
4. Amplifiers

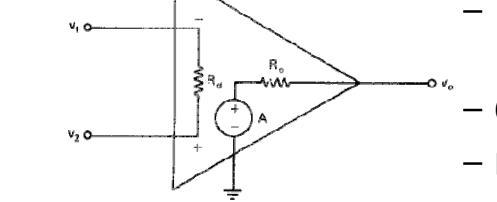
Operational Amplifier Instrumentation Amplifier Analog Computation Active Filter Grounding Isolation

Function of Amplifiers

- Amplifiers provides
 - GAIN
 - Filtering, Signal processing, Correction for Nonlinearities

Ideal Amps

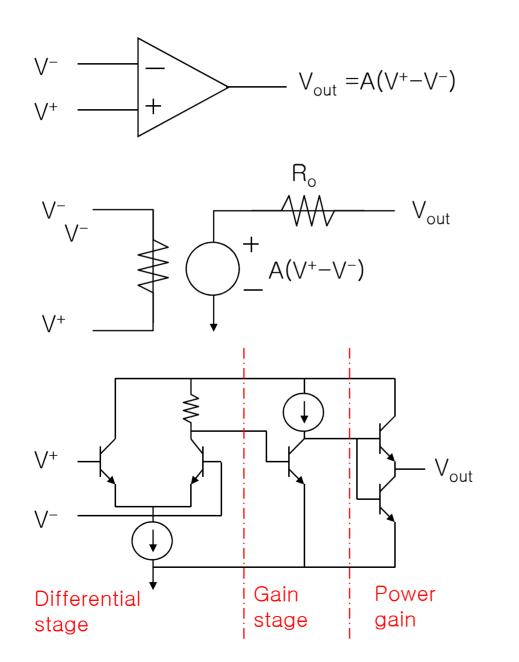
• Assumptions



- Output Impedance Ro = 0
- Bandwidth = Infinity
 - Infinite Frequency Response

$$-v_0 = 0$$
 when $v_1 = v_2$

• No Offset Voltage



OP Amplifier Properties

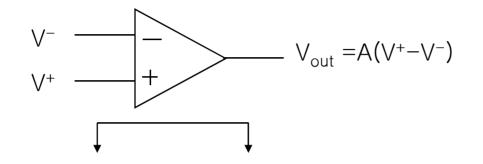
ldeal Op. Amp.	ideally	means	
gain(open-loop)	œ	$\geq 10^4$	
open-loop BW	œ	Dominant Pole at 10Hz	
CMRR	∞	≥ 70dB	
Ri	œ	$\geq 10M\Omega$	
Ro	0	< 500Ω	
I B	0	< 0.5 <i>µ</i> A	
Vos	0	< 10mV	
los	0	< 0.2 <i>µ</i> A	

How do we achieve these properties?

741인 경우 (Stage 1) R=1.6MΩ Gain=1200 (Stage 2) V_{tg} gain=220 (Stage 3) Ro=60Ω V_{tg} gain=1 Overall Gain=108dB

Ideal OP Amps

• Note

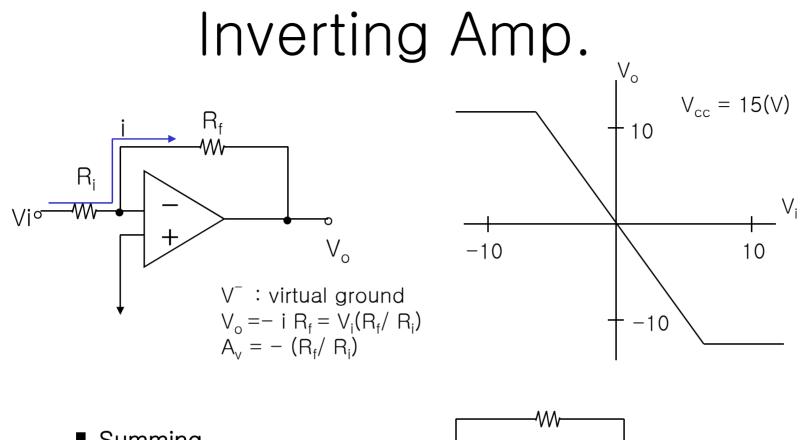

•
$$v_0 = A(v_2 - v_1)$$

• If $v_0 = \infty$, $A = \infty$ (Typically 100,000)
- Then $v_2 - v_1 = 0 \Rightarrow v_2 = v_1$

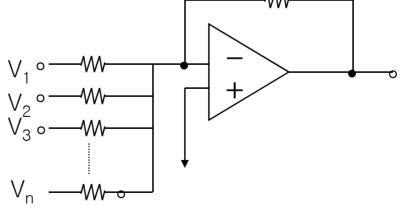
• Since
$$v_2 = v_1$$
 and $Rd = \infty$

- We can neglect the current in Rd
- Rule 1
 - When the OP Amp is in linear range the two inputs are at the same voltage (Virtual Ground)
- Rule 2
 - No Current flows into either terminal of the OP Amp

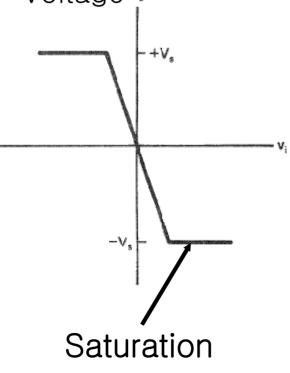
Thus, The Two rules of Ideal OP Amp.


