R_o - R_i}, \quad C_2 = \frac{R_o V_2 - R_i V_i}{R_o - R_i}$$
 (6)

$$\therefore \quad \text{(6) in (4):} \qquad V(R) = \frac{1}{R_o - R_i} \left[\frac{R_o R_i}{R} (V_1 - V_2) + R_o V_2 - R_i V_1 \right] \qquad (3-152)$$
$$= \left(\frac{V_1 - V_2}{1/R_i - 1/R_o} \right) \left[\frac{1}{R} + \left(\frac{V_2}{V_1 - V_2} \right) \frac{1}{R_i} - \left(\frac{V_1}{V_1 - V_2} \right) \frac{1}{R_o} \right]$$

Consequently, $E(R) = -\hat{R}\frac{dV}{dR} = \hat{R}\left(\frac{V_1 - V_2}{1/R_i - 1/R_o}\right)\frac{1}{R^2}$ (3-1)

(3-152)*

Note) V(R) and $\pmb{E}(R)$ are independent of $\epsilon.$ (cf) Two concentric conducting shells maintained at constant charges

b) Screened Coulomb potential in plasmas (Debye shielding)

Consider a positive test charge e

in a singly-ionized plasma.

Assume
$$n_i = n_o = const$$
: fixed (:: $m_i/m_e \gg 1$)

 $n_e(R)|_{R \to \infty} = n_o$: not affected by potential Electron distribution \rightarrow Boltzmann distribution

singly-inonized plasma V(R) e^{\oplus} λ_D electron-cloud (sheath)

۱

$$\nabla^2 V(R) = -\frac{\rho_v}{\varepsilon_o} = \frac{e[n_e(R) - n_i]}{\varepsilon_o}, \quad 0 \le R < \infty$$
 (1)

BCs: $V(R)|_{R \to 0} = \frac{e}{4\pi\varepsilon_o R} \equiv V_o$: Coulomb potential (2)

 $\rightarrow n_e(R) = n_o e^{eV(R)/kT_e}$

$$V(R)|_{R \to \infty} = 0 \tag{3}$$

$$n_e(R) = n_o \ e^{e\Phi(R)/kT_e} \text{ in } (1) :$$

$$-2 W \qquad e^{n_o} \left(\frac{eV/kT_e}{kT_e} \right)$$

$$\nabla^2 V = \frac{en_o}{\varepsilon_o} \left(e^{\frac{eV}{kT_e}} - 1 \right)$$
 ①*

Assuming $|eV| \ll kT_e$ over most of space which is usually the case. $e^{eV/kT_e} \approx 1 + \frac{eV}{kT_e}$

Then
$$\nabla^2 V = \frac{1}{\lambda_D^2} V$$
 where $\lambda_D^2 \equiv \frac{\varepsilon_o k T_e}{e^2 n}$ (1**
In spherical coordinates,
 $\frac{1}{R^2} \frac{d}{dR} \left(R^2 \frac{dV}{dR} \right) - \frac{1}{\lambda_D^2} V = 0 \Rightarrow V' + \frac{2}{R} V' - \frac{1}{\lambda_D^2} V = 0 \Rightarrow RV' + 2V' - \frac{1}{\lambda_D^2} RV = 0$
Let $\Phi(r) \equiv RV(R)$ then $\Phi' = V + RV'$, $\Phi'' = RV'' + 2V'$
 $\Phi'' - \lambda_D^2 \Phi = 0 \Rightarrow \Phi(R) = C_1 e^{-R/\lambda_D} + C_2 e^{+R/\lambda_D}$
 $\therefore V(R) = \frac{C_1}{R} e^{-R/\lambda_D} + \frac{C_2}{R} e^{R/\lambda_D}$ (4)
(3) in (4): $C_2 = 0$ (5)
(2) in (4): $C_1 = e/4\pi\varepsilon_o$ (6)
(5).(6) in (4): $V(R) = \frac{e}{4\pi\varepsilon_o R} e^{-R/\lambda_D} \equiv V_o e^{-R/\lambda_D}$ (7)
 \therefore Screened Coulomb potential (Yukawa-type potential)
 $V_o(R)$ where $\lambda_D \equiv \left(\frac{\varepsilon_o k T_e}{ne^2}\right)^{1/2}$: Debye length (8)
 $=$ a measure of shielding distance by the sheath
 $V_0(R)$ $V_0(R)$ $V_0(R) = \frac{e}{R} V_0(R) = \frac{1}{R} V_0(R) V_0(R)$

C. Image Method

1) Theory of images

Any charge distribution above an infinite conducting plane

Combination of the given and its image charge distributions with the conducting plane removed

2) Applications of image method

a) Point charge above a grounded plane conductor

(b) Image charge and field lines.

 $\underline{\mathsf{BVP}} \Rightarrow$ complicated to solve!

