
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel ProgrammingParallel Programming
in C with MPI and OpenMP

Michael J. QuinnMichael J. QuinnMichael J. QuinnMichael J. Quinn
(Wonyong Sung modification)(Wonyong Sung modification)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 17

SharedShared--memory Programmingmemory ProgrammingSharedShared memory Programmingmemory Programming

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Outline
OpenMPOpenMP
Sh dSh d d ld lSharedShared--memory modelmemory model
Parallel Parallel forfor loopsloops
Declaring private variablesDeclaring private variables
Critical sectionsCritical sections
ReductionsReductions
Performance improvementsPerformance improvementspp
More general data parallelismMore general data parallelism
Functional parallelismFunctional parallelismFunctional parallelismFunctional parallelism

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

OpenMP

OpenMP: An application programming OpenMP: An application programming
i t f (API) f ll l ii t f (API) f ll l iinterface (API) for parallel programming on interface (API) for parallel programming on
multiprocessorsmultiprocessors

Compiler directivesCompiler directives
Library of support functionsLibrary of support functionsb a y o suppo t u ct o sb a y o suppo t u ct o s
Environment variablesEnvironment variables

O MP k i j ti ith F tO MP k i j ti ith F tOpenMP works in conjunction with Fortran, OpenMP works in conjunction with Fortran,
C, or C++C, or C++

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

What’s OpenMP Good For?

C + OpenMP sufficient to program C + OpenMP sufficient to program
ltiltimultiprocessorsmultiprocessors

C + MPI + OpenMP a good way to program C + MPI + OpenMP a good way to program
multicomputers built out of multiprocessorsmulticomputers built out of multiprocessors

IBM RS/6000 SPIBM RS/6000 SPS/6000 SS/6000 S
Fujitsu AP3000Fujitsu AP3000
D ll Hi h P f C tiD ll Hi h P f C tiDell High Performance Computing Dell High Performance Computing
ClusterCluster

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared-memory Model

Processor Processor Processor Processor

Memory

Processors interact and synchronize with each
other through shared variables.

no need of explicit communication
but need to synchronize and protect
private date

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fork/Join Parallelism
Initially only master thread is activeInitially only master thread is active
Master thread executes sequential codeMaster thread executes sequential codeMaster thread executes sequential codeMaster thread executes sequential code
Fork: Master thread creates or awakens additional Fork: Master thread creates or awakens additional
threads to execute parallel codethreads to execute parallel codethreads to execute parallel codethreads to execute parallel code
Join: At end of parallel code created threads die or Join: At end of parallel code created threads die or
are suspendedare suspendedpp
Advantages and Disadvantages:Advantages and Disadvantages:

Support incremental parallelization Support incremental parallelization
(allows begin with sequential program)(allows begin with sequential program)
SpeedSpeed--up limited by the masterup limited by the master--only partonly part

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fork/Join Parallelism
Master Thread

Other threads
fork

Other threads

Tim
e join

fork

join

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared memory Model vsShared-memory Model vs.
Message-passing Model (#1)Message passing Model (#1)

SharedShared--memory modelmemory modelSharedShared memory modelmemory model
Number active threads 1 at start and Number active threads 1 at start and
fi i h f h d i llfi i h f h d i llfinish of program, changes dynamically finish of program, changes dynamically
during executionduring execution

MessageMessage--passing modelpassing model
All processes active throughout executionAll processes active throughout executionAll processes active throughout execution All processes active throughout execution
of programof program

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Incremental Parallelization
Sequential program a special case of a sharedSequential program a special case of a shared--
memory parallel programmemory parallel programmemory parallel programmemory parallel program
Parallel sharedParallel shared--memory programs may only have memory programs may only have
a single parallel loopa single parallel loopa single parallel loopa single parallel loop
Incremental parallelization: process of converting Incremental parallelization: process of converting
a sequential program to a parallel program a littlea sequential program to a parallel program a littlea sequential program to a parallel program a little a sequential program to a parallel program a little
bit at a timebit at a time

For loopFor loopFor loopFor loop
Parallel execution of functionsParallel execution of functions

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared memory Model vsShared-memory Model vs.
Message-passing Model (#2)Message passing Model (#2)

