2009 spring

Advanced Physical Metallurgy "Amorphous Materials"

06.01.2009

Eun Soo Park

Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Glass-forming Ability Parameters

GFA Parameters on the basis of thermodynamic or kinetic aspects :

- quantitative measure of glass stability toward crystallization upon reheating the glass above $\rm T_g$: stability of glass state
- cannot be considered as a direct measure for GFA

2) K parameter = $(T_x - T_q)/(T_1 - T_x) = \triangle T_x/(T_1 - T_x)$

- based on thermal stability of glass on subsequent reheating
- includes the effect of T_1 , but similar tendency to ΔT_1

3) $\triangle T^*$ parameter = $(T_m^{mix} - T_l)/T_m^{mix}$

- $T_m^{mix} = \sum_{i=1}^{n} n_i \cdot T_m^i$ (where n_i and T_m^i are the mole fraction and melting point, respectively, of the *i* th component of an *n*-component alloy.)

- evaluation of the stability of the liquid at equilibrium state
- alloy system with deep eutectic condition ~ good GFA
- for multi-component BMG systems: insufficient correlation with GFA
- T_m^{mix} represents the fractional departure of T_m with variation of compositions and systems from the simple rule of mixtures melting temperature

в

T_mc

GFA Parameters on the basis of thermodynamic or kinetic aspects :

4) T_{rq} parameter = T_q/T_1

- kinetic approach to avoid crystallization before glass formation
- Viscosity at T_q being constant, the higher the ratio T_q/T_l , the higher will be the viscosity at the nose of the CCT curves, and hence the smaller R_{c}
- $T_1 \downarrow$ and $T_q \uparrow \blacktriangleright$ lower nucleation and growth rate \blacktriangleright GFA \uparrow
 - significant difference between T₁ and T_a in multi-component BMG 10⁻
 - insufficient information on temperature-viscosity relationship
 - insufficient correlation with GFA

5) X

- b) γ parameter = T_x / (T_I + T_g)
 thermodynamic and kinetic view points relatively reliable parameter
- stability of equilibrium and metastable liquids: T_1 and T_{α}
- resistance to crystallization: T_x

No universal model to predict and evaluate what families of alloy compositions are likely to form BMGs

Combination of categories

that are viewed as decisive in the formation of amorphous alloys

П

New criterion

for predicting and evaluating Glass Forming Ability

- useful guideline for BMG alloy system design
- save time and experimental cost

new alloy system with enhanced GFA

Approach 1. combine thermodynamic and structural points

$$\sigma = \Delta T * \times P'$$

Approach 2. combine thermodynamic and kinetic points

$$\varepsilon = \frac{\Delta T_m + \Delta T_x + T_x}{T_m^{mix}}$$

 $\Delta Tm + \Delta Tx$: Liquid phase stability + Tx : Resistance to cristallization

(where, $\Delta Tm = Tmmix - Tl$, $\Delta Tx = Tx - Tg$)

(where, Tx = crystallization onset temperature)

O parameter (thermodynamic and atomic configuration aspects)

New criterion for GFA, σ **parameter** $\sigma = \Delta T * \times P'$

* Appl. Phys. Lett., 86, 061907 (2005)

E parameter (thermodynamic and kinetic aspects)

* CCT curve showing temperature range for ϵ parameter

Recent BMGs with critical size $\geq 10 \text{ mm}$

A.L. Greer, E. Ma, MRS Bulletin, 2007; 32: 612.

Bulk glass formation in the $Pd_{40}Ni_{10}Cu_{30}P_{20}$ system

Largest ingot

maximum diameter for glass formation : 72 mm

Critical cooling rate: ~ 0.1K/sec.

High strength of Bulk Metallic Glasses

High fracture strength over 5 GPa in Fe-based BMGs

A.L. Greer, E. Ma, MRS Bulletin, 2007; 32: 612.

Limited Plasticity by shear softening and shear band

Microscopically brittle fracture

Death of a material for structural applications

What governs plasticity in metallic glasses?

Plastic deformation in metallic glasses

Plastic deformation in metallic glass

- No dislocation / No slip plane
- Inhomogeneously localized plastic flow in the shear band

interrupt the localization of stress and deformation

- Prevent propagation of single shear band BMG matrix composites
- Multiple shear band formation

Ex-situ BMG matrix composites

1) Casting : hard/ductile particle

200µm (Johnson et al., Acta Mater., 1999)

In-situ BMG matrix composites

1) Solidification : formation of primary ductile phase

(Johnson et al., Acta Mater., 2001)

2) Solidification : precipitation of ductile phase

Ta rich particle

(Johnson et al., Acta Mater., 2001)

Size of heterogeneity

Shear bands are ~20 nm in width

• Prevent propagation of single shear band

Micro- or nanometer scale heterogeneity

Size of heterogeneity

Elementary flow event in an metallic glasses

Plastic deformation in metallic glasses

- Flow governed by localized defect (~10 atoms)
- Flow creates defects

Amorphous: dilatation

• Shear bands form by accumulation of defects

Understanding how shear bands form and propagate in metallic glasses

Fragility

 Fragility ~ extensively use to figure out liquid dynamics and glass properties corresponding to "frozen" liquid state

Slope of the logarithm of viscosity, η (or structural relaxation time, τ) at T_q

Correlation between fragility and plasticity

Correlation between elastic constants and plasticity

Correlation between fragility and plasticity

^{*} Appl. Phys. Lett., 91, 031907.

