
Overview of the ClassOverview of the Class
Signal Processing System Design

Wonyong Sungy g g
School of Electrical Engineering

Seoul National Universityy

2009. 3

ContentsContents

1. Introduction
2. High Performance DSP Architecture
3. Programming Models and Methods
4. Conclusion and Course Outline

1 Introduction1. Introduction

• Signal processing system
– Many are based on computation intensive real-time DSP (digital

signal processing) algorithms (MPEG 1 2 H 264 JPEG CELPsignal processing) algorithms. (MPEG 1, 2, H.264, JPEG, CELP
vocoder, CDMA, Wibro, software defined radio)

– Main kernels: filtering, transform, motion estimation, object
iti Vit bi d direcognition, Viterbi decoding

– Usually dedicated purpose, e.g. DVR, PDA, digital camera,
cellular phones, printersp , p

– Software compatibility is not much required as is for PC, but
more optimization expected in terms of power consumption (less
than 1/10) and costthan 1/10) and cost.

– Implementation approaches: hardware vs software based

Two different approaches in DSP
implementation

• SW does everything in sequential
• HW tries to do everything in parallel

Spatial domain

HW

SW

Time domain

Hardware or Software? HW systemHardware or Software? – HW system

• Fixed interconnection of multipliers, adders, and memory
blocks

Pros: High throughput at low power consumption possible– Pros: High throughput at low power consumption possible
• Low chip size (economic for mass production)

– Cons: Difficult to change the functionalityg y
• Dedicated chip design needed (large NRE)

– Design method: HDL, high-level synthesis (scheduling and
binding) logic synthesisbinding), logic-synthesis, …

• The weakest point when considering scaling
– (scaling reduces the chip size but increases NRE)(scaling reduces the chip size, but increases NRE)
– Large NRE
– How to overcome it? FPGA (Field Prog Gate Array)

Hardware or Software? SW systemHardware or Software? – SW system

• Contains “ALU – memory (for program and data) –
instruction decoding logic”

Pros: Easy to program/change the functionality– Pros: Easy to program/change the functionality
– Cons: large chip size, larger power consumption
– Design method: High level language (C, C++), parallel g g g g (,), p

programming library, assembly language

• The weakest point when considering scaling
– Small number of execution blocks (ALUs) – limited execution

throughput
– How to overcome it? Parallel computer architectureHow to overcome it? Parallel computer architecture

Spectrum of SW based systemsSpectrum of SW based systems

• Parallelism: the number of operations executed
simultaneously

1: sequential processor (conventional DSP RISC)– 1: sequential processor (conventional DSP, RISC, ..)
– Data level parallelism (SIMD): partitioned data-path SIMD (Intel

MMX), vector processors
– Instruction level parallelism (closely coupled MIMD): superscalar

processors, VLIW processors
Thread level parallelism (loosely coupled MIMD): SMP– Thread level parallelism (loosely coupled MIMD): SMP
(symmetric multiprocessors), GPU, interconnection of systems

• Size of working set (or addressing range)g (g g)
– Large: usually general purpose computing

• Allows easy access of large main memory (DRAM)
ff f• Inefficient in terms of energy consumption, speed

– Small: usually for special purpose computing

Why the size of working set important?Why the size of working set important?

• If you need to do a large number of small jobs (requiring
only small memory size), it is easy to parallelize and
execute at a high speedexecute at a high speed.

• But, if you need to do a large number of large jobs
(requiring a large working set) it requires a large(requiring a large working set), it requires a large
communication cost and the clock speed is slow.
– -> Localize means reducing the working set size.

• Usually,
– Video processing requires a large working set (MBs memory)
– However, speech or communication processing require a small

working set (KBs memory)working set (KBs memory)

parallelism

E l CPU

Graphics processor

Conv. DSP
Early CPU

development:
Increase

memory sizememory size,
addressing

space DSP
development

Recent CPU development

development

Working set size
(addressing space)

Is the boundary (between SW and HW)
clear?