SharedShared--memory modelmemory model
Execute and profile sequential programExecute and profile sequential program
Incrementally make it parallelIncrementally make it parallely py p
Stop when further effort not warrantedStop when further effort not warranted

MessageMessage--passing modelpassing modelMessageMessage--passing modelpassing model
SequentialSequential--toto--parallel transformation requires parallel transformation requires
major effortmajor effortmajor effortmajor effort
Transformation done in one giant step rather Transformation done in one giant step rather
than many tiny stepsthan many tiny stepsthan many tiny stepsthan many tiny steps

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function omp_get_num_procs

Returns number of physical processors Returns number of physical processors
available for use by the parallel programavailable for use by the parallel program

int omp_get_num_procs (void)int omp_get_num_procs (void)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function omp_set_num_threads

Uses the parameter value to set the number Uses the parameter value to set the number
of threads to be active in parallel sections of of threads to be active in parallel sections of
codecode
May be called at multiple points in a May be called at multiple points in a
programprogramprogramprogram

void omp_set_num_threads (int t)void omp_set_num_threads (int t)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pop Quiz:

Write a C program segment that sets the Write a C program segment that sets the
number of threads equal to the number of number of threads equal to the number of
processors that are available.processors that are available.pp

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pragmas

Pragma: a compiler directive in C or C++Pragma: a compiler directive in C or C++
Stands for “pragmatic information”Stands for “pragmatic information”
A way for the programmer to communicateA way for the programmer to communicateA way for the programmer to communicate A way for the programmer to communicate
with the compilerwith the compiler
Compiler free to ignore pragmasCompiler free to ignore pragmas
Syntax:Syntax:Syntax:Syntax:
#pragma omp#pragma omp <rest of pragma><rest of pragma>

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallelization

For loopFor loop
FunctionsFunctions

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel for Loops
C programs often express dataC programs often express data--parallel operations parallel operations
asas forfor loopsloopsas as forfor loopsloops
for (i = first; i < size; i += prime)for (i = first; i < size; i += prime)

marked[i] = 1;marked[i] = 1;marked[i] = 1;marked[i] = 1;

OpenMP makes it easy to indicate when the OpenMP makes it easy to indicate when the
iterations of a loop may execute in paralleliterations of a loop may execute in paralleliterations of a loop may execute in paralleliterations of a loop may execute in parallel
Compiler takes care of generating code that Compiler takes care of generating code that
forks/joins threads and allocates the iterations toforks/joins threads and allocates the iterations toforks/joins threads and allocates the iterations to forks/joins threads and allocates the iterations to
threadsthreads

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel for Pragma

Format:Format:
###pragma omp parallel for#pragma omp parallel for
for (i = 0; i < N; i++)for (i = 0; i < N; i++)(; ;)(; ;)

a[i] = b[i] + c[i];a[i] = b[i] + c[i];

Compiler must be able to verify the runCompiler must be able to verify the run--
time system will have information it needs time system will have information it needs
to schedule loop iterationsto schedule loop iterations

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Canonical Shape of for LoopCanonical Shape of for Loop
Control ClauseControl Clause

index ⎫⎧ ++

index
index

index

⎪
⎪
⎪
⎫

⎪
⎪
⎪
⎧

−−
++

++

⎫⎧

)index
index

index

;index;index(for ⎪
⎪
⎪

⎬
⎪
⎪
⎪

⎨ =+
−−

−−

⎪
⎪
⎬

⎫

⎪
⎪
⎨

⎧
<=
<

≥= incendstart)

indexindex
index
index;index;index(for

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎨

+=
=−
=+

⎪
⎪
⎭

⎬

⎪
⎪
⎩

⎨

>
>=

≥=

inc
inc
incendstart

indexindex
indexindex

⎪
⎪
⎪

⎭
⎪
⎪
⎪

⎩ −=
+=

⎭⎩

inc
inc
indexindex ⎭⎩ −= inc

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Execution Context
Every thread has its own execution contextEvery thread has its own execution context
E ti t t dd t i i ll fE ti t t dd t i i ll fExecution context: address space containing all of Execution context: address space containing all of
the variables a thread may accessthe variables a thread may access
C t t f ti t tC t t f ti t tContents of execution context:Contents of execution context:

static variablesstatic variables
dynamically allocated data structures in the dynamically allocated data structures in the
heapheap
variables on the runvariables on the run--time stacktime stack
additional runadditional run--time stack for functions invoked time stack for functions invoked
by the threadby the thread