Rule 1: Op Amp의 output이 Linear Stage에 있을 때, 두 input은 동 전위에 있다. (Virtual Ground) Rule 2: Op Amp의 input 단자에 입력되는 전류는 없다. (infinite input impedance)



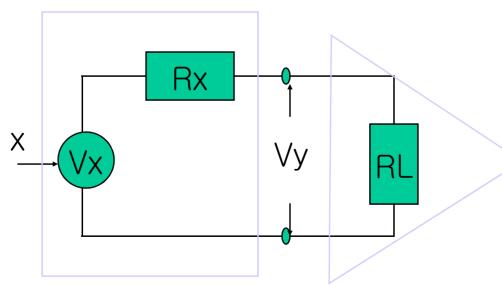

Basic OP Amp Circuit Blocks

- Inverting Amplifier
- Noninverting Amplifier
- Unity-Gain Amplifier
- Differential Amplifier
- Instrumental Amplifier
- The ECG(Electrocardiogram) Amplifier



Inverting Amplifier (Cont.)

- Linear Range
 - By Power Supply
 Voltage •

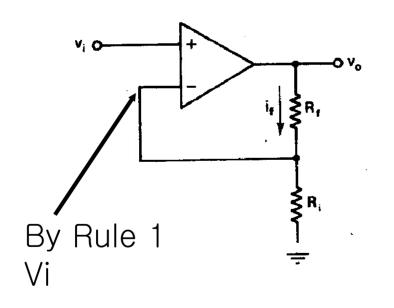


- Input Impedance
 - Low (Ri)
 - Increasing Ri →
 Decreasing Gain
 - Increasing Gain by increasing Rf
 - But there is practical limit

Why High Input Impedance?

- Concept of Loading
 - 계측기가 Sensor의 출력에 영향을 주고 싶지 않음
 - Sensor의 출력이 amplitude Voltage Drop by Load 인 경우에만 중요함. Frequency 혹은 Digital 출력 인 경우에는 영향 없음

- Open Loop Output -Vx


$$- \forall y = \forall x - \forall x \times Rx / (RL + Rx)$$

$$- \forall y = \forall x$$

- Amp 혹은 계측기의 영향 을 제거할 수 있음

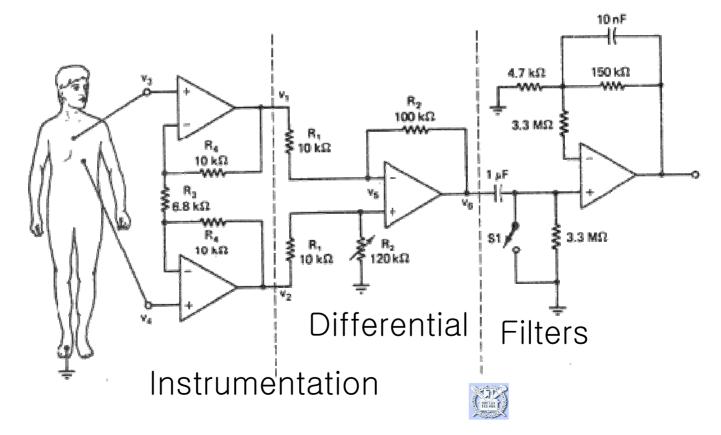
Noninverting Amplifiers

- Noninverting Amp
 - Gain = (Rf + Ri) / Rf

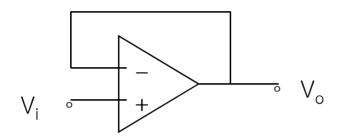
- By Rule 2
 - Vo = If \times (Rf + Ri)
 - $Vi = If \times Ri$
 - Vo = Vi × (Rf + Ri)/Ri
- Gain: Vo/Vi = 1 + Rf / Ri
- Gain \geq 1, Always
- Input Impedance
 Very Large (Infinite)

Unity-Gain Amplifier

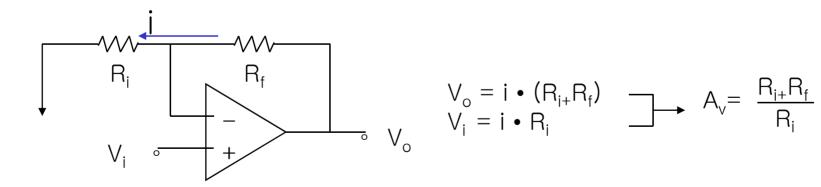
- Homework #2-1
 - Verify that the Gain of Unity-Gain Amp is 1



- $V_O = V_i$
- Applications
 - Buffer amplifier
 - Isolate one circuit from the loading effects of a following stage
 - Impedance converter
 - Data conversion System (ADC or DAC) where constant impedance or high impedance is required


Differential Amplifiers

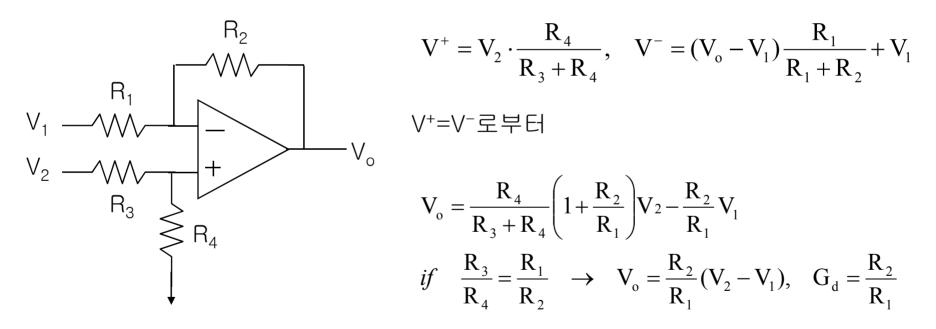
- Combination of Inverting and Noninverting Amp
- Can reject 60Hz interference
- Example Use of Diff. Amp. In ECG amplifier


Non Inverting Amp.

Follower

Buffer, Impedance Converter

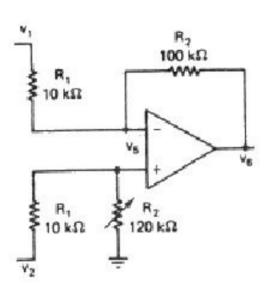
Non-inverting Amp.



