
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 3 Parallel Algorithm
Design

Parallel Programming
in C with MPI and OpenMP

Michael J. Quinn
Wonyong Sung Modification

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Programming

Load balancing
Best with data-level parallel processing

Low communication overhead
Architecture dependent

Precedence relation and scheduling
Memory/cache/IO consideration

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Partitioning
Dividing both computation and data into pieces
Domain (x-axis, data) decomposition

Divide data into pieces – in many case best partitioning
SPMD (Single Processor Multiple Data) paradigm
Good for massively parallel distributed memory multi-
computer systems

Functional decomposition
Divide computation into pieces
May good for heterogeneous multiprocessors

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Partitioning Checklist

At least 10x more primitive tasks than
processors in target computer
Minimize redundant computations and
redundant data storage
Primitive tasks roughly the same size
Number of tasks an increasing function of
problem size (scalable partitioning)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication
Determine values passed among tasks
Local communication

Task needs values from a small number of
other tasks
Create channels illustrating data flow

Global communication
Significant number of tasks contribute data to
perform a computation
Don’t create channels for them early in design

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication Checklist

Communication operations balanced among
tasks
Each task communicates with only small
group of neighbors
Tasks can perform communications
concurrently
Task can perform computations
concurrently

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Agglomeration
Grouping tasks into larger tasks
Goals

Eliminate communication between primitive tasks
agglomerated into consolidated task Maintain
scalability of program
Combine groups of sending and receiving tasks

In MPI programming, goal often to create one
agglomerated task per processor

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Agglomeration Checklist
Locality of parallel algorithm has increased
Replicated computations take less time than
communications they replace
Data replication doesn’t affect scalability
Agglomerated tasks have similar computational
and communications costs
Number of tasks increases with problem size
Number of tasks suitable for likely target systems
Tradeoff between agglomeration and code
modifications costs is reasonable

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mapping
Process of assigning tasks to processors
MPI and OpenMP programming model

MPI: purely parallel, need parallel algorithm from the
start-up
OpenMP: Fork-join model, starting-from sequential
version and incremental parallelization

Conflicting goals of mapping
Maximize processor utilization
Minimize interprocessor communication

NP-hard problem

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mapping Decision Tree
Static number of tasks

Structured communication
Constant computation time per task

• Agglomerate tasks to minimize comm
• Create one task per processor

Variable computation time per task
• Cyclically map tasks to processors

Unstructured communication
• Use a static load balancing algorithm

Dynamic number of tasks

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mapping Strategy

Static number of tasks
Dynamic number of tasks

Frequent communications between tasks
Use a dynamic load balancing algorithm –
analyzes the current tasks and produces a
new mapping of tasks to processors

Many short-lived tasks
Use a run-time task-scheduling algorithm

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Task Scheduling
Centralized method

One manager and many workers
When a worker processor has nothing to do, it
requests a task from the manager.
Sometimes, the manager can be a bottleneck

Distributed
Each processor maintains its own list of tasks
Push (processors with too many send to some
others) and pull strategies

Hybrid method

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mapping Checklist

Considered designs based on one task per
processor and multiple tasks per processor
Evaluated static and dynamic task allocation
If dynamic task allocation chosen, task
allocator is not a bottleneck to performance
If static task allocation chosen, ratio of tasks
to processors is at least 10:1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Case Studies

Boundary value problem
Finding the maximum
The n-body problem
Adding data input

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Partitioning

One data item per grid point
Associate one primitive task with each grid
point
Two-dimensional domain decomposition

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Communication

Identify communication pattern between
primitive tasks
Each interior primitive task has three
incoming and three outgoing channels

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sequential execution time

χ – time to update element
n – number of elements
m – number of iterations
Sequential execution time: m (n-1) χ

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Parallel Execution Time

p – number of processors
λ – message latency
Parallel execution time m(χ⎡(n-1)/p⎤+2λ)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Finding the Maximum Error
Computed 0.15 0.16 0.16 0.19
Correct 0.15 0.16 0.17 0.18
Error (%) 0.00% 0.00% 6.25% 5.26%

6.25%

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Reduction

Given associative operator ⊕
a0 ⊕ a1 ⊕ a2 ⊕ … ⊕ an-1

Examples
Add
Multiply
And, Or
Maximum, Minimum

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Binomial Trees

Subgraph of hypercube

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Finding Global Sum

4 2 0 7

-3 5 -6 -3

8 1 2 3

-4 4 6 -1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Finding Global Sum

1 7 -6 4

4 5 8 2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Finding Global Sum

8 -2

9 10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Finding Global Sum

17 8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Finding Global Sum

25

Binomial Tree

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Agglomeration

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Agglomeration

sum

sum sum

sum

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Partitioning

Domain partitioning
Assume one task per particle
Task has particle’s position, velocity vector
Iteration

Get positions of all other particles
Compute new position, velocity

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gather

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

All-gather

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scatter

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Scatter in log p Steps

12345678 56781234 56 12

7834

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary: Task/channel Model

Parallel computation
Set of tasks
Interactions through channels

Good designs
Maximize local computations
Minimize communications
Scale up

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary: Design Steps

Partition computation
Agglomerate tasks
Map tasks to processors
Goals

Maximize processor utilization
Minimize inter-processor communication

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary: Fundamental Algorithms

Reduction
Gather and scatter
All-gather

	Chapter 3 Parallel Algorithm Design��Parallel Programming�in C with MPI and OpenMP
	Parallel Programming
	Partitioning
	Partitioning Checklist
	Communication
	Communication Checklist
	Agglomeration
	Agglomeration Checklist
	Mapping
	Mapping Decision Tree
	Mapping Strategy
	Task Scheduling
	Mapping Checklist
	Case Studies
	Partitioning
	Communication
	Sequential execution time
	Parallel Execution Time
	Finding the Maximum Error
	Reduction
	Binomial Trees
	Finding Global Sum
	Finding Global Sum
	Finding Global Sum
	Finding Global Sum
	Finding Global Sum
	Agglomeration
	Agglomeration
	Partitioning
	Gather
	All-gather
	Scatter
	Scatter in log p Steps
	Summary: Task/channel Model
	Summary: Design Steps
	Summary: Fundamental Algorithms

