2009 spring

## Microstructural Characterization of Materials

06.03.2009

Eun Soo Park

Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

## Content for previous class

### **Selected area diffraction**



CoSi<sub>x</sub> film on Si after heat treatment at 800 °C

### Dark field image

metal vacuum arc deposition Y Zhang, C.M. Wang, D.E. McCready Pactice Northwest National Laboratory, Richland, WA T.Zhang, Y. Wu Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing, Chris H.J. Whitowit Department of Physics University of Jyvidshild, Jyvidshild, Phanda and Sedamolgy and Society, Maimo Indgskola, Maimo, Sweden



## Analysis for Ring pattern and Spot pattern

### kikuchi pattern

### Mechanisms of image formation: contrast

#### **Mass-thickness contrast**

#### **Phase contrast**

(high resolution image of crystal lattice)

**Diffraction contrast** (major image formation mechanisms)

Z contrast imaging (Dark field-STEM)

### **Mass-thickness contrast**



### **Diffraction contrast** (major image formation mechanisms)



# High-resolution EM

| Incident<br>electron wave            | ļ |
|--------------------------------------|---|
| Sample<br>(very thin!)               |   |
| Transmitted<br>& Diffracted<br>waves |   |

Transmitted & diffracted waves each have a different phase Result is an interference pattern - our 'phase contrast' or HREM image

### **Phase contrast**

(high resolution image of crystal lattice)

Atomic column images at resolutions from 0.7Å and above

Results from interference of transmitted and diffracted electron waves



High resolution micrograph of a precipitate at a high angle grain boundary in aluminum

## **High-resolution imaging**



Image courtesy C. Kisielowski, NCEM, LBNL

Aluminum || Oxygen 0.085 nm

### **High-Resolution TEM**



Lattice parameters, grain misorientation, burgers vectors are all measurable.

## **High-resolution imaging**



Often high-resolution imaging is used in nanoscience to show 'single crystalline' nature of nanostructures

In fact, electron diffraction is superior for this (though less visually appealing)

## **High-resolution imaging**

But, can be only way to characterize some nanomaterials

Can computationally extract diffraction information from HREM images

Would never get this directly

> Scattering is too weak at this size scale





## Scanning transmission electron microscopy (STEM)





### **SEM vs STEM**



## Detectors in S(T)EM

- Secondary Electrons
- Backscattered Electrons
- X-rays
- EELS
- Bright field
- Dark field
- (Absorbed current)





Angstroms

## Advantages and disadvantages of Scanning Beam Microscopy SEM,TEM <-> STEM

### Advantages

- Parallel detection of different signals
- Easy positioning of the beam (EDX, EELS)
- Small interaction volume, High energy (EDX)

### Disadvantages

- Longer acquisition times (line by line)
- Image distortions (deflection coils)
- More complicated alignment procedure
- More expensive...

## Principle





Cowley (1969): for the same lenses, apertures and system dimension the image contrast must be the same for CTEM and STEM

#### Au particles on a C film



#### STEM ADF:

Area of the annular DF detector is much bigger than the objective aperture in CTEM DF imaging -> much stronger signal

#### STEM BF: Similar to CTEM BF image



### **TEM vs STEM**

#### Ge quantum dots on Si substrate

#### Ir nanoparticles

- 1. STEM imaging gives better contrast
- 2. STEM images show Zcontrast



Z-contrast imaging

Z-contrast image

J.G. Wen

5 nm ADF-STEM

L. Long

5 nm



### **HRTEM vs STEM**



#### 1. Contrast

- High-resolution TEM (HRTEM) image is a phase contrast image (indirect image). The contrast depends on defocus.
- STEM image is a direct atomic column image (average Z-contrast in the column).
- 2. Delocalization Effect
- High-resolution TEM image from FEG has delocalization effect.
- STEM image has no such an effect.





From Pennycook's group

STEM

## Types of STEM images

#### Bright-field

 Collect central beam with a small collection angle

#### Low-angle annular dark field

 Collection angle of 25 - 50 milliradians (mrad)

#### High-angle annular dark field

- Collection angle of 50 250 mrad
- Largely phonon scatter (TDS)

|   |    |   |    |        |    |   | WORKS STREET | - ● - ● - ● - ● - ● - ● - ● - ● - ● - ● | · · · · · · · · · · · · · · · · · · · | A DESCRIPTION OF A DESC | Coherent BF-<br>STEM image of<br>SrTiO <sub>3</sub> <110> |
|---|----|---|----|--------|----|---|--------------|-----------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| ŀ | ΗA | A | DF | <br>БТ | EN | Л |              |                                         |                                       | ***************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |