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared and Private Variables

Shared variable: has same address in Shared variable: has same address in
execution context of every threadexecution context of every thread
Private variable: has different address inPrivate variable: has different address inPrivate variable: has different address in Private variable: has different address in
execution context of every threadexecution context of every thread
A h d h i i blA h d h i i blA thread cannot access the private variables A thread cannot access the private variables
of another threadof another thread

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared and Private Variables

int main (int argc, char *argv[])
{ Heap{

int b[3];
 char *cptr;

int i;
Stack

cptrb i

cptr = malloc(1);
#pragma omp parallel for

f (i 0 i 3 i)

cptrb i

for (i = 0; i < 3; i++)
 b[i] = i;

ii

Master Thread
(Thread 0)

Thread 1
 (Thread 0)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Declaring Private Variables
for (i = 0; i < BLOCK_SIZE(id,p,n); i++)for (i = 0; i < BLOCK_SIZE(id,p,n); i++)

for (j = 0; j < n; j++)for (j = 0; j < n; j++)for (j = 0; j < n; j++)for (j = 0; j < n; j++)
a[i][j] = MIN(a[i][j],a[i][k]+tmp);a[i][j] = MIN(a[i][j],a[i][k]+tmp);

Either loop could be executed in parallelEither loop could be executed in parallel
We prefer to make outer loop parallel to reduceWe prefer to make outer loop parallel to reduceWe prefer to make outer loop parallel, to reduce We prefer to make outer loop parallel, to reduce
number of forks/joinsnumber of forks/joins
We then must give each thread its own privateWe then must give each thread its own privateWe then must give each thread its own private We then must give each thread its own private
copy of variable copy of variable jj

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

private Clause

Clause: an optional, additional component Clause: an optional, additional component
to a pragmato a pragma
Private clause: directs compiler to make onePrivate clause: directs compiler to make onePrivate clause: directs compiler to make one Private clause: directs compiler to make one
or more variables privateor more variables private

private (private (<variable list><variable list>))p (p ())

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example Use of private Clause

#pragma omp parallel for private(j)#pragma omp parallel for private(j)
for (i = 0; i < BLOCK_SIZE(id,p,n); i++)for (i = 0; i < BLOCK_SIZE(id,p,n); i++)

for (j = 0; j < n; j++)for (j = 0; j < n; j++)
a[i][j] = MIN(a[i][j],a[i][k]+tmp);a[i][j] = MIN(a[i][j],a[i][k]+tmp);

h i di id d f ih i di id d f i<<-- the program is divided for i,the program is divided for i,
no need of declaring i as a privateno need of declaring i as a private

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

firstprivate Clause
Used to create private variables having initial values Used to create private variables having initial values
identical to the variable controlled by the master thread as identical to the variable controlled by the master thread as
the loop is enteredthe loop is entered
Variables are initialized once per thread, not once per loop Variables are initialized once per thread, not once per loop
iterationiterationiterationiteration
If a thread modifies a variable’s value in an iteration, If a thread modifies a variable’s value in an iteration,
subsequent iterations will get the modified valuesubsequent iterations will get the modified value

x[0] = complex_function();x[0] = complex_function();
#pragma omp parallel for private(j) firstprivate(x)#pragma omp parallel for private(j) firstprivate(x)
for (i=0; i<n; i++){for (i=0; i<n; i++){

for (j=1; j<4; j++)for (j=1; j<4; j++)
x[j] = g(i, x[jx[j] = g(i, x[j--1]);1]);[j] g([j[j] g([j])])

answer[i] = x[1]answer[i] = x[1]--x[3];x[3];
}}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

lastprivate Clause

Sequentially last iteration: iteration that Sequentially last iteration: iteration that
occurs last when the loop is executed occurs last when the loop is executed
sequentiallysequentiallyq yq y
lastprivatelastprivate clause: used to copy back clause: used to copy back
to the master thread’s copy of a variable theto the master thread’s copy of a variable theto the master thread s copy of a variable the to the master thread s copy of a variable the
private copy of the variable from the thread private copy of the variable from the thread
h d h i ll l i ih d h i ll l i ithat executed the sequentially last iterationthat executed the sequentially last iteration