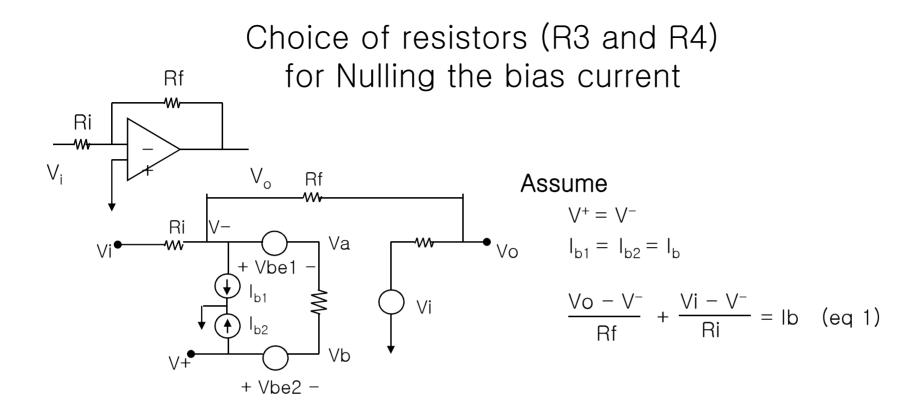
Instrumentation Amp- Differential Amp.

High gain DC coupled differential amp with single ended output.
 High Z_{in}, CMRR

Used to Amplify small differential signals from transducer where there may be a large common signal.

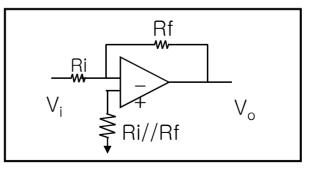

Common mode $V_1 = V_2 \rightarrow V_0 = 0 \rightarrow G_c = 0$ CMRR= G_d / G_c

Another look at the gain


- By Rule 2
 - V5 = I2 * R2
 - V2 = I2 * R1 + V5 = V5 * R1 /R2 + V5
 - V5 = R2 * V2 / (R1 + R2)
- By Rule 1
 - V1 = R1 * I1 + V5
 - V5 = R2 * I1 + V6
 - V6 = (V2 V1) * R2 / R1

Differential Amplifiers (Cont.)

- CMV (Common Mode Voltage)
 If V1 = V2, then V6 = 0
- CMG (Common Mode Gain) = 0
- DG(Differential voltage Gain)
 - If V1 ≠ V2, then V6 = (V2-V1)*(R2/R1)
- In practice, $CMG \neq 0$
- CMRR (Common Mode Rejection Ratio)
 - Measure of the ability to reject CMV
 - CMRR = DG / CMG
 - The Higher CMRR, the better quality
 - Typically, 100 ~ 10,000
 - 60Hz noise common to V1 and V2 can be rejected

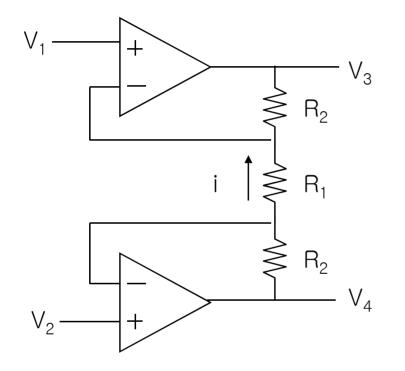


Ideally we want, Vo/Rf = -Vi/Ri (eq 2)

Comparing eq 1 and 2,

$$I_{b} + V^{+} / (Rf / /Ri) = 0$$

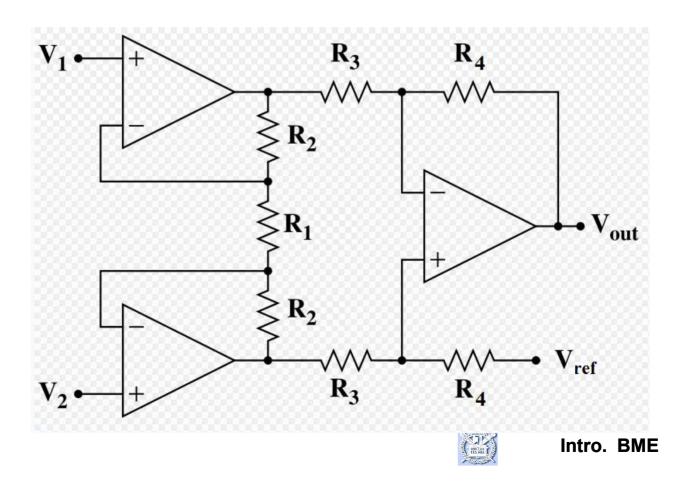
This condition can be satisfied by the next circuit.



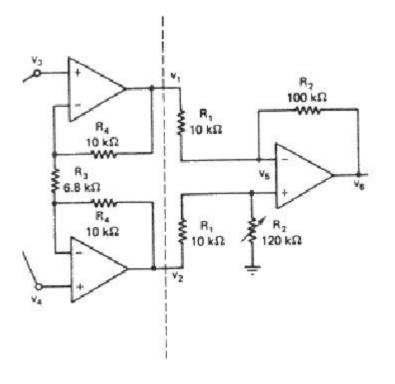
Instrumentation Amplifiers

- The One OP Amp Differential Amplifier is not desirable.
 - Input Impedance is not so High
 - Good for Low impedance source
 - Strain gage Bridge
 - Bad for High impedance source
- Thus An Instrumentation Amplifier consists of
 - Differential Amp with High Input Impedance and Low Output Impedance
 - Two Noninvering Amp + One Differential Amp

For High Input Impedance


If
$$V_1 = V_2$$
 (CMG)
 $\rightarrow i = 0$
 $\rightarrow V_1 = V_2 = V_3 = V_4$
 $\rightarrow G_c$ (CMG) = 0
If $V_1 \neq V_2$ (DMG)
 $\rightarrow i = (V_2 - V_1)/R_1$

$$\frac{V_4 - V_3}{V_2 - V_1} = \frac{R_1 + 2R_2}{R_1} = 1 + 2 \cdot \frac{R_2}{R_1}$$


Complete Design of Instrumentation Amp.

$$V_{out} - V_{ref} = G(v_2 - v_1)$$
$$G = \frac{R_4}{R_3} \left(1 + 2\frac{R_2}{R_1} \right)$$

Instrumentation Amplifiers (Cont.)