## High Angle Annular Dark Field z-contrast

- Ultramicroscopy 30 (1989) 58-69
- North-Holland, Amsterdam
- Z-CONTRAST STEM FOR MATERIALS SCIENCE
- S.J. PENNYCOOK
- Ultramicroscopy 37 (1991) 14-38;
- North-Holland
- High-resolution Z-contrast imaging of crystals
- S.J. Pennycook and D.E. Jesson



## High Angle Annular Dark field detector



### High angle incoherent scattering

- The annular DF detector is placed beyond the **bragg**-**scattered** electrons...
- Small camera length and large diameter of the detectors inner diameter

The image is formed by high angle incoherently scattered electrons -> Rutherford scattering at the nucleus of the atoms

 $\sigma \sim z^2$ 

**Z-Contrast** 



Si nano-crystals in SiO<sub>2</sub> formed by implantation

## HAADF <-> HRTEM



- Pt catalyst on Al<sub>2</sub>O<sub>3</sub>
- Pt particles become visible in the HAADF image

## HRTEM <-> STEM HAADF



## **Phase separation**



## **Phase separation**

#### 2) Interconnected structure

in Gd-Zr-Al-(Co, Ni, Cu) alloy system









 $Gd_{30}Zr_{25}Al_{25}Ni_{20}$ 

 $Gd_{30}Zr_{25}Al_{25}Cu_{20}$ 



### Nano scale (<3 mm) interconnected Phase separation

 $Gd_{30}Zr_{25}Al_{25}Co_{20}$ 

\* unpublished (2008)



### **Chemical fluctuation - EDS**

|                                 |               |       |       |       |       | _  |
|---------------------------------|---------------|-------|-------|-------|-------|----|
| Beam size : 0.7 nm              | Spectrum      | Al    | Co    | Zr    | Gd    |    |
| Distance between spots : ~ 5 nm | Spectrum(1)   | 23.16 | 30.79 | 18.34 | 27.70 | ·  |
| Television                      | Spectrum(2)   | 22.74 | 33.40 | 17.74 | 26.12 | 35 |
| Construction<br>Construction    | Spectrum(3)   | 24.15 | 30.38 | 23.29 | 22.18 | 30 |
|                                 | Spectrum(4)   | 21.48 | 31.52 | 22.31 | 24.69 | 25 |
|                                 | Spectrum(5)   | 22.45 | 37.20 | 15.46 | 24.89 |    |
| Teleconomia<br>Teleconomia      | Spectrum(6)   | 27.20 | 24.83 | 20.24 | 27.74 | 15 |
|                                 | Spectrum(7)   | 23.67 | 24.90 | 18.47 | 32.96 | 10 |
|                                 | Spectrum(8)   | 22.47 | 34.47 | 23.44 | 19.62 | 5  |
| $Gd_{30}Zr_{25}Al_{25}Co_{20}$  | - Spectrum(9) | 26.01 | 26.16 | 25.50 | 22.33 |    |
| 101                             | Spectrum(10)  | 17.90 | 44.35 | 25.05 | 12.70 |    |

#### Beam size : 0.7 nm Distance between spots : ~ 15 nm



| Spectrum    | Ni    | Nb    |
|-------------|-------|-------|
| Spectrum(1) | 65.22 | 34.78 |
| Spectrum(2) | 64.84 | 35.16 |
| Spectrum(3) | 66.66 | 33.34 |
| Spectrum(4) | 67.23 | 32.77 |
| Spectrum(5) | 67.57 | 32.43 |
| Spectrum(6) | 69.42 | 30.58 |
| Spectrum(7) | 66.98 | 33.02 |



### Chemical fluctuation – Z contrast



nm scale contrast fluctuation in Z contrast image
arly stage in spinodal decomposition

## What can you do with a TEM? In-situ capabilities

- 1. Heating (hot stage 1000°C)
- 2. Cooling (liquid N<sub>2</sub>)
- 3. Tensile-stage
- 4. MEMS tensile stage
- 5. Universal MEMS holder
- 6. Wet-cell

N. Schmit

- 7. Nanomanipulator
- 8. Environmental holder
- 9. Applied voltage to sample

#### 10. Cryo transfer holder



#### In-situ holders



#### All developed at CMM

#### CNT in water





J.G. Wen

#### **EXAMPLE: Preparation of specimen for in-situ tensile test**





시편 종류 :  $Ti_{40}Zr_{29}Cu_9Ni_8Be_{14}$  ribbon monolithic / crystallization of 4 % 시편 두께 : 60 / Thinning method : jet polishing (No ion-milling) Strain interval = 1.0 / m/s ~ 0.1 / m/s Strain at fracture = 290 / m

### in-situ tensile test



H.J. Chang et al. Unpublished. (2008)

### Captured images