Enhancement plasticity in BMGs with atomic scale heterogeneity a) Effect of quenched-in quasicrystal nuclei

Effect of secondary phase in amorphous matrix 3 mm rod

(a) $Zr_{63}Ti_5Nb_2Cu_{15.8}Ni_{6.3}AI_{7.9}$

β -Zr dendrite in amorphous matrix

(b) $Zr_{57}Ti_8Nb_{2.5}Cu_{13.9}Ni_{11.1}AI_{7.5}$

I-phase particle in amorphous matrix

Effect of secondary phase in amorphous matrix

* unpublished (2008)

Continuous interface between amorphous and I-phase

Role of icosahedral particle on the propagation of shear band

Before deformation

shear band

- Shear band passes through icosahedral particle.
- Icosahedral particle splits across with the plastic deformation of metallic glass matrix
 - relation No distribution of icosahedral particle to blocking the propagation of shear band.
 - **No enhancement of plasticity in MGMC with icosahedral particle**

(a) $Zr_{63}Ti_5Nb_2Cu_{15.8}Ni_{6.3}AI_{7.9}$

 β -Zr particle(~70 nm) in amorphous matrix

(b) $Zr_{57}Ti_8Nb_{2.5}Cu_{13.9}Ni_{11.1}AI_{7.5}$

2 mm rod

Fully amorphous structure

Activation E : driving force for nucleation

Isotherm in DSC

EXAFS analysis

(b) $Zr_{57}Ti_8Nb_{2.5}Cu_{13.9}Ni_{11.1}AI_{7.5}$

Enhancement plasticity in BMGs with atomic scale heterogeneity b) Effect of element having positive enthalpy of mixing among constituent elements

Improvement of plasticity in monolithic BMGs

* Enhancement of plasticity in monolithic BMGs

 \longrightarrow No clear explanations so far.

* Reports for enhancement of plasticity in monolithic BMGs

	Compressive plastic strain, ϵ_p (%)	
Zr ₅₉ Ta ₅ Cu ₁₈ Ni ₈ Al ₁₀ ¹	~ 6.1	
Zr ₅₇ Ti ₅ Cu ₂₀ Ni ₈ Al ₁₀	~ 1.1	
Ni ₅₉ Zr ₁₆ Nb ₇ Ti ₁₃ Si ₃ Sn ₂ ²	~ 6.2	
Ni ₅₉ Zr ₂₀ Ti ₁₆ Si ₂ Sn ₃	~ 2.1	1 Xing et al., Phys. Rev. B (2001)
Cu ₄₇ Ti ₃₃ Zr ₇ Nb ₄ Ni ₈ Si ₁ ³	~ 4.1	2 Lee et al., Intermetalics (2004), BMG III
Cu ₄₇ Ti ₃₃ Zr ₁₁ Ni ₈ Si ₁	~ 1.5	3 <u>Park et al., J. Non-cryst. Sol. (2005)</u>
Cu ₄₃ Ag ₇ Zr ₄₃ Al ₇ ⁴	~ 4.1	4 Sung et al., Met. Mater. –Int (2004) and
Cu ₅₀ Zr ₄₃ Al ₇	~ 1.5	Oh et al., Scripta Mater. (2005)

(Ta-Zr: +13KJ/mol, Nb-Zr: +17KJ/mol, Nb-Ti: +9KJ/mol,Cu-Ag: +5 KJ/mol)

- Previous results on the effect of micro-alloying on plasticity

: Effect of elements having positive heat of mixing

Alloy design

* Substitution of Zr with Y in Cu-Zr-Al system

D. Xu, G. Duan and W.L. Johnson, Phys. Rev. Lett. 92, 245504 (2004)

Indirect evidence of inhomogeneity = Phase separation

Thermal analysis : DSC results

Exothermic peak which exhibit that Y rich amorphous phase crystallize

Structural analyses : TEM results

 $Cu_{46}Zr_{22}Al_7Y_5$

As-melt-spun

Compression test in Cu-Zr-Al-Y alloy system

 $\Rightarrow Enhancement of the plasticity with the addition of small amount (2~5 \%) of Y$ But, no nanocrystals and structural ordering (conformed by HREM and HRND) Performed at *HANARO*, *KEARI*.

Calculation of activation energy for glass transition

activation energy evaluated by Kissinger's equation;

$$\ln (T_{g}^{2} / \Phi) = \ln (E_{g} / k_{B} K_{0}) + E_{g} / k_{B} T_{g},$$

where k_B is the Boltzman constant, and K_0 is the frequency factor in Arrehenius law, that is, $K_T = K_0 \exp(-E/k_BT)$.