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Critical Sections – a portion of code thatCritical Sections a portion of code that
only one thread at a time may execute
#pragma omp critical#pragma omp critical

•PI calculation using arctan functiong
•Integration of 1/1+x*x is arctan

d bl idouble area, pi, x;
int i, n;
...
area = 0.0;
for (i = 0; i < n; i++) {

x = (i+0.5)/n;
area += 4.0/(1.0 + x*x);

}}
pi = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition

If we simply parallelize the loop...If we simply parallelize the loop...
double area, pi, x;
int i, n;
...
area = 0.0;
ll l f i t ()#pragma omp parallel for private(x)
for (i = 0; i < n; i++) {

x = (i+0.5)/n;x (i+0.5)/n;
area += 4.0/(1.0 + x*x);

}
pi = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Race Condition (cont.)

... we set up a race condition in which one ... we set up a race condition in which one
process may “race ahead” of another and process may “race ahead” of another and
not see its change to shared variable not see its change to shared variable areaarea

11.667area 15.43215.230 Answer should be 18.995

Thread A Thread B 11.66711.66715.432 15.230

area += 4.0/(1.0 + x*x)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Correct, But Inefficient, Code
double area, pi, x;
int i, n;
...
area = 0.0;
ll l f i t (t)#pragma omp parallel for private(x, tmp)
for (i = 0; i < n; i++) {

x = (i+0 5)/n;x = (i+0.5)/n;
tmp = 4.0/(1.0 + x*x);

#pragma omp critical
area += tmp;

}
i /pi = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Source of Inefficiency

Update to Update to areaarea inside a critical sectioninside a critical section
Only one thread at a time may execute the Only one thread at a time may execute the
statement; i.e., it is sequential codestatement; i.e., it is sequential codestatement; i.e., it is sequential codestatement; i.e., it is sequential code
Time to execute statement significant part Time to execute statement significant part

f lf lof loopof loop
By Amdahl’s Law we know speedup will be By Amdahl’s Law we know speedup will be y p py p p
severely constrainedseverely constrained

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Reductions

Reductions are so common that OpenMP provides Reductions are so common that OpenMP provides
t f tht f thsupport for themsupport for them

May add reduction clause to May add reduction clause to parallel forparallel for
pragmapragma
Specify reduction operation and reduction variableSpecify reduction operation and reduction variablep y pp y p
OpenMP takes care of storing partial results in OpenMP takes care of storing partial results in
private variables and combining partial resultsprivate variables and combining partial resultsprivate variables and combining partial results private variables and combining partial results
after the loopafter the loop

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

reduction Clause
The reduction clause has this syntax:The reduction clause has this syntax:
reduction (reduction (<op><op> ::<variable><variable>))reduction (reduction (<op><op> ::<variable><variable>))
OperatorsOperators

++ SumSum++ SumSum
** ProductProduct
&& Bitwise andBitwise and&& Bitwise andBitwise and
|| Bitwise orBitwise or
^̂ Bitwise exclusive orBitwise exclusive or
&&&& Logical andLogical and
|||| Logical orLogical or

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

π-finding Code with Reduction Clause
d bl idouble area, pi, x;
int i, n;
...
area = 0.0;
ll l f \#pragma omp parallel for \

private(x) reduction(+:area)
f (i 0 i < i++) {for (i = 0; i < n; i++) {

x = (i + 0.5)/n;
+ 4 0/(1 0 + *)area += 4.0/(1.0 + x*x);

}
i /pi = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Performance Improvement #1
Too many fork/joins can Too many fork/joins can
lower performancelower performance for (i=1; i<m; i++)for (i=1; i<m; i++)
Inverting loops may help Inverting loops may help
performance ifperformance if

