2009 spring

Advanced Physical Metallurgy "Amorphous Materials"

05. 25. 2009

Eun Soo Park

Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Definition of metallic glass

• Non-crystalline metallic solid lacking long-range periodicity of atomic arrangement and showing glass transition.

Bulk metallic glass (BMG)

• Metallic glass having a minimum dimension of 1mm which is equivalent to a critical cooling rate of about 10³ to 10⁴ K/s.

Glass Formation

- Competing process between retention of liquid phase and formation of crystalline phases
- a. Liquid phase stability
- Stability of the liquid in the equilibrium state (i.e. stable state, T_I)
- Stability of the liquid during undercooling (i.e. metastable state, T_q)

b. Resistance to crystallization

- Nucleation and growth of the competing crystalline phases

Alloy design and new BMG development

Ca-Mg-Zn alloy system

Ca-Mg-Zn alloy system

* J. Mater. Res. 19, 685 (2004)

* Mater. Sci. Forum 475-479, 3415 (2005)

Evaluation of Glass-forming ability

Time

Critical cooling rate is inversely proportional to the diameter of ingot.

Measurement and calculation of R_c in Ca₆₅Mg₁₅Zn₂₀ alloy system

* Cooling curves measured at the center of the three transverse cross sections

(a) bottom position : 149 K/s (b) middle position : 93 K/s (c) top position : 20 K/s

⇒ Critical cooling rate for glass formation calculated from CCT and CHT curves is in good agreement with measured value.

* Trans. Indian Inst. Met. 58, 739 (2005) * Met. Mater. –Int. 11, 1 (2005)

Measurement of R_c in Mg BMG (D_{max} =14 mm)

* Cooling curves measured at the center of the three transverse cross sections

Based on thermal analysis (T_q , T_x and T_l): thermodynamic and kinetic aspects

- $T_{rg} = T_g/T_1$ $K = (T_x T_g) / (T_1 T_x)$ $\Delta T^* = (T_m^{mix} T_1) / T_m^{mix}$ $\Delta T_x = T_x T_g$ $\chi = T_x / (T_1 + T_g)$
- D. Turnbull et al., Contemp. Phys., 10, 473 (1969)
- A. Hruby et al., Czech.J.Phys., B22, 1187 (1972)
- I. W. Donald et al., J. Non-Cryst. Solids, 30, 77 (1978)
- A. Inoue et al., J. Non-Cryst. Solids, 156-158, 473 (1993)
- Z.P. Lu and C. T. Liu, Acta Materialia, 50, 3501 (2002)

Based on thermodynamic and atomic configuration aspects

 $\sigma = \Delta T^* \times P^*$ E. S. Park et al., *Appl. Phys. Lett.*, 86, 061907 (2005)

 ΔT^* : Relative decrease of melting temperature + P' : atomic size mismatch

: can be calculated simply using data on melting temp. and atomic size

1) ΔT_x parameter = $T_x - T_g$

- quantitative measure of glass stability toward crystallization upon reheating the glass above T_{a} : stability of glass state
- cannot be considered as a direct measure for GFA

2) K parameter = $(T_x - T_g)/(T_1 - T_x) = \Delta T_x/(T_1 - T_x)$

- based on thermal stability of glass on subsequent reheating

- includes the effect of T_1 , but similar tendency to ΔT_x

3)
$$\triangle T^*$$
 parameter = $(T_m^{mix} - T_l)/T_m^{mix}$

- evaluation of the stability of the liquid at equilibrium state
- alloy system with deep eutectic condition ~ good GFA
- for multi-component BMG systems: insufficient correlation with GFA
- → T_m^{mix} represents the fractional departure of T_m with variation of compositions and systems from the simple rule of mixtures melting temperature

1_e

А

T_mc

1) ΔT_x parameter = $T_x - T_g$

- quantitative measure of glass stability toward crystallization upon reheating the glass above T_g : stability of glass state
- cannot be considered as a direct measure for GFA

2) K parameter = $(T_x - T_g)/(T_1 - T_x) = \Delta T_x/(T_1 - T_x)$

- based on thermal stability of glass on subsequent reheating
- includes the effect of T_1 , but similar tendency to ΔT_x

3)
$$\triangle T^*$$
 parameter = $(T_m^{mix} - T_l)/T_m^{mix}$

- evaluation of the stability of the liquid at equilibrium state
- alloy system with deep eutectic condition ~ good GFA
- for multi-component BMG systems: insufficient correlation with GFA
- $\rightarrow T_m^{mix}$ represents the fractional departure of T_m with variation of compositions and systems from the simple rule of mixtures melting temperature