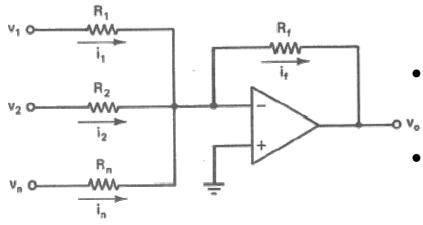
 Instrumentation Amp = Noninverting Amp + Differential Amp

- DG = (V1-V2) / (V3-V4) = (2*R4 + R3) / R3
- V6 = (V3-V4)*DG*R2 / R1
- First Stage CMRR
 - CMRR = DG/CMG = DG
- Overall CMG = 0
 - High CMRR
- High Input Impedance
- Gain is adjustable by changing R3

Analog Computation

- Digital Signal Processing is preferred
 - Flexibility
 - Easy to Change
 - Elimination of hardware
- Analog Signal Processing
 - Is preferred when DSP consumes too much time

Inverter and Scale Changer


- Inverting Amp with Gain = - Rf / Ri $v_i \circ \cdots \circ v_n$
- Inverter

 Rf / Ri = 1
- Inverter and Scale
 Changer
 - Proper choice of Rf / Ri
- Application
 - Use of inverter to scale the output of DAC

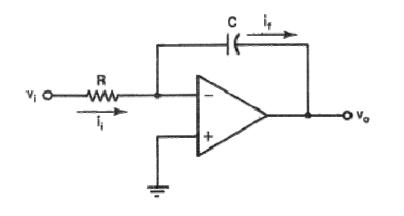
Adders (Summing Amplifiers)

- Adder
 - Inverter with Several inputs

- Vo = -Rf(V1/R1 + V2/R2 +··· + Vn/Rn)
 - |f = |1 + |2 + |n|

$$- |1| = V1/R1, \cdots$$

$$-$$
 Vo = $-$ If * Rf

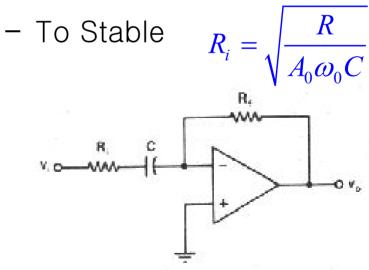

- Rf determines overall
 Gain
- Ri determines weighting factor and input impedance

Integrator

- Self homework
 - Show that

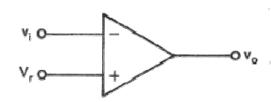
$$v_0 = \frac{-1}{RC} \int_0^{t_1} v_i dt + v_{ic}$$

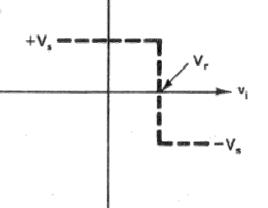
- Drawbacks
 - Vo will reach saturation voltage, if Vi is left connected indefinitely
 - Integrator operates as an open-loop amplifier for DC inputs


Differentiators

- Self Homework
- Show that

 $v_0 = -RC\frac{dv_i}{dt}$

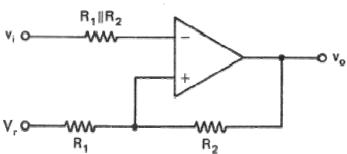

- Drawbacks
 - Instability at High frequencies
- Practical Differentiator

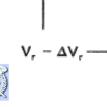


Comparators

- Compare Two Inputs
 Vi > Vr
 - $V_0 = -V_S$
 - Vi < Vr
 - $\bigvee_O r = \bigvee_S r$

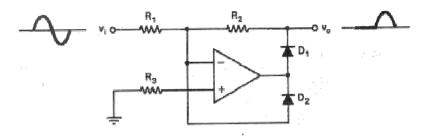
- Drawbacks
 - If Vi = Vr + small
 noise
 - Rapid fluctuation
 between ± Vs

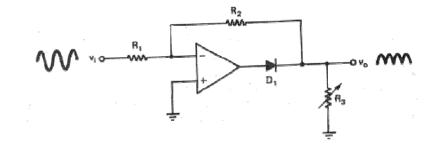



Comparators with Hysteresis

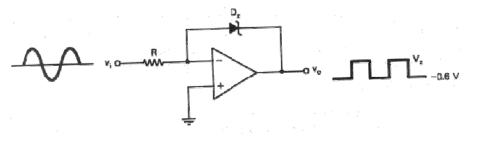
- Positive Feedback
 - Hysteresis loop
 - Can remove the effect of Small Noise
 - Reduce Fluctuation

Homework


- Show that $V_r + \Delta V_r = V_r + \frac{(V_s - V_r)R_1}{R_1 + R_2}$ $V_{r} - \Delta V_{r} = V_{r} + \frac{(-V_{s} - V_{r})R_{1}}{R_{1} + R_{2}}$ -V. $-V_{r} + \Delta V_{r}$



Rectifiers


Precision Half
 Wave Rectifier

Precision Full
 Wave Rectifier

• Limiters

Practical OP Amp Considerations

- Effects of Nonlinear characteristics
 - Compensation
 - Undesirable Oscillation at High frequency
 - Add external Capacitance according to Spec sheet
 - GBW (Gain Bandwidth Product)
 - Gain × Bandwidth = Constant (Typically 1MHz)
 - For Noninverting Amp: Bandwidth = GBW / Gain
 - Input Offset Voltage
 - Practical OP Amp
 - Zero input Does NOT give Zero output
 - Input Offset Voltage
 - Applied input voltage to obtain Zero output
 - Nulling the offset Voltage
 - Adding External Resister according to Spec sheet

OP Amp Considerations (Cont.)