• Someone design SW based systems (Microblaze) using
FPGA. What is this?
A HW t b ki d f SW b d t b• A HW system can be a kind of SW based systems by
– Increasing the parallelism as much as possible
– Allow heterogeneous parallelism– Allow heterogeneous parallelism
– Reduce the working set size as small as possible

How to speed-up SW based DSP
systems? (1)

• Reduced complexity DSP algorithms
– FFT (fast Fourier transform)

Full search vs three step search motion estimation– Full search vs three-step search motion estimation
– Skip-zero input filtering in interpolation

• Use specialized instructions (highly efficient instructionsUse specialized instructions (highly efficient instructions
for DSP)
– Programmable digital signal processors
– ASIP (application specific instruction set processors)

• Process multiple data at a time (SIMD)
– Partitioned data-path ALU
– 8 data processing of 16 bit data with 128 bit ALU

Economic but low flexibility (large data arrange overhead)– Economic, but low flexibility (large data arrange overhead)

How to speed-up SW based DSP
systems? (2)

• Execute multiple instructions at a time (closely coupled
MIMD)

Superscalar or VLIW– Superscalar or VLIW
– More flexible than SIMD
– Mostly operates in single thready p g

• Multi-thread approach (divides a program into multiple
execution threads)
– Shared memory systems (e.g. SMP)
– Distributed memory multi-processor systems

The expected speed-up (or parallelism)
from each technology

• Special instruction set
– (max 10) Mostly 2~10. The frequency of the special instruction

usage determines the efficiency (Amdahl’s law)usage determines the efficiency (Amdahl s law)

• Pipelining
– (max 5) Mostly 3~5. The number of possible pipelining stages, (a 5) ost y 3 5 e u be o poss b e p pe g stages,

pielining hazards limit the gain.

• Partitioned data-path
– (max 8) Mostly 2~4. The degree of data-level parallelism, the

overhead of data rearrangement hinders the gain.

• Superscalar or VLIW• Superscalar or VLIW
– (max 8 for VLIW)

• Multi-core• Multi-core
– (max 64? We do not know yet) Can be much more potential.

Scope of this courseScope of this course

• Real-time digital signal processing system design
(mainly embedded system) in SW

Special topic on communication system design using FPGA– Special topic on communication system design using FPGA
(2010, spring – covers HW based approach)

• Covers
– Fast DSP algorithms
– Programmable digital signal processors
– SIMD processors
– VLIW processors

SMP– SMP
– GPU and many-core systems

Scope of this courseScope of this course
Real-time embedded DSP High-performance DSPReal time embedded DSP
• For portable devices,

wireless telephone,

High performance DSP
• For object recognition,

medical imaging, ..p ,
robotics, ..

• Focus: low-power, low-
• Focus: high-performance,
• Architecture:

cost (single chip SoC)
• Architecture:

– Multi-core PC (SMP)
– Graphics CPU

– ARM (RISC) CPU
– Programmable DSP

VLIW DSP

• SW technique
– Parallel partitioning

O MP MPI CUDA– VLIW DSP

• SW technique
– Instruction level parallelism

– OpenMP, MPI, CUDA

– Instruction level parallelism
– C programming &

optimization

2 High Performance DSP Architecture2. High Performance DSP Architecture

• Traditional DSP architecture
– Texas Instruments C2x, C50, C54, C55

Equip specialized instructions for digital filtering FFT and Viterbi– Equip specialized instructions for digital filtering, FFT, and Viterbi
decoding

– One tap of FIR filtering requires only one instruction, while a
RISC CPU consumes almost 10 instructions.

– Difficult to develop good compilers
Support a small memory space (support applications with a– Support a small memory space (support applications with a
small working set, such as audio, speech codec, communication
modem)

• New DSP architecture
– Based on parallel computer architecture

Parallel Computer ArchitectureParallel Computer Architecture

Pi li d b l (C)• Pipelined vector processors -> obsolete (Cray)
– Based on deeply pipelined, high clock frequency architecture (about 7

stages for floating-point add), SIMD architecture

• Partitioned data-path SIMD
– Based on partitioned ALU (e.g., 8 16bit ALU)

S l d VLIW hit t• Superscalar and VLIW architecture
– Advance of RISC architecture supporting multiple instruction issues.

Closely coupled MIMD architecture.
– Superscalar is adopted to PC and WS (code compatibility), but may not

be welcomed in embedded markets because of the added complexities
and power consumption for dynamic scheduling.

• Shared memory multiprocessors
– Processors sharing a memory, MIMD architecture

I t ti b d lti
Multi-thread

i l t ti• Interconnection based multiprocessors
– Processors interconnected by networks.

implementation

Partitioned datapathPartitioned datapath

X8 4 2 i i i f h d h• X8, x4, x2 partitioning of the datapth
– Especially efficient for video coding

(8bit or 16 bit precision)
– Main ALU modification

• Sun, HP, ARM
– Floating-point unit modificationFloating point unit modification

• Intel (SSE, SSE2)

• Characteristics:
ll h d l ti l ll d– small overhead, relatively small speed-

up, pack/unpack overhead can be
dominant for irregular data structure

– Automatic SIMDizer not developed yet

Partitioned data-path architecture (SIMD
extension)

• Divide a long datapath (e.g.
64bits) into multiple small
words (e g 8 8bits) forwords (e.g. 8 8bits) for
multipixel processing of image.