Parallelism is in innerParallelism is in inner

for (i=1; i<m; i++)for (i=1; i<m; i++)
for (j=0; j<n; j++)for (j=0; j<n; j++)

a[i][j] = 2 * a[ia[i][j] = 2 * a[i--1][j];1][j];
Parallelism is in inner Parallelism is in inner
looploop
After inversion, the After inversion, the

l b dl b d

#pragma omp parallel for private(i)#pragma omp parallel for private(i)
for (j=0; j<n; j++)for (j=0; j<n; j++)

outer loop can be made outer loop can be made
parallelparallel
Inversion does not Inversion does not

for (i=1; i<m; i++)for (i=1; i<m; i++)
a[i][j] = 2 * a[ia[i][j] = 2 * a[i--1][j];1][j];

significantly lower significantly lower
cache hit ratecache hit rate

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Performance Improvement #2

If loop has too few iterations, fork/join If loop has too few iterations, fork/join
overhead is greater than time savings from overhead is greater than time savings from
parallel executionparallel executionpp
The The ifif clause instructs compiler to insert clause instructs compiler to insert
code that determines at runcode that determines at run time whethertime whethercode that determines at runcode that determines at run--time whether time whether
loop should be executed in parallel; e.g.,loop should be executed in parallel; e.g.,

#pragma omp parallel for if(n > 5000)#pragma omp parallel for if(n > 5000)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Performance Improvement #3

We can useWe can use schedule schedule clause to specify how clause to specify how
it ti f l h ld b ll t d t th dit ti f l h ld b ll t d t th diterations of a loop should be allocated to threadsiterations of a loop should be allocated to threads
Static schedule: all iterations allocated to threads Static schedule: all iterations allocated to threads
before any iterations executedbefore any iterations executed
Dynamic schedule: only some iterations allocated Dynamic schedule: only some iterations allocated y yy y
to threads at beginning of loop’s execution. to threads at beginning of loop’s execution.
Remaining iterations allocated to threads that Remaining iterations allocated to threads that
complete their assigned iterations.complete their assigned iterations.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Static vs. Dynamic Scheduling

Static schedulingStatic scheduling
Low overheadLow overhead
May exhibit high workload imbalanceMay exhibit high workload imbalanceMay exhibit high workload imbalanceMay exhibit high workload imbalance

Dynamic schedulingDynamic scheduling
Higher overheadHigher overhead
Can reduce workload imbalanceCan reduce workload imbalanceCan reduce workload imbalanceCan reduce workload imbalance

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chunks

A chunk is a contiguous range of iterationsA chunk is a contiguous range of iterations
Increasing chunk size reduces overhead and Increasing chunk size reduces overhead and
may increase cache hit ratemay increase cache hit ratemay increase cache hit ratemay increase cache hit rate
Decreasing chunk size allows finer Decreasing chunk size allows finer
b l i f kl db l i f kl dbalancing of workloadsbalancing of workloads

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

schedule Clause
Syntax of schedule clauseSyntax of schedule clause
schedule (schedule (<type><type>[[<chunk><chunk>])])schedule (schedule (<type><type>[,[,<chunk><chunk>])])
Schedule type required, chunk size optionalSchedule type required, chunk size optional
All bl h d l tAll bl h d l tAllowable schedule typesAllowable schedule types

static: static allocationstatic: static allocation
dynamic: dynamic allocationdynamic: dynamic allocation
guided: guided selfguided: guided self--schedulingscheduling
runtime: type chosen at runruntime: type chosen at run--time based on value time based on value
of environment variable OMP_SCHEDULEof environment variable OMP_SCHEDULE

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scheduling Options

schedule(static): block allocation of about schedule(static): block allocation of about
/t ti it ti t h th d/t ti it ti t h th dn/t contiguous iterations to each threadn/t contiguous iterations to each thread

schedule(static,C): interleaved allocation of schedule(static,C): interleaved allocation of
chunks of size C to threadschunks of size C to threads
schedule(dynamic): dynamic oneschedule(dynamic): dynamic one--atat--aa--time time sc edu e(dy a c): dy a c o esc edu e(dy a c): dy a c o e atat aa t et e
allocation of iterations to threadsallocation of iterations to threads
schedule(dynamic C): dynamic allocation ofschedule(dynamic C): dynamic allocation ofschedule(dynamic,C): dynamic allocation of schedule(dynamic,C): dynamic allocation of
C iterations at a time to threadsC iterations at a time to threads

