

Introduction to Data Structures Kyuseok Shim SoEECS, SNU.

1

Topics

- Abstract Data Types and the C++ Class
- Array As Abstract Data Type
- Polynomial Abstract Data Type
- Sparse Matrices
- Representation of Multidimensional Arrays
- String Abstract Data Type

Topics

Abstract Data Types and the C++ Class

- Array As Abstract Data Type
- Polynomial Abstract Data Type
- Sparse Matrices
- Representation of Multidimensional Arrays
- String Abstract Data Type

C++ Class

- Represents an ADT
- Consists of four components
 - class name
 - data members
 - member functions
 - levels of program access
 - control the level of access to data members and member functions
 - *public*: anywhere
 - private : within its class a function or a class that is a *friend*
 - *protected*: within its class
 friend its subclasses

Definition of the C++ class Rectangle

#ifndef RECTANGLE_H #define RECTANGLE_H 3 // In the header file Rectangle, h 4 class Rectangle 5 6 public:// the following members are public 7 // The next four members are member functions 8 9 Rectangle():// constructor ~Rectangle();// destructor 10 int GetHeight();// returns the height of the rectangle 11 int GetWidth();// returns the width of the rectangle 12 private:// the following members are private 13 // the following members are data members 14 int xlow, ylow, height, width; 15 // (xlow, ylow) are the coordinates of // the bottom left corner of the rectangle 16 17 }; #endif 18

Data Abstraction and Encapsulation in C++

- Data encapsulation of C++ class
 - all data members are *private* (or *protected*)
 - external access to data members are by member functions
 - member functions
 - that will be invoked externally are *public*
 - all others are *private* (or *protected*)

Data Abstraction and Encapsulation in C++(cont.)

- Separation of specification and implementation of member functions
 - specification (function prototype)
 - name of functions
 - type of function arguments
- type of function result Separation of specification and implementation of member functions
 - specification (function prototype)
 - name of functions
 - type of function arguments
 - type of function result

Data Abstraction and Encapsulation in C++(cont.)

- specification characteristics
 - inside the public portion of the class
 - implementation-independent description using comments
 - placed separately in a header file
- implementation
 - placed in a source file of the same name
 - can be included inside its class definition: treated as an inline function

Implementation of operations on Rectangle

- // In the source file Rectangle.cpp
- *#include* "Rectangle, h"
- 2 3 // The prefix "Rectangle::" identifies GetHeight()
- 4 // and GetWidth() as member functions
- 5 // belonging to class Rectangle. It is required
- 6 // because the member functions
- 7 // are implemented outside their class definition
- 8 int Rectangle::GetHeight() {return height;}
- int Rectangle::GetWidth() {return width;} 9

Declaring class objects

- in the same way as variables
- Invoking member functions
 - using component selection operators
 - dot(.) : direct selection
 - arrow : indirect selection through a pointer

A C++ code fragment demonstrating how Rectangle objects are declared and member functions invoked

```
// In a source file main.cpp
    #include <iostream>
 2
 3
    #include "Rectangle.h"
 4
5
    main() {
       Rectangle r, s: // r and s are objects of class Rectangle
 6
7
8
9
       Rectangle *t = &s: // t is a pointer to class object s
    // use to access members of class objects.
    // use \rightarrow to access members of class objects through pointers.
10
11
    if (r.GetHeight()*r.GetWidth() > t→GetHeight() * t→GetWidth())
12
           cout << " r ";
13
       else cout << " s ";
14
15
           \cot x \le \frac{1}{2} cout << \frac{1}{2} in as the greater area. << end:
16
    }
```

Special Class Operations

Constructor

- a member function which initializes data members of an object
- If provided for a class, automatically executed when an object of that class is created
- must be public
- the name must be identical to the name of the class
- must not specify a return type or return a value

Definition of a constructor for Rectangle

```
1 Rectangle::Rectangle(int x, int y, int h, int w)
2 {
3     xlow=x; ylow=y;
4     height=h; width=w;
5 }
```

Special Class Operations (cont.)

- initialize Rectangle object using constructor
 - Rectangle r(1, 3, 6, 6);
 - Rectangle *s = new Rectangle(0, 0, 3, 4);
- initialize using a default constructor

Rectangle r;

A default constructor

1 Rectangle::Rectangle (int x=0, int y=0, 2 int h=0, int w=0) 3 : xlow (x), ylow(y), 4 height(h), width(w) 5 {}

Special Class Operations (cont.)

Destructor

- a member function which deletes data members
- automatically invoked when a class object goes out of scope or is deleted
- must be public
- $\scriptstyle \bullet$ its class name prefixed with \sim
- if a data member is a pointer, only the space of the pointer is returned

Special Class Operations (cont.)