- Input Bias Current
 - Practical OP amp
 - Current flowing into the terminal is NOT Zero
 - To keep the input Tr of OP amp turned on
 - Causes errors proportional to feedback network R
 - To minimize errors
 - feedback R should be low (<10K Ω)
- Slew Rate
 - Maximal rate of change of amplifier output voltage
 - Ex: Slew rate of 741 = 0.5 V / μs
 - » Time to output change from -5V to 5V = 20 μs
 - To Minimize slew rate problem
 - Use OP amp with smaller external compensating C

OP Amp Considerations (Cont.)

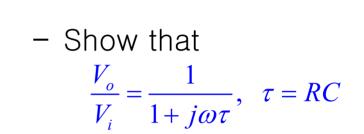
- Power Supply
 - Usually ±15V
 - Linear Range ±13V
 - Reducing power supply voltage
 - Results reduced linear range
 - Device does not work < 4V
- Different OP Amps
 - Bipolar Op Amps
 - Good input offset stability
 - Moderate input bias current and Input resistances
 - FET
 - Very Low input bias current and Very High Input resistances
 - Poor Input offset voltage stability

OP Amps on the market

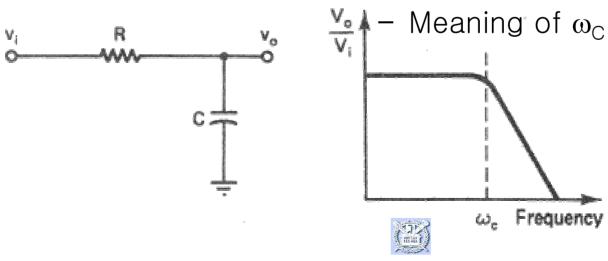
• Common OP amps, Typical Specifications

Figure 1.18 shows characteristics of commonly used op amps.

Туре	Feature	Input bias current	Offset voltage	GBW	Price
741	Low cost	80 nA	2 mV	1 MHz	\$0.35
308	Low bias current	3 nA	2 mV	1 MHz	0.69
ICL8007	FET input	50 pA	50 mV	1 MHz	5.00
CA3130	FET input	6 pA	20 mV	4 MHz	0.89
OP-07	Low offset	1 nA	30 µV	800 kHz	1.99
LH0052	Low offset	0.5 pA	0.1 µV	1 MHz	5.00
LF351	High GBW	50 pA	5 mV	4 MHz	0.62
LM312	Low bias current	3 nA	0.7 mV	1 MHz	2.49
UC4250	Programmable	7.5 nA	4 mV	800 kHz	1.84

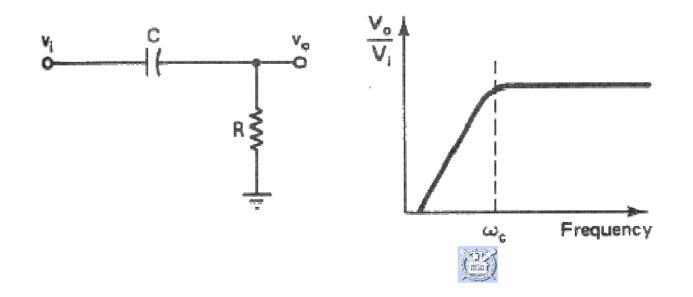

Filters

- Passive Circuits
 - Contains only passive elements
 - Registers, Capacitors and Inductors
 - Examples
 - Bridge Circuit
 - Voltage Divider
 - Filters
- Filters
 - Eliminate unwanted signal from the loop
 - Low Pass, High Pass, Band Pass, Notch, ...



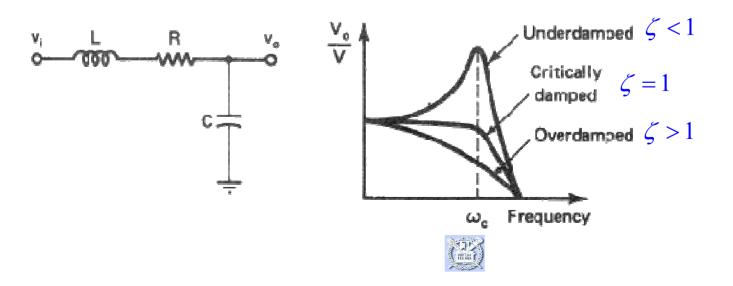
Passive first-order Low pass Filter

- Pass desired Audio signal and reject undesired RF
- Order of Filter
 - Number of C and L


 Plot Magnitude and Phase plot (Bode plot)

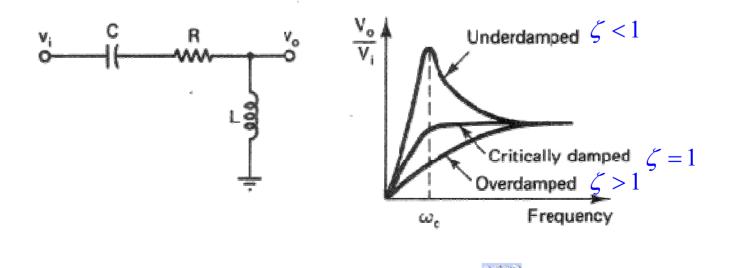
Passive first-order High pass Filter

 Pass desired High frequency signal and reject undesired low frequency signal


- Show that $\frac{V_o}{V_i} = \frac{j\omega\tau}{1+j\omega\tau}, \quad \tau = RC$
- Plot Magnitude and Phase plot (Bode plot)
- \blacklozenge Meaning of $\omega_{\rm C}$