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scheduling Options (cont.)
schedule(guided, C): dynamic allocation of chunks schedule(guided, C): dynamic allocation of chunks
to tasks using guided selfto tasks using guided self scheduling heuristicscheduling heuristicto tasks using guided selfto tasks using guided self--scheduling heuristic. scheduling heuristic.
Initial chunks are bigger, later chunks are smaller, Initial chunks are bigger, later chunks are smaller,
minimum chunk size is C.minimum chunk size is C.minimum chunk size is C.minimum chunk size is C.
schedule(guided): guided selfschedule(guided): guided self--scheduling with scheduling with
minimum chunk size 1minimum chunk size 1minimum chunk size 1minimum chunk size 1
schedule(runtime): schedule chosen at runschedule(runtime): schedule chosen at run--time time
based on value of OMP SCHEDULE; Unixbased on value of OMP SCHEDULE; Unixbased on value of OMP_SCHEDULE; Unix based on value of OMP_SCHEDULE; Unix
example:example:
setenv OMP_SCHEDULE “static,1”setenv OMP_SCHEDULE “static,1”__

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

#pragma omp parallel for private(j) #pragma omp parallel for private(j)
schedule(*,*)schedule(*,*)
for (i=0; i<n; i++)for (i=0; i<n; i++)()()

for (j=i; j<n; j++)for (j=i; j<n; j++)
a[i][j] = alpha omega(I j);a[i][j] = alpha omega(I j);a[i][j] alpha_omega(I,j);a[i][j] alpha_omega(I,j);

jj
n Static schedule with n/p

chunks makes unalanced
i

n

chunks makes unalanced
load distribution

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More General Data Parallelism

Our focus has been on the parallelization of Our focus has been on the parallelization of
llforfor loopsloops

Other opportunities for data parallelismOther opportunities for data parallelismOther opportunities for data parallelismOther opportunities for data parallelism
processing items on a “to do” listprocessing items on a “to do” list
forfor loop + additional code outside of loop + additional code outside of
looplooppp

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Processing a “To Do” List

Heap

job_ptr

Shared
Variables

task_ptr task_ptr

Master Thread Thread 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sequential Code (1/2)
int main (int argc, char *argv[])
{

t t j b t t *j b tstruct job_struct *job_ptr;
struct task_struct *task_ptr;

...
task_ptr = get_next_task (&job_ptr);_ _ _ _
while (task_ptr != NULL) {

complete_task (task_ptr);
t k t t t t k (&j b t)task_ptr = get_next_task (&job_ptr);

}
...

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sequential Code (2/2)
char *get_next_task(struct job_struct

**job_ptr) {
struct task_struct *answer;

if (*job ptr == NULL) answer = NULL;if (*job_ptr == NULL) answer = NULL;
else {

answer = (*job ptr)->task;(j _p) ;
*job_ptr = (*job_ptr)->next;

}
return answer;

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallelization Strategy

Every thread should repeatedly take next Every thread should repeatedly take next
task from list and complete it, until there are task from list and complete it, until there are
no more tasksno more tasks
We must ensure no two threads take same We must ensure no two threads take same
task from the list; i e must declare a criticaltask from the list; i e must declare a criticaltask from the list; i.e., must declare a critical task from the list; i.e., must declare a critical
sectionsection

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

parallel Pragma

The The parallelparallel pragma precedes a block pragma precedes a block
of code that should be executed by of code that should be executed by allall of the of the
threadsthreads
Note: execution is replicated among all Note: execution is replicated among all
threadsthreadsthreadsthreads

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Regions

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Linked list processing
{

task_ptr = get_next_task (&job_ptr);
while (task_ptr != NULL) {

l t t k (t k t)complete_task (task_ptr);
task_ptr = get_next_task (&job_ptr);

}
}

char *get_next_task(struct job_struct
**job_ptr) {

struct task_struct *answer;

{{
if (*job_ptr == NULL) answer = NULL;
else {

answer = (*job_ptr)->task;
*job_ptr = (*job_ptr)->next;

}}
}
return answer;

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of parallel Pragma
#pragma omp parallel private(task_ptr)
{

task_ptr = get_next_task (&job_ptr);
while (task_ptr != NULL) {

l t t k (t k t)complete_task (task_ptr);
task_ptr = get_next_task (&job_ptr);