• Can be considered anCan be considered an
extension of vector processors,
but with more HW, instead of
higher stage pipelining.

• Intel MMX MMX, MMX-SSE
(multiple floating-point
operations supported)

Superscalar and VLIWSuperscalar and VLIW

• Superscalar: execute multiple• Superscalar: execute multiple
instructions at a time, the
scheduling is conducted by
the CPU. So, existing binary , g y
codes will not be modified,
they will run just faster. But,
HW is complex.
E g Intel PentiumE.g. Intel Pentium

• VLIW: execute multiple
instructions at a time, but the
scheduling is conducted inscheduling is conducted in
SW at the compilation stage.
So, no binary code
compatibility. HW is a little
i l (d tsimpler (compared to

superscalar).
E.g. TI C6x (upto 8 issues),
Philips Trimedia (5) Superscalar architecturePhilips Trimedia (5) Superscalar architecture

VLIW (Very Long Instruction Word)VLIW (Very Long Instruction Word)

N l i l• Now popular as commercial
multimedia processors
– TI C6x series, Philips Trimedia, p

Carmel DSP
• C6x has 8 functional units (not

general)
• Trimedia has 5 general functional

units
– VLIW compiler (automatic

C64x DSP Core

L1 Program Cache
Direct-mapped 16KB

parallelization), scheduler
– Upto x8 speed-up for C6x (usually

around x5), can combine with SIMD
Instruction Decode
Instruction Dispatch

Instruction Fetch

C
on

C64x DSP Core

L2 M
em

o

P
eriph Data Path A Data Path B

processing.
– Good memory systems, peripherals

are implemented

ntroller

ory 1M
B

herals

A Register File
(A31-A16, A15-A0)

.L1 .S1 .M1 .D1

B Register File
(B31-B16, B15-B0)

.D2 .M2 .S2 .L2p
L1 Data Cache

2-Way Set-associative 16KB

Quad Pentium shared memory
multiprocessor

Processor Processor Processor ProcessorProcessor
L1
cache
L2 cache

Processor
L1
cache
L2 cache

Processor
L1
cache
L2 cache

Processor
L1
cache
L2 cache

Bus interface Bus interface Bus interface Bus interface

Processor/
memory bus

I/O i t f Memory controllerI/O interface Memory controller

I/O bI/O bus

Memory

Shared memory

Intel’s quad coreIntel s quad core

GPU: nVIDIA 10 seriesGPU: nVIDIA 10 series

Distributed memory multicomputers -
interconnection based multiprocessorinterconnection based multiprocessor

systems
Complete computers linked by some type of
Interconnection network.

Interconnection network
Messages

•Static/direct link
interconnection networks

Processor
interconnection networks

•Cluster interconnects

P P

C

Local memory
M M

Computers

Cluster interconnects - computers
connected by network (e g ethernetconnected by network (e.g. ethernet,

optical)
•Static link interconnects fell out of favor during the 1990s -
too expensive!p
•A network of workstations (NOWs) became a very
attractive alternative to the expensive supercomputers and

f fparallel computer systems for high performance computing
•Very high performance workstations and PCs readily
available at high cost and the latest processors can easilyavailable at high cost and the latest processors can easily
be incorporated into the system as they become available
(future-proof)(p)
•Existing software can be used or modified

Taxonomy of multiprocessor systems
according to the communication method

Low
communication

Shared

Shared
registers

SIMD
VLIW
Superscalar

communication
cost

M lti

Memory
(communication
thru shared variables)

Shared
main memory SMP

NUMA (local mem)
Multiprocessor
systems

Direct 1 to 1
connection Static network

()
Interconnection
(message passing)

Network

(ring, hypercube)

Cl t tNetwork Cluster computer
Grid computing

Simple HW
S l bilitScalability

Classification: Shared or distributed memory?Classification: Shared or distributed memory?