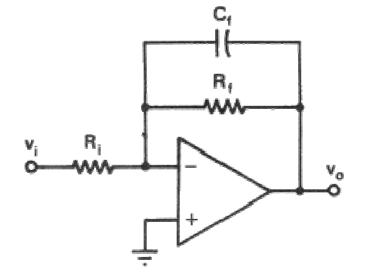
Passive second-order Low pass Filter

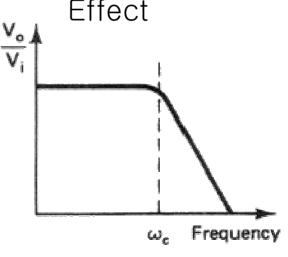
- To increase the attenuation of transfer function
- Order of Filter
 - ◆ Number of C and L


- Show that $\frac{V_o}{V_i} = \frac{1}{(j\omega/\omega_c)^2 + (2\zeta j\omega/\omega_c) + 1}$ $\omega_c = \sqrt{\frac{1}{LC}}, \zeta = \frac{R}{2}\sqrt{\frac{C}{L}}$
- Meaning of Quality factor $Q = \frac{1}{2\zeta} = \frac{\omega_c}{\Delta\omega}, \Delta\omega = 3dBBW$

Passive second-order High pass Filter

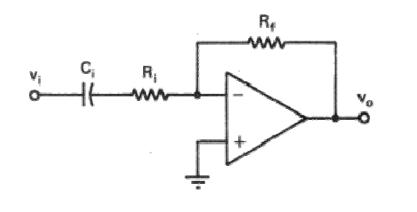
- To increase the attenuation of transfer function
- Order of Filter
 - ◆ Number of C and L

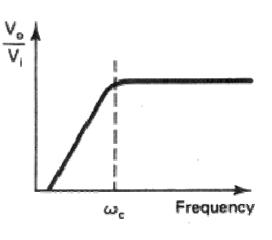

• Show that $\frac{V_o}{V_i} = \frac{\omega^2}{(j\omega/\omega_c)^2 + (2\zeta j\omega/\omega_c) + 1}$ $\omega_c = \sqrt{\frac{1}{LC}}, \zeta = \frac{R}{2}\sqrt{\frac{C}{L}}$



Active First-order Low Pass Filter

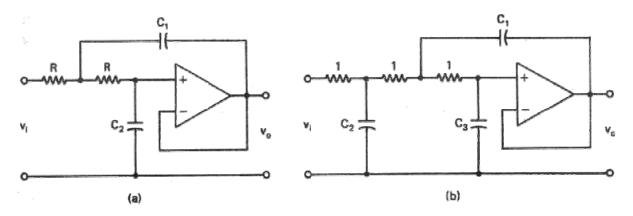
- Inverting Amp + Feedback Capacitor
- Identical frequency response with Passive filter
- Very Low Output impedance

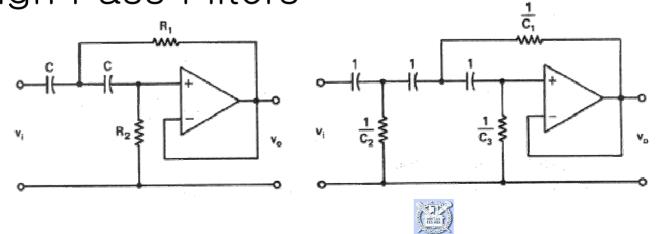




Active First-order High Pass Filter

- Inverting Amp + Input Capacitor
- Identical frequency response with Passive filter
- Very Low Output impedance
 - Negligible Loading Effect





Active High-order Filters

• Low Pass Filters

• High Pass Filters

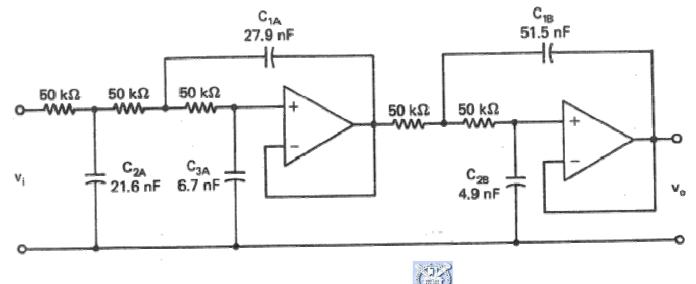
Bandpass and Band-reject Filters

- Butterworth Filters
 - Maximally Flat Magnitude response in pass band
 - High Attenuation Rate
- Chebyshev Filters
 - Maximum Attenuation Rate
 - Ripple in pass band
- Bessel Filters
 - Maximally flat time delay in response to step input
 - Attenuation Rate is very gradual