}}
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Critical Section for get_next_task
char *get_next_task(struct job_struct

**job_ptr) {
struct task_struct *answer;

#pragma omp critical
{{
if (*job_ptr == NULL) answer = NULL;
else {{

answer = (*job_ptr)->task;
*job_ptr = (*job_ptr)->next;

}
}
return answer;return answer;

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functions for SPMD styleFunctions for SPMD-style
ProgrammingProgramming

The parallel pragma allows us to writeThe parallel pragma allows us to writeThe parallel pragma allows us to write The parallel pragma allows us to write
SPMDSPMD--style programsstyle programs
In these programs we often need to know In these programs we often need to know
number of threads and thread ID numbernumber of threads and thread ID number
OpenMP provides functions to retrieve this OpenMP provides functions to retrieve this
informationinformationinformationinformation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function omp_get_thread_num

This function returns the thread This function returns the thread
identification numberidentification number
If there areIf there are tt threads, the ID numbers rangethreads, the ID numbers rangeIf there are If there are tt threads, the ID numbers range threads, the ID numbers range
from 0 to from 0 to tt--11
Th h d h ID b 0Th h d h ID b 0The master thread has ID number 0The master thread has ID number 0

int omp_get_thread_num (void) int omp_get_thread_num (void)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function omp_get_num_threads

Function omp_get_num_threads returns the Function omp_get_num_threads returns the
number of active threadsnumber of active threads
If call this function from sequential portionIf call this function from sequential portionIf call this function from sequential portion If call this function from sequential portion
of program, it will return 1of program, it will return 1

int omp get num threads (void)int omp get num threads (void)p_g _ _ ()p_g _ _ ()

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

for Pragma

The The parallel parallel pragma instructs every pragma instructs every
thread to execute all of the code inside the thread to execute all of the code inside the
blockblock
If we encounter a If we encounter a forfor loop that we want to loop that we want to
divide among threads we use thedivide among threads we use the forfordivide among threads, we use the divide among threads, we use the forfor
pragmapragma

#pragma omp for#pragma omp for

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example Use of for Pragma

#pragma omp parallel private(i,j)
for (i = 0; i < m; i++) {for (i = 0; i < m; i++) {

low = a[i];
high = b[i];high b[i];
if (low > high) {

printf ("Exiting (%d)\n", i);
break;

}
#pragma omp for#pragma omp for

for (j = low; j < high; j++)
c[j] = (c[j] - a[i])/b[i];[j] ([j] [])/ [];

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

single Pragma

Suppose we only want to see the output Suppose we only want to see the output
onceonce
The The single single pragma directs compiler that pragma directs compiler that
only a single thread should execute the only a single thread should execute the
block of code the pragma precedesblock of code the pragma precedes
Syntax:Syntax:

#pragma omp single#pragma omp single

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of single Pragma
#pragma omp parallel private(i,j)
for (i = 0; i < m; i++) {

l [i]low = a[i];
high = b[i];
if (low > high) {if (low > high) {

#pragma omp single
printf ("Exiting (%d)\n", i);
break;

}
#pragma omp for#pragma omp for

for (j = low; j < high; j++)
c[j] = (c[j] - a[i])/b[i];c[j] (c[j] a[i])/b[i];

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

nowait Clause

Compiler puts a barrier synchronization at Compiler puts a barrier synchronization at
d f ll l f t t td f ll l f t t tend of every parallel for statementend of every parallel for statement

In our example, this is necessary: if a thread In our example, this is necessary: if a thread
leaves loop and changes leaves loop and changes lowlow or or highhigh, it , it
may affect behavior of another threadmay affect behavior of another thread
If we make these private variables, then it If we make these private variables, then it
would be okay to let threads move ahead,would be okay to let threads move ahead,would be okay to let threads move ahead, would be okay to let threads move ahead,
which could reduce execution timewhich could reduce execution time

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of nowait Clause
#pragma omp parallel private(i,j,low,high)
for (i = 0; i < m; i++) {

low = a[i];
high = b[i];
if (low > high) {if (low > high) {

#pragma omp single
printf ("Exiting (%d)\n", i);p (g ()\ ,);
break;