T_e

T_mc

Temperature

1) ΔT_x parameter = $T_x - T_g$

- quantitative measure of glass stability toward crystallization upon reheating the glass above T_g : stability of glass state
- cannot be considered as a direct measure for GFA

2) K parameter = $(T_x - T_g)/(T_1 - T_x) = \Delta T_x/(T_1 - T_x)$

- based on thermal stability of glass on subsequent reheating

- includes the effect of T_{I} , but similar tendency to ΔT_{x}
- 3) $\triangle T^*$ parameter = $(T_m^{mix} T_l)/T_m^{mix}$

- $T_m^{mix} = \sum_{i=1}^{n} n_i \cdot T_m^i$ (where n_i and T_m^i are the mole fraction and melting point, respectively, of the *i* th component of an *n*-component alloy.)

- evaluation of the stability of the liquid at equilibrium state
- alloy system with deep eutectic condition ~ good GFA
- for multi-component BMG systems: insufficient correlation with GFA
- T_m^{mix} represents the fractional departure of T_m with variation of compositions and systems from the simple rule of mixtures melting temperature

T_e

T_mc

Relative decrease of melting temperature

: ratio of Temperature difference between liquidus temp. T_1 and imaginary melting temp. T_m^{mix} to T_m^{mix}

$$\Delta T^* = \frac{T_m^{mix} - T_l}{T_m^{mix}}$$

(where, $T_m^{min} = \sum x_i T_m^i$, $x_i =$ molefraction, $T_m^i =$ melting point)

by I.W. Donald et al. (J. Non-Cryst. Solids, 30, 77 (1978))

 $\longrightarrow \Delta T^* \ge 0.2$ in most of glass forming alloys

- kinetic approach to avoid crystallization before glass formation
- Viscosity at T_g being constant, the higher the ratio T_g/T_l, the higher will be the viscosity at the nose of the CCT curves, and hence the smaller R_c
- $T_1 \downarrow$ and $T_g \uparrow \blacktriangleright$ lower nucleation and growth rate \blacktriangleright GFA \uparrow
 - significant difference between T₁ and T_q in multi-component BMG¹⁰
 - insufficient information on temperature-viscosity relationship
 - insufficient correlation with GFA

5) \forall parameter = T_x / (T₁ + T_g)

- thermodynamic and kinetic view points relatively reliable parameter
- stability of equilibrium and metastable liquids: T_I and T_g
- resistance to crystallization: T_x

Glass formation: destabilizing the crystalline phase

Crystal nucleation rate (J)

- Assuming a spherical shape of the nucleus and a homogeneous manner of the nucleation process

(a) first-order approximation (i.e., $\Delta G = \Delta S_m(T_m - T)$; ΔS_m is the entropy of fusion per volume) (b) simplified Vogel-Fulcher-Tamman (VFT) equation $\eta = 10^{-3.3} \exp(\frac{3.34}{T_r - T_{rg}})$ (c) $T_r = T/T_m$ and $\Delta T_r = (T_m - T)/T_m = 1 - T_r$

Criterion for glass formation

 $T_{\rm rg}$ parameter = $T_{\rm g}/T_{\rm m}$

: ability to avoid crystallization during cooling

4) T_{rg} parameter = T_g/T_1

- kinetic approach to avoid crystallization before glass formation
- Viscosity at T_g being constant, the higher the ratio T_g/T_l, the higher will be the viscosity at the nose of the CCT curves, and hence the smaller R_c
- $T_I \downarrow$ and $T_g \uparrow \blacktriangleright$ lower nucleation and growth rate \blacktriangleright GFA \uparrow
 - significant difference between T₁ and T_q in multi-component BMG 10⁻
 - insufficient information on temperature-viscosity relationship
 - insufficient correlation with GFA

5) \forall parameter = T_x / (T₁ + T_g)

- thermodynamic and kinetic view points relatively reliable parameter
- stability of equilibrium and metastable liquids: T_I and T_q
- resistance to crystallization: T_x

FIG. 2 (color online). Schematic TTT curves showing the effect of T_x measured upon continuous heating for different liquids with similar T_1 and T_g ; liquid b with higher onset crystallization temperature bT_x (${}^aT_x < {}^bT_x$) shows a lower critical cooling rate bR_c (${}^bR_c < {}^aR_c$).

