Parallel Programming
In C with MPI and OpenMP

Michael J. Quinn

(Wonyong Sung modification)

Mc
Graw
Hill

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 17

Shared-memory Programming

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Outline

m OpenMP

= Shared-memory model

m Parallel for loops
Declaring private variables
Critical sections
Reductions
Performance improvements
More general data parallelism
Functional parallelism

Copyright © The McGraw-Hill Companies, Inc. Permis

OpenMP

= OpenMP: An application programming
Interface (API) for parallel programming on
multiprocessors

o Compiler directives
¢ Library of support functions
+ Environment variables

= OpenMP works in conjunction with Fortran,
C, or C++

What’s OpenMP Good For?

m C + OpenMP sufficient to program
multiprocessors

= C + MPI + OpenMP a good way to program
multicomputers built out of multiprocessors

+ 1BM RS/6000 SP
+ Fujitsu AP3000

¢ Dell High Performance Computing
Cluster

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Shared-memory Model

Processor Processor Processor Processor

Processors interact and synchronize with each
other through shared variables.
no need of explicit communication
but need to synchronize and protect
private date

Copyright © The McGraw-Hill Companies, Inc. Permis

Fork/Join Parallelism

= Initially only master thread Is active
m Master thread executes sequential code

m Fork: Master thread creates or awakens additional
threads to execute parallel code

= Join: At end of parallel code created threads die or
are suspended

= Advantages and Disadvantages:

+ Support incremental parallelization
(allows begin with sequential program)

o Speed-up limited by the master-only part

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduc

Fork/Join Parallelism

Master Thread

Other threads

[T

= Shared-memory model
o Number active threads 1 at start and

finish of program, changes dynamically
during execution

m Message-passing model

¢ All processes active throughout execution
of program

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Incremental Parallelization

m Sequential program a special case of a shared-
memory parallel program

m Parallel shared-memory programs may only have
a single parallel loop

= Incremental parallelization: process of converting
a sequential program to a parallel program a little
bit at a time

¢ For loop
o Parallel execution of functions

ssage-passing Model (#2)

= Shared-memory model
+ Execute and profile sequential program
¢ Incrementally make it parallel
+ Stop when further effort not warranted
= Message-passing model

+ Sequential-to-parallel transformation requires
major effort

+ Transformation done in one giant step rather
than many tiny steps

Function omp_get_num_procs

m Returns number of physical processors
avallable for use by the parallel program

Int omp_get _num _procs (void)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Function omp_set_num_threads

m Uses the parameter value to set the number
of threads to be active in parallel sections of
code

m May be called at multiple points in a
program

void omp_set num_ threads (Iint t)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

slidess-Tu

Differences between a process and threads

_ Code Heap
“‘heavyweight” process -
IP
completely separate 1 >
program with its own (3)Process Stack

Interrupt routines

variables, stack, and

memory allocation.

Code Heap
| Stack Thread:
I IP !
Threads - shares the same . — E—
memory space and global () threads | L == Interrupt routines

Stack Thread.
o

variables between routines.

Copyright © The McGraw-Hill Companies, Inc. Permis

Pop Quiz:

Write a C program segment that sets the
number of threads equal to the number of
processors that are available.

Copyright © The McGraw-Hill Companies, Inc. Permis

Pragmas

= Pragma: a compiler directive in C or C++
m Stands for “pragmatic information”

= A way for the programmer to communicate
with the compiler

= Compiler free to ignore pragmas
B Syntax:
#pragma omp <rest of pragma>

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallelization

= For loop
m Functions

Copyright © The McGraw-Hill Companies, Inc. Permis

Parallel for Loops

m C programs often express data-parallel operations
as for loops

for (1 = first; 1 < size; 1 += prime)
marked[1] = 1;
= OpenMP makes it easy to indicate when the
Iterations of a loop may execute in parallel

m Compiler takes care of generating code that
forks/joins threads and allocates the iterations to
threads