}
#pragma omp for nowait

for (j = low; j < high; j++)
c[j] = (c[j] - a[i])/b[i];c[j] = (c[j] - a[i])/b[i];

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functional Parallelism

To this point all of our focus has been on To this point all of our focus has been on
exploiting data parallelismexploiting data parallelism
OpenMP allows us to assign differentOpenMP allows us to assign differentOpenMP allows us to assign different OpenMP allows us to assign different
threads to different portions of code threads to different portions of code
(functional parallelism)(functional parallelism)(functional parallelism)(functional parallelism)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functional Parallelism Example
v = alpha();
w = beta();w beta();
x = gamma(v, w);
y = delta();
printf ("%6.2f\n", epsilon(x,y));

l h b talpha beta

May execute alpha,
gamma deltabeta, and delta in

parallel
epsilon

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

parallel sections Pragma

Precedes a block of Precedes a block of kk blocks of code that blocks of code that
may be executed concurrently by may be executed concurrently by kk threadsthreads
Syntax:Syntax:Syntax:Syntax:

#pragma omp parallel sections#pragma omp parallel sections#pragma omp parallel sections#pragma omp parallel sections

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

section Pragma

Precedes each block of code within the Precedes each block of code within the
i bl k d d b thi bl k d d b thencompassing block preceded by the encompassing block preceded by the

parallel sections pragmaparallel sections pragma
May be omitted for first parallel section May be omitted for first parallel section
after the parallel sections pragmaafter the parallel sections pragma
Syntax:Syntax:

#pragma omp section#pragma omp section

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example of parallel sections
#pragma omp parallel sections

{
ti /* O ti l */#pragma omp section /* Optional */

v = alpha();
#pragma omp section#pragma omp section

w = beta();
#pragma omp section

y = delta();
}
x = gamma(v w);x = gamma(v, w);
printf ("%6.2f\n", epsilon(x,y));

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Another Approach

Execute alpha andalpha beta Execute alpha and
beta in parallel.

dgamma delta Execute gamma and
delta in parallel.

epsilon

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

sections Pragma

Appears inside a parallel block of codeAppears inside a parallel block of code
Has same meaning as the Has same meaning as the parallel parallel
sectionssections pragmapragmasectionssections pragmapragma
If multiple If multiple sectionssections pragmas inside one pragmas inside one

ll l bl k d f k/j ill l bl k d f k/j iparallel block, may reduce fork/join costsparallel block, may reduce fork/join costs

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of sections Pragma
#pragma omp parallel

{
#pragma omp sections#pragma omp sections

{
v = alpha();

#pragma omp section#pragma omp section
w = beta();

}
ti#pragma omp sections

{
x = gamma(v, w);

#pragma omp section
y = delta();

}
}
printf ("%6.2f\n", epsilon(x,y));

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (1/3)

OpenMP an API for sharedOpenMP an API for shared--memory memory
parallel programmingparallel programming
SharedShared--memory model based on fork/joinmemory model based on fork/joinSharedShared memory model based on fork/join memory model based on fork/join
parallelismparallelism
D ll liD ll liData parallelismData parallelism

parallel for pragmaparallel for pragmap p gp p g
reduction clausereduction clause

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (2/3)

Functional parallelism (parallel sections pragma)Functional parallelism (parallel sections pragma)
SPMDSPMD--style programming (parallel pragma)style programming (parallel pragma)
Critical sections (critical pragma)Critical sections (critical pragma)(p g)(p g)
Enhancing performance of parallel for loopsEnhancing performance of parallel for loops

Inverting loopsInverting loopsInverting loopsInverting loops
Conditionally parallelizing loopsConditionally parallelizing loops
Changing loop schedulingChanging loop scheduling

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (3/3)
CharacteristicCharacteristic OpenMPOpenMP MPIMPI

S it bl f ltiS it bl f lti YY YYSuitable for multiprocessorsSuitable for multiprocessors YesYes YesYes

Suitable for multicomputersSuitable for multicomputers NoNo YesYespp

Supports incremental Supports incremental
ll li ill li i

YesYes NoNo
parallelizationparallelization
Minimal extra codeMinimal extra code YesYes NoNo

Explicit control of memory Explicit control of memory
hierarchyhierarchy

NoNo YesYes
hierarchyhierarchy