Poisson's equation:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) V(x, y, z) = Q \,\delta(y - d), \qquad -\infty < x, y, z < \infty$$

BCs:

$$\begin{split} V(x,y,z)|_{y=0} &= 0, \qquad -\infty < x, z < \infty \\ V(x,y,z)|_{y\to\infty} &= 0, \qquad -\infty < x, z < \infty \end{split}$$

Image method

Potential at a point P(x, y, z)

due to an actual charge Q and its image charge -Q:

$$V(x, y, z) = \frac{Q}{4\pi\epsilon_o} \left(\frac{1}{R_+} - \frac{1}{R_-} \right)$$

= $\frac{Q}{4\pi\epsilon_o} \left[\frac{1}{\sqrt{x^2 + (y-d)^2 + z^2}} - \frac{1}{\sqrt{x^2 + (y+d)^2 + z^2}} \right], y \ge 0$

 $V(x, y, z) = 0, \quad y \le 0$

Electric field intensity :

$$\begin{split} \boldsymbol{E}(x,y,z) &= -\nabla V = -\left(\hat{x}\frac{\partial V}{\partial x} + \hat{y}\frac{\partial V}{\partial y} + \hat{z}\frac{\partial V}{\partial z}\right) \\ &= \frac{Q}{4\pi\epsilon_o} \left[\frac{\hat{x}x + \hat{y}(y-d) + \hat{z}z}{[x^2 + (y-d)^2 + z^2]^{3/2}} - \frac{\hat{x}x + \hat{y}(y+d) + \hat{z}z}{[x^2 + (y+d)^2 + z^2]^{3/2}}\right], \ y \ge 0 \quad (3-154) \end{split}$$

Induced surface charge density on the plane conductor :

(3-46)
$$E_n = \rho_s / \epsilon_o \implies \rho_s = \epsilon_o E_y |_{y=0} = -\frac{Qd}{2\pi (x^2 + d^2 + z^2)^{3/2}}$$

(3-155)

b) Line charge near a parallel conducting cylinder

equipotential surfaces image line charge $d = \frac{p_{i}}{p_{i}}$ $d = \frac{p_{i}}{p_{i}}$ figure 3-28

Electric potential : (3-23) $\boldsymbol{E} = \hat{\boldsymbol{r}} \frac{\rho_l}{2\pi\epsilon_o r}$ in $V(\boldsymbol{r}) = -\int_{ref.pt.}^{\boldsymbol{r}} \boldsymbol{E} \cdot d\boldsymbol{l}$

$$V(\mathbf{r}) = -\frac{\rho_l}{2\pi\epsilon_o} \int_{r_o}^{r} \frac{dr}{r} = \frac{\rho_l}{2\pi\epsilon_o} ln \frac{r_o}{r}$$
(3-157)

where r_o is the reference point.

Potential at a point M due to actual and image line charges :

$$V_M = \frac{\rho_l}{2\pi\epsilon_o} \left(\ln \frac{r_o}{r} - \ln \frac{r_o}{r_i} \right) = \frac{\rho_l}{2\pi\epsilon_o} ln \frac{r_i}{r}$$
(3-158)

If $V_M = const$, then $\frac{r_i}{r} = const$. The equipotential surface becomes the cylindrical surface of radius a. In this case, $\Delta OMP_i \propto \Delta OPM$

$$\implies \frac{r_i}{r} = \frac{d_i}{a} = \frac{a}{d} = const \equiv K = e^{2\pi\epsilon_o V_M/\rho_l}$$
(3-160)

Position of point P_i = Inverse point of $P \; {\rm w.r.t}$ a circle of radius a :

$$(3-160) \implies d_i = \frac{a^2}{d} \tag{3-161}$$

c) Two-wire transmission line

$$V_{2} = \frac{\rho_{l}}{2\pi\epsilon_{o}} ln \frac{a}{d} \quad \text{and} \quad V_{1} = -\frac{\rho_{l}}{2\pi\epsilon_{o}} ln \frac{a}{d}$$

$$\Rightarrow \quad V_{1} - V_{2} = -\frac{\rho_{l}}{\pi\epsilon_{o}} ln \frac{a}{d} = \frac{Q}{\pi\epsilon_{o}L} ln(d/a)$$

$$\therefore \quad C = \frac{Q}{V_{1} - V_{2}} = \frac{\pi\epsilon_{o}L}{\ln(d/a)} \quad \text{or} \quad \frac{C}{L} = \frac{\pi\epsilon_{o}}{\ln(d/a)} \quad (3-162)$$

$$d = D - d_{i} = D - a^{2}/d \quad \Rightarrow \quad d^{2} - Dd + a^{2} = 0$$

$$\Rightarrow \quad d = \frac{1}{2} (D + \sqrt{D^{2} - 4a^{2}}) \quad (3-163)$$

(3-163) in (3-162) :

$$\frac{C}{L} = \frac{\pi \epsilon_o}{\ln\left[(D/2a) + \sqrt{(D/2a)^2 - 1}\right]} = \frac{\pi \epsilon_o}{\cosh^{-1}(D/2a)}$$
(F/m) (3-165)
$$\ln(x + \sqrt{x^2 - 1}) = \cosh^{-1}x \text{ for } x > 1$$

For the usual two-wire transmission line (2a \ll D) ,

$$\frac{C}{L} = \frac{\pi \epsilon_o}{\ln \left(D/a \right)} \quad (F/m) \tag{3-166}$$

(cf) For a coaxial transmission line of radii a and b

$$\frac{C}{L} = \frac{2\pi\epsilon}{\ln(b/a)} \qquad (F/m) \tag{3-90}$$

Homework Set 4

- 1) P.3-16
- 2) P.3-17 c)
- 3) P.3-19
- 4) P.3-21
- 5) P.3-27
- 6) P.3-31
- 7) P.3-32
- 8) P.3-35