Sh d (i t) b d lti• Shared memory (or register) based multiprocessor
– Shared (common) register based: VLIW, Superscalar, Vector or

MMX architecture
– Shared memory based: SMMP (shared memory multiprocessor)
– Do not need explicit interprocessor communication, just

synchronization and private data protection are neededsynchronization and private data protection are needed.
– Fine grain parallel processing, automatic vectorization possible

• Distributed memory multicomputer
– Static/direct link interconnection networks, cluster interconnects
– Need message passing for communication (higher cost

communication)communication)
– Coarse grain parallel processing needed
– Easily scalable, low-cost large scale implementation possible

AnalogyAnalogy

person

Shared Table

Shared living room

Separate house

3 Programming Models and Methods3. Programming Models and Methods

• Wish list for parallel processor programming
– Use a conventional language (C or Fortran, not VHDL..)

Automatic parallelization (I do not care the number of processors– Automatic parallelization (I do not care the number of processors,
interconnection topology, memory model…). Just develop a
C/C++ or Fortran program and, compile, go!

– Efficient and scalable hardware, just replication of a widely used
CPU’s. If the speed is not satisfactory, just add more. (not much
investment to communication network.))

• <- Nothing can satisfy all!

Partitioning and schedulingPartitioning and scheduling

• Partitioning: how we divide a job
Start

• Partitioning: how we divide a job
• Scheduling: how we order the execution

of the job.
1 2 N

Parallel algorithm

• What did we learn from pipelining?
– Pipelining hazards

• Structural resource limitation

1 2

End
Start

• Structural – resource limitation
• Data – dependency (data unavailable yet)
• Control – conditional jump

• Same thing happens in multiprocessor

End

1

Same thing happens in multiprocessor
scheduling (because pipelining is also a
kind of parallel processing – overlapped
in time)

2

– We need to consider the
COMMUNICATION cost for scheduling

N

EndSequential alg.

Example of scheduling and allocationExample of scheduling and allocation

C i ti t ff t th
Start

• Communication cost affects the
optimal scheduling results! a

c

d
3

2

2

• When the communication cost
is high we need to combine

b

c

e1

2

2

is high, we need to combine
operations. End

With no comm cost With comm cost =2 With comm cost =2

P1

1 2 3 4 5

a c

With no comm cost With comm cost =2

P1

1 2 3 4 5 6 7

a c

With comm cost =2

P1

1 2 3 4 5 6 7

a bP1

P2

a c

bd e

P1

P2

a c

bd e

P1

P2

a

c

b

d e

* Bigger operation size means less communication needed, but
not good for job balancing.

How to do something faster?How to do something faster?

• Goal of high performance computing: usually do it faster!• Goal of high performance computing: usually do it faster!

1. Use more efficient instructions (better ISA). This may need a special
purpose data-path. p p p

1. The idea of CISC. Configurable instruction set.
2. Programmable digital signal processors (MAC, search unit, ..)

2. Execute instructions at a faster speed.
1 RISC Pi li i d hi h b d idth (i t h)1. RISC processors. Pipelining and high bandwidth memory (registers, cache).

3. Execute multiple data with one instruction (at a time).
1. The idea of SIMD (or MMX).

4 Execute multiple instructions at one clock cycle4. Execute multiple instructions at one clock cycle
1. The idea of superscalar, VLIW
2. Need to explore the ILP (instruction level parallelism)

5. Divide a whole program into some small parts, and assign them to different
processors

1. Coarse grain control level parallel processing. (Shared memory multiprocessor?)
6. Divide a large set of data into some small parts, and assign them to different

processorsprocessors
1. Coarse grain data level parallel processing. (Message passing multiprocessor?)

Speed up methodSpeed-up method

X0, x1, x2, x3, x4,

Func1()
{

1, 2, 3, 4
Try to execute instructions

-
-
}

- using a high clock
frequency
- using multiple functional

Func2()
{

units (ILP)6. Try to assign each
data to a different
processor

-
-
}

5. Try to assign each function
to a different processor

Func3()
{
-
-
}

Fine grain (local) parallel processingFine grain (local) parallel processing

• Extract parallelism from only a small part of an entire
program and maps the instructions to different execution
unitsunits.
– Grain size: instruction
– Scope: basic block, function, or loopp , , p

• Superscalar and VLIW, vector processors (loop)
• Superscalar conducts execution time scheduling for code

compatibilitycompatibility.
– Disadv.: The architecture should support immediate

communication among the execution units (shared registers or
di i i)direct interconnection)

– Adv.: Good for automatic parallelization. Not much need of
profiling for load balancing purpose.p g g p p

– Vector Fortan: automatic vectorization of a loop
– VLIW: software pipeline optimizer

Coarse grain parallel processingCoarse grain parallel processing

Di id (d t) i t bi t l th l d i f i l• Divides a program (or data) into big parts as long as the load is fairly
evenly divided. If the load balancing is not good, it needs to be
divided finer.