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Parallel for Pragma

m Format:
#pragma omp parallel for
for (1 = 0; 1 < N; 1++)
al1] = b[r] + c[1];
m Compiler must be able to verify the run-

time system will have information it needs
to schedule loop Iiterations

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Index + +

+ +Index
Index — —

——index
for(index = start; Index = < Index+ = Inc
Index— =1inc

Index = index +inc

IndeX = Inc +index
[Index = index —Inc

Copyright © The McGraw-Hill Companies, Inc. Permis

Execution Context

= Every thread has its own execution context

m Execution context: address space containing all of
the variables a thread may access

m Contents of execution context:
o static variables

+ dynamically allocated data structures In the
heap

¢ Vvariables on the run-time stack

+ additional run-time stack for functions invoked
by the thread

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Shared and Private Variables

m Shared variable: has same address In
execution context of every thread

m Private variable: has different address In
execution context of every thread

m A thread cannot access the private variables
of another thread

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduc

Shared and Private Variables

int main (int argc, char *argv[])
{

int b[3];

char *cptr;

int i;

cptr = malloc(1);
#pragma omp parallel for
for (I=0; 1< 3; it+)
b[i] =i

Master Thread Thread 1
(Thread 0)

Declaring Private Variables

for (1 = 0; 1 < BLOCK_SIZE(id,p,n); 1++)
for (J =0; J < n; J++)
ali]] = MINCaLil[1.al1]1[k]+tmp);

= Either loop could be executed in parallel

= We prefer to make outer loop parallel, to reduce
number of forks/joins

= \We then must give each thread its own private
copy of variable j

Copyright © The McGraw-Hill Companies, Inc. Permis

private Clause

m Clause: an optional, additional component
to a pragma

= Private clause: directs compiler to make one
or more variables private

private (<variable list>)

Copyright © The McGraw-Hill Companies, Inc. Permis

Example Use of private Clause

#pragma omp parallel for private())
for (1 O; 1 < BLOCK_SIZE(id,p,n); 1++)
for = 0; J < n; J++)
ali]la] = MINCa[i1[31.al11K]+tmp);

<- the program is divided for 1,
no need of declaring 1 as a private

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

firstprivate Clause

= Used to create private variables having initial values
Identical to the variable controlled by the master thread as

the loop Is entered

= Variables are initialized once per thread, not once per loop
Iteration

= If athread modifies a variable’s value In an iteration,
subsequent iterations will get the modified value

= X[0] = complex_function();
#pragma omp parallel for private(j) firstprivate(x)
for (i=0; i<n; 1++){
for (J=1; j<4_ J++)
xO1 = 9(1, x[j-1]);

answer[i] = x[l]-x[Sj;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

lastprivate Clause

m Sequentially last iteration: iteration that
occurs last when the loop Is executed
sequentially

m lastprivate clause: used to copy back

to the master thread’s copy of a variable the
private copy of the variable from the thread
that executed the sequentially last iteration

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproductio isplay

Critical Sectlons — a portion of co de that

only one thread at a time may execute
#pragma omp critical

Pl calculation using arctan function
eIntegration of 1/1+x*x 1Is arctan

double area, pir, X;

Copyright © The McGraw-Hill Companies, Inc. Permis

Race Condition

= If we simply parallelize the loop...

double area, pi, X;
int 1, n;

area = 0.0;
#pragma omp parallel for private(x)
for (1 = 0; 1 < nj; 1++) {

X = (1+0.5)/n;

area += 4.0/(1.0 + xX*x);

}_
pi

= area / n;

Copyright © The McGraw-Hill Companies, Inc. Permis

Race Condition (cont.)