Filter Design Table

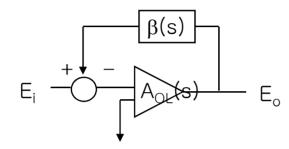
• C when $\omega_0 = R_0 = 1$

Poles	Cı	C2	C3	C1	C ₂	C ₃
Bessel				Butterworth		
2	9.066 -1	6.799 -1		1.414 +0	7.071 -1	
3	1.423 +0	9.880 -1	2.538 -1	3.546 +0	1.392 +0	2.024 - 1
4	7.351 - 1 1.012 + 0	6.746 - 1. 3.900 - 1		1.082 +0 2.613 +0	9.241 -1 3.825 -1	
5	1.009 + 0 1.041 + 0	8.712 - 1 3.098 - 1	3.095 -1	1.753 +0 3.235 +0	1.354 +0 3.089 -1	4.214 -1
6	6.352 -1 7.225 -1 1.073 +0	6.098 - 1 4.835 - 1 2.561 - 1		1.035 +0 1.414 +0 3.863 +0	9.660 - 1 7.071 - 1 2.588 - 1	
2-dB Chebyshev				0.25-dB Chebyshev		
2	2.672 +0	5.246 -1		1.778 +0	6.789 -1	
3	2.782 +1	3.113 +0	3.892 -2	8.551 +0	2.018 +0	1.109 -1
4	4.021 +0 9.707 +0	1.163 + 0 1.150 - 1	r.	2.221 +0 5.363 +0	1.285 +0 2.084 -1	
5	1.240 + 1 1.499 + 1	4.953 +0 7.169 -2	1.963 -1	5.543 +0 8.061 +0	2.898 +0 1.341 -1	3.425 -1
6	5.750 + 0 7.853 + 0 2.146 + 1	1.769 + 0 2.426 - 1 4.902 - 2		3.044 +0 4.159 +0 1.136 +1	1.875 + 0 4.296 - 1 9.323 - 2	


YEST LAR

Filter Design Example

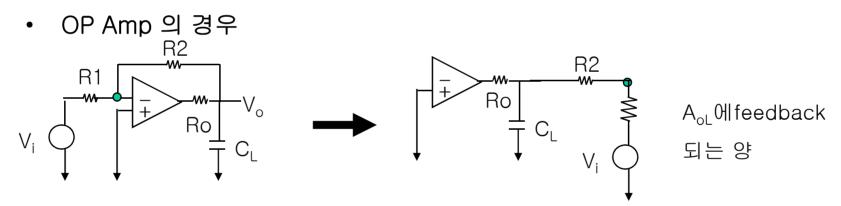
- Low pass five-pole Butterworth filter with a corner frequency of 200Hz and input resistance of 50K $\!\Omega$
 - Economic Solution = 3rd order + 2nd order
 - Desired R and C ?
 - $C_{1A} = (\omega_0 R_0 C_0) / (\omega R)$


 $= 1 \times 1 \times 1.753 / 2 \pi \times 200 \times 50 K = 27.9 nF$

•
$$C_{2A} = 21.6 \text{ nF}, C_{3A} = 6.7 \text{ nF}, C_{1B} = 51.5 \text{ nF}, C_{2B} = 4.9 \text{ nF}$$

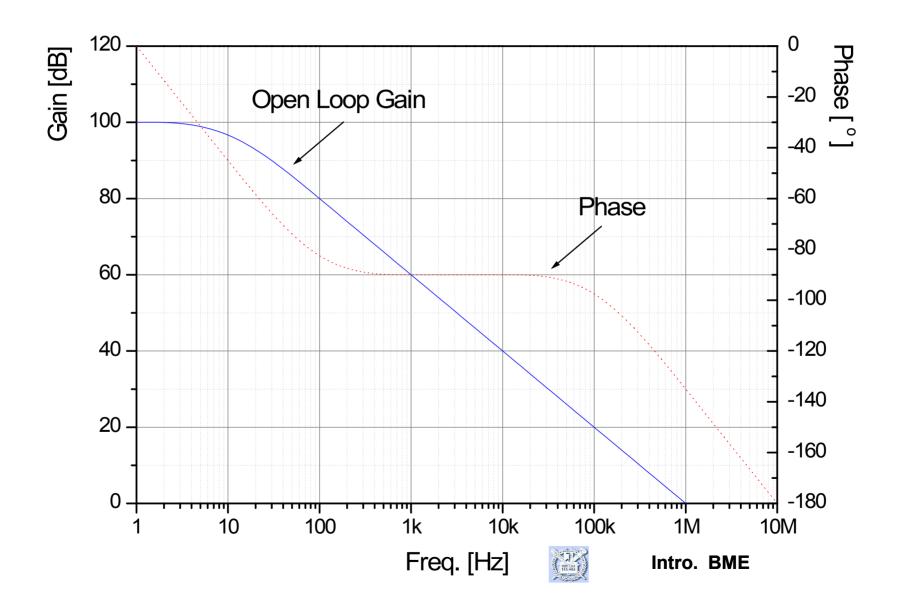
Frequency Stability

 $A_{CL}(S) = E_O/E_i = A_{OL}(S)/(1 + A_{OL}(s) \beta(s))$ $= A_{OL}(s)/(1 + A_{L}(S))$


Instability : $A_L(s) = A_{OL}(s)B(s) = 1 \angle 180 = -1$ 일때.

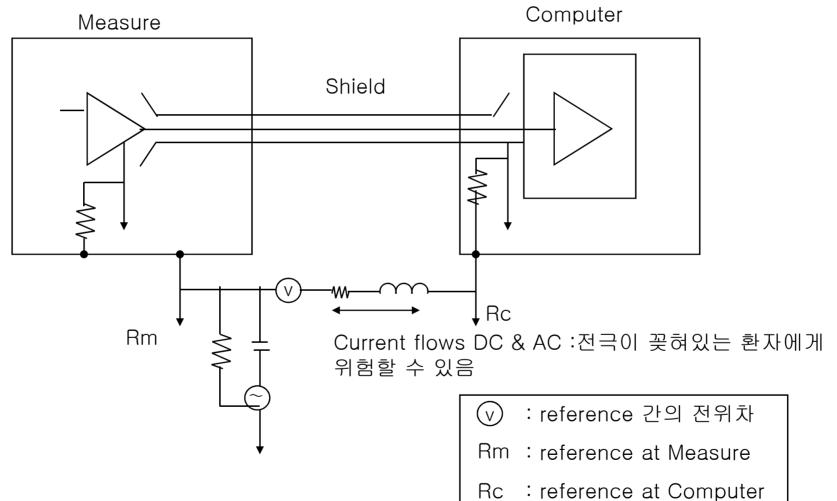
Critical condition : A_{OL}(jw) = {1/β(jw)}∠180 즉, |A_{oL}(jw)| = 1/|β(jw)|이고 Φ_{OL} - Φ_{CL} = 180° 가 되는 freq.에서 <u>oscillation</u>