*
$$E_g$$
 = 3.114 eV $>$ * E_g = 2.764 eV
Relatively stable glass

Measurement of viscosity using TMA

Structural analyses: HRTEM

$Cu_{46}Zr_{42}Al_7Y_5$

As-melt-spun

Heated up to 480 °C

: nanocrystallization of Y rich amorphous phase due to relatively lower GFA

* Acta Materialia, 54, 2597 (2006)

Calculation of kinetic fragility, m

$$m = [D*T_g^0 T_g] / [ln10(T_g - T_g^0)^2]$$
Heating rate : 5 K/min
$$m = [D*T_g^0 T_g] / [ln10(T_g - T_g^0)^2]$$

$$M = \frac{1}{2} \frac{1}{2}$$

Relatively strong glass

25

 $T_{\rm q}^{0}$ = 640 K

 $D^* = 0.61$

Relatively fragile glass

Effect of element having positive enthalpy of mixing

Abnormal behavior of supercooled liquid region

Effect of element having positive enthalpy of mixing

Atom probe concentration depth profiles in Ni₆₁Zr₂₂Nb₇Al₄Ta₆

easy crystallization

Effect of element having positive enthalpy of mixing

Ordering in supercooled liquid region

Enhancement plasticity in BMGs with atomic scale heterogeneity

c) Effect of element having significantly different enthalpy of mixing among constituent elements

Cu-Zr-Be ternary alloy system

* Acta Materialia, 56 3120 (2008)

Compression test

3DAP-FIM results

(a) FIM image and (b)-(d) composition depth profile of the as-spun $Cu_{47.5}Zr_{40}Be_{12.5}$ ribbon sample

Visualization of Atoms by FIM

Analysis of atoms by 3DAP

~20 nm

Energy-compensating reflectron lens

NIMS 3DAP

255

Complementary structural analysis

Local Chemical Composition

Local Structure

* Acta Materialia, 56 3120 (2008)

2	EXA	FS	ana	lysis
---	-----	-----------	-----	-------

	r (/	Å)	Λ	Ţ	Total N	σ²	
	Cu-Cu	Cu-Zr	Cu-Cu	Cu-Zr		Cu-Cu	Cu-Zr
Cu ₆₀ Zr ₄₀	2.49	2.69	3.0	3.7	6.7	0.0116	0.0233
Cu _{47.5} Zr ₄₀ Be _{12.5}	2.51	2.70	2.5	4.8	7.3	0.0107	0.0227
	Zr-Zr	Zr-Cu	Zr-Zr	Zr-Cu		Zr-Zr	Zr-Cu
Cu ₆₀ Zr ₄₀	3.10	2.68	6.9	4.4	11.3	0.0263	0.0124
Cu _{47.5} Zr ₄₀ Be _{12.5}	3.12	2.69	6.2	3.5	9.7	0.0257	0.0130

Atoimic diameter in Å: Cu-Cu = 2.56, Cu-Zr = 2.88, Zr-Zr = 3.20.

eCargill-Spaepen short-range order parameters, n

η > **0**

	Z _{AB}	<z></z>	Z * _{AB}	Z** _{AB}	η
Cu ₆₀ Zr ₄₀	3.7	8.540	3.416	3.546	0.043
Cu _{47.5} Zr ₄₀ Be _{12.5}	4.8	7.348	2.939	3.855	0.245

Cargill-Spaepen SRO parameter $\eta = Z_{AB} / Z_{AB}^{**} - 1$

$$Z_{AB}^{**} = x_B Z_B Z_A / \langle Z \rangle$$

chemical ordering between AB nearest-neighbor pairs

Enhancement plasticity in BMGs with atomic scale heterogeneity d) Effect of atomic scale heterogeneity on SB nucleation

(conformed by EXAFS)

Effect of alloy composition on SB nucleation

Experimental equipment

Normal camera 25 frames per sec Interval : 0.04 sec

Effect of local favored structure on SB nucleation

100 μm

Effect of local favored structure on SB nucleation

Ni₆₀Nb₂₀Zr₂₀: amorphous phase with local favored structure
 ■

- Increased nucleation sites of shear bands
 - ; evaluate the local heterogeneity in amorphous phase

Tailoring of structural inheterogeneity

Alloy design + Process control

atomic scale inhomogeneity generation

Solidification under appropriate conditions

Enhanced plasticity in Ni₆₀Nb₃₂Zr₈, Ni₆₀Nb₃₀Zr₁₀ BMGs (σ_{max} : 3.2 GPa, ε_{p} : 2.5 %)

Bulk metallic glass matrix composites

(1) BMG matrix composites

(2) Porous and foamed amorphous metals

High fracture toughness: > 10 % plastic strain in tensile test

Nature Materials 5 (2006) 857.