® ... We set up a race condition in which one

process may “race ahead” of another and
not see Its change to shared variable area

alea Answer should be 18.995

Thread A Thread B

area += 4.0/(1.0 + xX*x)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Correct, But Inefficient, Code

double area, pi, X;
int 1, n;
area = 0.0;
#pragma omp parallel for private(x, tmp)
for (1 = 0; 1 < nj; 1++) {
X = (1+0.5)/n;
tmp = 4.0/(1.0 + x*x);
#pragma omp critical
area += tmp;

}

pl = area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Source of Inefficiency

m Update to area inside a critical section

= Only one thread at a time may execute the
statement; I.e., It Is sequential code

m Time to execute statement significant part
of loop

= By Amdahl’s Law we know speedup will be
severely constrained

Copyright © The McGraw-Hill Companies, Inc. Permis

Reductions

m Reductions are so common that OpenMP provides
support for them

= May add reduction clause to parallel for
pragma
m Specify reduction operation and reduction variable

= OpenMP takes care of storing partial results in
private variables and combining partial results
after the loop

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

reduction Clause

= The reduction clause has this syntax:
reduction (<op> :<variable>)

m QOperators

Sum

Product

Bitwise and

Bitwise or

Bitwise exclusive or

Logical and

Logical or

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

n-finding Code with Reduction Clause

double area, pi1, X;
int 1, n;

area = 0.0;

#pragma omp parallel for \
private(x) reduction(+:area)
or (= U; 1 < n; 1++) {
= (1 + 0.5)/n;
area += 4.0/(1.0 + x*x);

area / n;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Performance Improvement #1

® Too many fork/joins can
lower performance

= Inverting loops may help
performance If

o Parallelism iIs in Inner
loop

+ After inversion, the

outer loop can be made
parallel

¢ Inversion does not

significantly lower
cache hit rate

for (iI=1; i<m; i++)
for (j=0; j<n; j++)
ali]li] = 2 > a[i-1][il;

#pragma omp parallel for private(i)
for (j=0; j<n; j++)
for (iI=1; i<m; i++)

a[i]i] =2 * a[I-1]0];

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Performance Improvement #2

= If loop has too few Iterations, fork/join
overhead Is greater than time savings from
parallel execution

m The 1T clause instructs compiler to insert

code that determines at run-time whether
loop should be executed in parallel; e.g.,

#pragma omp parallel for 1f(n > 5000)

Copyright © The McGraw-Hill Companies, Inc. Permis

Performance Improvement #3

m We canuse schedulle clause to specify how
Iterations of a loop should be allocated to threads

m Static schedule: all iterations allocated to threads
before any Iiterations executed

= Dynamic schedule: only some iterations allocated
to threads at beginning of loop’s execution.
Remaining iterations allocated to threads that
complete their assigned iterations.

Static vs. Dynamic Scheduling

m Static scheduling

+ Low overhead

+ May exhibit high workload imbalance
= Dynamic scheduling

+ Higher overhead

+ Can reduce workload imbalance

Copyright © The McGraw-Hill Companies, Inc. Permis

Chunks

m A chunk Is a contiguous range of Iterations

m Increasing chunk size reduces overhead and
may increase cache hit rate

m Decreasing chunk size allows finer
balancing of workloads

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

schedule Clause

m Syntax of schedule clause
schedule (<type>[,<chunk>])

= Schedule type required, chunk size optional
= Allowable schedule types

« static: static allocation

+ dynamic: dynamic allocation

¢ guided: guided self-scheduling

¢ runtime: type chosen at run-time based on value
of environment variable OMP_SCHEDULE

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Scheduling Options

m schedule(static): block allocation of about
n/t contiguous iterations to each thread

m schedule(static,C): interleaved allocation of
chunks of size C to threads

m schedule(dynamic): dynamic one-at-a-time
allocation of iterations to threads

= schedule(dynamic,C): dynamic allocation of
C Iterations at a time to threads

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scheduling Options (cont.)

= schedule(guided, C): dynamic allocation of chunks
to tasks using guided self-scheduling heuristic.
Initial chunks are bigger, later chunks are smaller,
minimum chunk size is C.