G i i f ti ti l bl k f d t– Grain size: function, sometimes loop, a block of data
– Scope: entire program or multiple-jobs

• Shared memory multiprocessor systems, interconnection based
multiprocessor systemsmultiprocessor systems

• Partitioning may not be automatic, it may need application or program
specific knowledge.

• Needs profiling for job partitioning and load-balancingp g j p g g

– Good for systems with high communication cost
• As the grain size increases, the total number of communication decreases, g

but the load-balancing can be poorer.

What should be considered for coarse grain
parallel processing?

• Load balancing
– Distribute a job into the processors as evenly as possible.

The processor with the heaviest load may determine the overall– The processor with the heaviest load may determine the overall
processing time.

• Communication overhead
– There is some cost for inter-processor communication. So, it is

necessary to divide a program into bigger parts so that there are
not much communication operationsnot much communication operations.

• Dependency relation (precedence relation)
– The job for concurrent processing should not have dependency– The job for concurrent processing should not have dependency

relation. This complicates the parallel programming.

Control level parallelizationControl level parallelization

• Divides a program intro smaller pieces and assign them
into different processors

Grain size: instruction fine grain– Grain size: instruction – fine grain
– Grain size: function, thread level– coarse grain

• ProcedureProcedure
– Divides a program into small pieces
– Assign each piece to an available processor

• Should consider the precedence relation
• We need “synchronization”

Data level parallel processingData-level parallel processing

• Divides a big data into small parts and assign them to
each processor

Load balancing is easier– Load balancing is easier
– Each processor may have all the needed programs.

• But may need less data memory space for each processor.y y p p
– Example:

• Mesh based modeling for weather forecast, oil well modeling
Each processor conducts computing for only a part of the grids 10 000 grids for– Each processor conducts computing for only a part of the grids. 10,000 grids for
100 processor -> about 100 grids for each processor

• Block based processing of DSP algorithms
– Round-robin scheduling method.Round robin scheduling method.
– Divides an input data into blocks, and 1st block assigned to the 1st processor, 2nd

block to the 2nd processor, and so on.

Fine grain Coarse graing g

C
o
n Superscalar Shared memoryn
tro

l

Superscalar,
VLIW

Shared memory
multiprocessor

D
a
t

Vector processor
SIMD

Interconnection
Based multiprocta SIM Based multiproc.
Good job balancing

Fine grain parallel processing:
vector (array) code parallelization

M i ifi i i i i l• Most scientific programs contain computation intensive loops
– Loop execution takes much portion in scientific computing
– Use deeply pipelined (high clock freq) or array type data-path (do p y p p (g q) y yp p (

multiple data execution in one cycle)
– SIMD architecture based. Pipelined vector processors, partitioned data-

path (MMX) architecture, sometimes SMP can use vectorizationpath (MMX) architecture, sometimes SMP can use vectorization
– Easy to vectorize (dependency check and go!)
– The performance (speed-up) is dependent on the portion of loop and

scalar codes Loop with dependency cannot be vectorized (it’s similarscalar codes. Loop with dependency cannot be vectorized (it s similar
to the RAW hazards in the pipelined architecture).

– C Vectorizable loop C Loop with dependency
DO 10 I = 1 100 DO 10 I = 1 100DO 10 I = 1, 100 DO 10 I = 1, 100

10 C(I) = 0.7*A(I) + B(I) 10 A(I) = 0.7*A(I-1) + B(I)

Fine grain parallel processing:
scalar code parallelization

• Ordinary control intensive programs consist of small
basic blocks

It’s possible to execute multiple instructions at a time (especially– It s possible to execute multiple instructions at a time (especially
when they are in the same basic block).

– Some times code sequence may be changed.
– Superscalar (on-line hardware based scheduling) and VLIW (off-

line software based scheduling)
Software pipelining technique for loop part– Software pipelining technique for loop part

– The maximum achievable degree of parallelism is not high (a
few for superscalar model) in general.