Frequency Stability


- 흔히 우리는 |A_L(jw)| = |A_{oL}(jw)β(jw)| = 1이 되는 w를 구하고 이 때의 A_L(jw)의 phase를 보아, 이것이 +180°로부터 떨어진 정도를 측정하며 이 를 Φ_M (Phase margin) 이라고 한다.
 - $\Phi_{\rm M} \sim$ 90° 정도일 때 stable system
 - Φ_{M} 은 크면 클수록 유리하다.

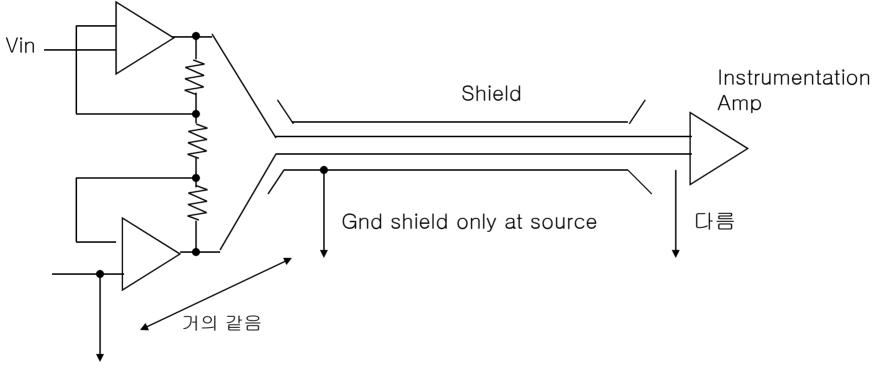
C_L=0, Vi 가 없을 때, β = R1/(R0+R2+R1) ≈ R1/(R2+R1) 즉 A_{oL}(jw)에 β = R1/(R2+R1)을 곱해 A_L(jw)를 구하고 이의 Bode Diagram 에서 Φ_M을 구한다

Frequency Stability



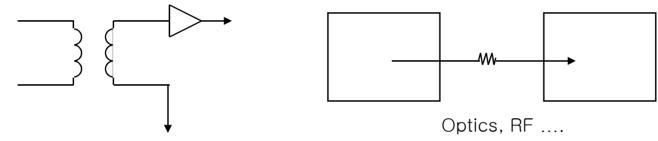
Interference

- Noise : random
- Interference : not random, comes from a known source
- Dominant interference : 60Hz
 - Thru. ① AC capacitive coupling
 - ② AC inductive coupling
 - 3 Ground loops
 - Solutions
 - (1) Elimination at the source
 - Use of Instrumentation Amps and Isolation Amps.
 - Star Ground (one true ground)
 - (2) (Adaptive) Filtering



• Ground Loop is a problem.

- Solution : Differential Transmission :
- Grounding only at source to prevent the group loop.


모든 noise는 common mode로 처리

- Ground Loop => safety
 ECG 측정시 ground loop current는 전극이 꽂혀있는 환자를 통하여 흐르게 되므로 위험
- Bias current => safety 특별히 I_B가 작은 소자 Ex) AD55L max I_B = 75fA AD00L max I_B = 10fA

- Solution(II) : Isolation between Measure and Computer stations.
 - By transformer

- Optical coupling :optical isolator : (LED/LD)-PD 조합
- Radio link
 - Signal Modulator Transmitter …– Receiver Demodulator

ANALOG DEVICES

Low Cost, Miniature Isolation Amplifiers

AD202/AD204

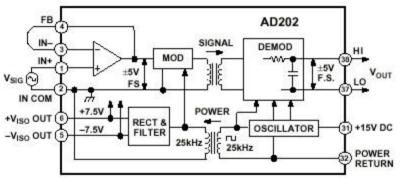
FEATURES

Small Size: 4 Channels/Inch Low Power: 35 mW (AD204) High Accuracy: ±0.025% max Nonlinearity (K Grade) High CMR: 130 dB (Gain = 100 V/V) Wide Bandwidth: <u>5 kHz</u> Full-Power (AD204) High CMV Isolation: ±2000 V pk Continuous (K Grade) (Signal and Power) Isolated Power Outputs Uncommitted Input Amplifier APPLICATIONS

Multichannel Data Acquisition

Current Shunt Measurements

Motor Controls


Process Signal Isolation

High Voltage Instrumentation Amplifier

GENERAL DESCRIPTION

The AD202 and AD204 are general purpose, two-port, transformer-coupled isolation amplifiers that may be used in a broad range of applications where input signals must be measured, i nese industry standard isolation amplifiers offer a complete isolation function, with both signal and power isolation provided

FUNCTIONAL BLOCK DIAGRAM

Isolation mode rejection ratio(IMRR);105dB@60Hx

ing. For applications requiring a low profile, the DIP package provides a height of just 0.350".

High Accuracy: With a maximum nonlinearity of $\pm 0.025\%$ for the AD202K/AD204K ($\pm 0.05\%$ for the AD202J/AD204J) and low drift over temperature, the AD202 and AD204 provide high isolation without loss of signal integrity.

Low Power: Power consumption of 35 mW (AD204) and 75 mW (AD202), over the full signal range makes these isolators power budgets.