= schedule(guided): guided self-scheduling with
minimum chunk size 1

= schedule(runtime): schedule chosen at run-time
based on value of OMP_SCHEDULE; Unix

example:
setenv OMP_SCHEDULE *“static,1”

Copyright © The McGraw-Hill Companies, Inc. Permis

m #pragma omp parallel for private(])
schedule(*,*)
for (1=0; I<n; I1++)

for (J=I; J<n; J++)
al1][j] = alpha_omega(l,));

Static schedule with n/p
chunks makes unalanced
i load distribution

N

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

More General Data Parallelism

m Our focus has been on the parallelization of
for loops

m Other opportunities for data parallelism

¢ processing items on a “to do” list

+ Tor loop + additional code outside of
loop

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Processing a “To Do” List

Shared
Variables

N\

Master Thread Thread 1

Copyright © The McGraw-Hill Companies, Inc. Permis

Sequential Code (1/2)

int main (Int argc, char *argv|[])
{
struct job struct *job ptr;
struct task struct *task ptr;

task ptr = get_next task (&job ptr);
while (task ptr '= NULL) {

complete task (task ptr);

task_ptr = get_next_task (&job_ptr);

}

Copyright © The McGraw-Hill Companies, Inc. Permission requ

Sequential Code (2/2)

char *get next task(struct job struct
**job _ptr) {

struct task struct *answer;

iIT (*jJob _ptr == NULL) answer = NULL;

else {
answer = (

*job_ptr

*job_ptr)->task;
(*jJob_ptr)->next;

}

return answer,

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Parallelization Strategy

m Every thread should repeatedly take next
task from list and complete it, until there are
no more tasks

= \We must ensure no two threads take same
task from the list; 1.e., must declare a critical
section

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

parallel Pragma

m The paral lel pragma precedes a block

of code that should be executed by all of the
threads

= Note: execution Is replicated among all
threads

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Regions

m Fundamental OpenMP construct:

Fpragma omp parallel

omp para_lel

printf(“hello world

omp get

r

et num t

m From an 8-processor machine:

hell: d from thr:
hell:s A
hell: ul
hell: o
hell: d from
hell: d £
hell: all
hell: all

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Linked list processing

| |
{
task_ptr = get_next_task (&job_ptr);
while (task_ptr '= NULL) {
complete_task (task_ptr);
task_ptr = get_next_task (&job_ptr);
}
}

char *get_next_task(struct job_struct
**job_ptr) {
struct task_struct *answer;

{
if (*job_ptr == NULL) answer = NULL;
else {
answer = (*job_ptr)->task;
*job_ptr = (*job_ptr)->next;
}
}

return answer;

}

Copyright © The McGraw-Hill Companies, Inc. Permis

Use of paral lel Pragma

#pragma omp parallel private(task ptr)
{
task _ptr = get_next_task (&job_ptr);
while (task ptr '= NULL) {
complete task (task ptr);
task _ptr = get_next_task (&job_ptr);
1
J

}

Copyright © The McGraw-Hill Companies, Inc. Permis

Critical Section for get next task

char *get next task(struct job struct
**job_ptr) {
struct task struct *answer;
#pragma omp critical
{
It (*job _ptr == NULL) answer = NULL;
else {
answer = (*job_ptr)->task;
*job_ptr = (*job ptr)->next;
}
}

return answer;

m The parallel pragma allows us to write
SPMD-style programs

= In these programs we often need to know
number of threads and thread ID number

= OpenMP provides functions to retrieve this
Information

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Function omp_get thread num

m This function returns the thread
Identification number

m If there are t threads, the ID numbers range
from O to t-1

m The master thread has ID number 0

Int omp_get _thread num (void)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Function omp_get _num_threads

m Function omp_get_num_threads returns the
number of active threads

m If call this function from sequential portion
of program, it will return 1

InNt omp get num threads (void)

Copyright © The McGraw-Hill Companies, Inc. Permis

for Pragma

m The paral lel pragma instructs every
thread to execute all of the code Inside the
block

m |f we encounter a fFor
|

t
L

Anndoa amnn
UIVIUT AlllVIlI

pragma

hro
11 T

#pragma omp for

Copyright © The McGraw-Hill Companies, Inc. Permis

Example Use of for Pragma

arallel private(i,j)

1);