Coarse grain processing: shared data
(control level parallel processing) model

Master CPU
Motion estimationAnd bit-rate control VLC and postfiltering

Proc. 1
(function 1)

Proc. 2
(function 2)

Proc. P
(function N)

bus

Shared memory
(data)Whole video (data)Whole video

image buffer

Coarse grain parallel processing: distributed
data (data-level parallel processing) model

Example: weather forecast

Proc 1 Proc 2

p
finite element analysis

Proc. 1

Data set 1

Proc. 2

Data set 2

Distributed data
mapping

Proc. 3

Data set 3

Proc. 4

Data set 4

Parallel programming toolsParallel programming tools

V i Si di d (i) ll li i l• Vectorizer, Simdizer: conducts (automatic) parallelization on loop
kernel.

• VLIW compiler: conducts instruction level parallel processing using p p p g g
VLIW scheduling algorithm

• OpenMP: The Application Program Interface (API) supports multi-
platform shared memory parallel programming in C/C++ and Fortranplatform shared-memory parallel programming in C/C++ and Fortran
on all architectures.
– Consists of directives for job synchronization. Begin with master thread.
– “parallel” directive creates a team of threads and specifies a block of

code that will be executed by the multiple threads in parallel.
• MPI (Message Passing Interface): Message passing library (usually) (essage ass g te ace) essage pass g b a y (usua y)

for SPMD (Single Program Multiple Data) computation model.
– MPI_Send(..), MPI_Recv(..), MPI_Bcast(), …

CUDA• CUDA

4 Conclusion4. Conclusion

N ti f b dd d ill b b d ll l• New generation of embedded processors will be based on parallel
processing architecture
– Advanced semiconductor fabrication technology (enough silicon area)

and lo po er req irementsand low-power requirements
– Better development tools (harder than silicon duplication)
– Application requirements of software based high performance

computing (H 264 software defined radio DVR)computing (H.264, software defined radio, DVR, ..)
• Good application development tools are essential!

– New device does not mean just better processing speed
– New program development methods are needed.

• Success example: VLIW based, partitioned datapath
• Failed example: C4x, C8x

– Program development methods or tools are 10 years behind the
architecture or hardware. We can spy the tool trend by studying the
current and past supercomputers.
OpenMP for shared memory multiprocessors and MPI for– OpenMP for shared memory multiprocessors and MPI for
interconnection based multicomputer would be a good candidate.

Course outlineCourse outline

DSP t d i i b dd d d i (t k1)• DSP system design using embedded devices (track1)
– Floating-point to integer conversion
– RISC CPU based embedded system design
– Traditional programmable DSPp g
– SIMD/VLWI DSP (C6x)
– SIMDizer, VLIW compiler & scheduler, Matlab to C
– Application to emerging embedded devices

Important concepts: fine grain parallel processing hazards(data control structural) demand– Important concepts: fine-grain parallel processing, hazards(data, control, structural), demand
ratio, scheduling, ILP, loop-carried dependency, …

• High-performance signal processing system design (track2)
– Vector and SIMD processors (Cray, Intel SSE, ARM11)p (y)
– Shared memory multiprocessor (cache coherency, bus arbitration, load

balancing)
– Interconnection based multicomputers (interconnection and performance, parallel

matrix computation)matrix computation)
– OpenMP, MPI, CUDA
– Parallel algorithm development - parallel matrix computation, FFT, digital filter,

multimedia algorithm programmingg p g g
– Important concepts: coarse-grain parallel processing, load balancing,

communication overhead, synchronization, fork-join model, working-set
minimization

Text andText and …

T t• Text
– Parallel Programming in C with MPI and OpenMP (Michael J. Quinn)
– Computer architecture: a quantitative approach.

• Several small homework and tiny program exercises (using VLIW,
OpenMP, MPI): 20%)

• Each student will have a chance (duty) of 20 minutes seminar
presentation with a relevant topic (after reading a few papers or
based on new embedded CPU): 10%)

• One quiz
– One around in the middle of September 27th (Ch. 3, 4 of CAQ book):

10%10%
• One test (mid-term period before or Nov. 1): 40%
• Final term project: 30% (report 20%, presentation 10%)

• For other lab students: you can choose lab either track1 or track2

Embedded processors today and tomorrowEmbedded processors today and tomorrow

• Parallel processing architecture is definitely
advantageous for high performance applications in terms
of power and costof power and cost.
– Video encoding and decoding (H.264), multi-channel voice,

communication (4G, software radio)

• But, the hurdle is
– Development environment

• C8x, multiprocessor with switched local memories failed!
• New chips with reasonably good programming supports are

emergingg g
– C6x: VLIW
– Cradle, Picochips, Sandbridge technology, …

• Need to learn from previous generation PC and supercomputers