#pragma omp for
for (J = low; j < high; j++)
chil = (el - alil)/bli];

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

single Pragma

m Suppose we only want to see the output
once

m The single pragma directs compiler that
only a single thread should execute the
block of code the pragma precedes

B Syntax:

#pragma omp single

Copyright © The McGraw-Hill Companies, Inc. Permis

Use of single Pragma

#pragma omp parallel private(l,]})
for (1 = 0; 1 <m; 1++) {

low = a[i1];

high = b[i1]

h

1T (low > high) {
#pragma omp single
printf ("Exiting (%Wd)\n", 1);
break;

}

#pragma omp for
for (J = low; J < high; jJ++)
chil = (el - a[1D/bli];

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

nowalit Clause

m Compiler puts a barrier synchronization at
end of every parallel for statement

= In our example, this iIs necessary: if a thread
leaves loop and changes low or high, it

may affect behavior of another thread

= If we make these private variables, then it
would be okay to let threads move ahead,
which could reduce execution time

Copyright © The McGraw-Hill Companies, Inc. Permis

Use of nowalit Clause

#pragma omp parallel private(i,j,low,high)
for (1 =0; 1 <m; 1++) {

low = aJi];

high = b[i1]

h

1T (low > high) {
#pragma omp single
printf (Exiting (%d)\n", 1);
break;
}
#pragma omp for nowalt
for (J = low; j < high; j++)
chil = Cchul - afiD)/b[i];

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

Functional Parallelism

m To this point all of our focus has been on
exploiting data parallelism

= OpenMP allows us to assign different
threads to different portions of code
(functional parallelism)

Copyright © The McGraw-Hill Companies, Inc. Permis

Functional Parallelism Example

alpha();
beta();

gamma(v, w);
delta();

May execute alpha,
beta, and delta In
parallel

parallel sections Pragma

m Precedes a block of k blocks of code that
may be executed concurrently by k threads

B Syntax:

#pragma omp parallel sections

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

section Pragma

m Precedes each block of code within the
encompassing block preceded by the
parallel sections pragma

= May be omitted for first parallel section
after the parallel sections pragma

B Syntax:

#pragma omp section

Copyright © The McGraw-Hill Companies, Inc. Permis

Example of parallel sections

#pragma omp parallel sections
{
#pragma omp section /* Optional */
v = alpha();
#pragma omp section
w = beta();
#pragma omp section

y = delta();
}

X = gamma(v, w);
printf ("'%6.2F\n", epsilon(x,y));

Copyright © The McGraw-Hill Companies, Inc. Permis

Another Approach

@ @ Execute alpha and
beta in parallel.

@ Execute gamma and

delta in parallel.

Copyright © The McGraw-Hill Companies, Inc. Permis

sections Pragma

m Appears inside a parallel block of code

= Has same meaning as the parallel
sections pragma

= If multiple sections pragmas inside one
parallel block, may reduce fork/join costs

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Use of sections Pragma

#pragma omp parallel

{

#pragma omp sections
{
v = alpha(Q);
#pragma omp section
w = beta();
ks
#pragma omp sections
{
X = gamma(v, w);
#pragma omp section
y = delta();

}

¥
printf ("%6.2F\n", epsilon(x,y));

Copyright © The McGraw-Hill Companies, Inc. Permis

Summary (1/3)

m OpenMP an API for shared-memory
parallel programming

= Shared-memory model based on fork/join
parallelism

m Data parallelism
o parallel for pragma
¢ reduction clause

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary (2/3)

= Functional parallelism (parallel sections pragma)
m SPMD-style programming (parallel pragma)
= Critical sections (critical pragma)
= Enhancing performance of parallel for loops
+ Inverting loops
+ Conditionally parallelizing loops
+ Changing loop scheduling

Copyright © The McGraw-Hill Companies, Inc. Permis

Summary (3/3)

Characteristic

Suitable for multiprocessors

Suitable for multicomputers

Supports incremental
parallelization

Minimal extra code

Explicit control of memory
hierarchy