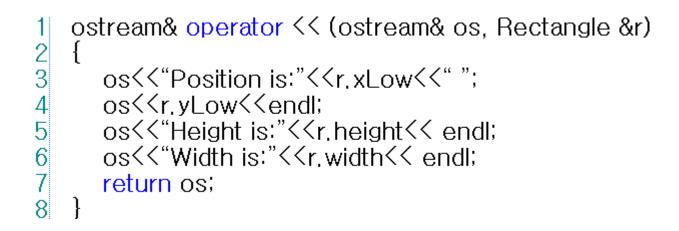
Operator overloading

- polymorphism : same operator is used for different situations
- for example, algorithm comparing two floats is different from algorithm comparing two ints
- programmer can overload operators for user-defined data types

Overloading operator == for class Rectangle

```
1 int Rectangle::operator==(const Rectangle &s )
2 {
3 if (this == &s) return true;
4 if ((xlow == s.xlow) && (ylow == s.ylow) &&
5 (height == s.height) && (width == s.width))
6 return true;
7 else return false;
8 }
```

Overloading operator << for class Rectangle



Special Class Operations (cont.)

- this
 - represents a pointer to the object that invoked a member function
 - *this represents the object

Miscellaneous Topics

Union

- reserves storage for the largest of its data members
- only one of its data members can be stored, at any time
- results in a more memory-efficient program
- static class data member
 - a global variable for its class
 - there is only one copy of a static data member and all class objects share it
 - declaration does not constitute a definition

ADTs and C++ classes

- They are similar
- Some operators in C++, when overloaded for user defined ADTs, are declared outside the C++ class definition of the ADT

Abstract data type Natural Number

- Class NaturalNumber
- 2 // An ordered subrange of the integers starting at zero and ending at
- 3 // the maximum integer (MAXINT) on the computer

4 public: 5 Natu 6 // re 7 8 Boc 9 // if

```
NaturalNumber Zero();
```

```
// returns 0
```

```
Boolean IsZero();
```

```
// if *this is 0, return TRUE; otherwise, return FALSE
```

```
NaturalNumber Add(NaturalNumber y);
```

```
// return the smaller of *this+y and MAXINT;
```

```
Boolean Equal(NaturalNumber y);
```

```
// return TRUE if *this==y; otherwise return FALSE
```

```
NaturalNumber Successor();
```

```
// if *this is MAXINT return MAXINT; otherwise return *this+1
```

```
NaturalNumber Substract(NaturalNumber y);
```

```
// if *this<y, return 0; otherwise return *this-y
```

```
20 };
```

10

11

12 13

14 15

16

17 18

19

Topics

- Abstract Data Types and the C++ Class
- Array As Abstract Data Type
- Polynomial Abstract Data Type
- Sparse Matrices
- Representation of Multidimensional Arrays
- String Abstract Data Type

Array As Abstract Data Type

- Array
 - a set of pairs <index, value>
 - ADT for array provides operations
 - retrieves a value
 - stores a value
- C++ Array
 - index starts at 0
 - C++ does not check bounds for an array index
 - Example
 - float example[n];
 - ith element: example[i] and *(example+i)

Abstract data type General Array (1/2)

Class GeneralArray { 2 3 // objects: A set of pairs <index, value> where for each value of index // in IndexSet there is a value of type float. 4 // IndexSet is a finite ordered set of one or more dimensions, 5 // for example, $\{0, ..., n-1\}$ for one dimension, // {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)} for two 6 7 8 9 // dimensions, etc. public: 10 GeneralArray(int j, RangeList list, 11 float initValue = defaultValue); 12 // The constructor GeneralArray creates a j dimensional array 13 // of floats; the range of the kth dimension is given by the 14 // kth element of list. For each index i in the index set, insert 15 $//\langle i, initValue \rangle$ into the array,

Abstract data type General Array (2/2)(cont.)

16 17 float Retrieve(index i); 18 // if (i is in the index set of the array) return the float 19 // associated with i in the array; else signal an error. 20 21 void Store(index i, float x); 22 // if (i is in the index set of the array) delete any pair of the 23 // form <i, y> present in the array and insert the new pair 24 $//\langle i, y \rangle$; else signal an error. 25 }; // end of GeneralArray

Topics

- Abstract Data Types and the C++ Class
- Array As Abstract Data Type
- Polynomial Abstract Data Type
- Sparse Matrices
- Representation of Multidimensional Arrays
- String Abstract Data Type

Polynomial Abstract Data Type

Ordered (or linear) list

- days of the week : (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday)
- years Switzerland fought in WWII: ()
- Operations on lists (a₀, a₁, ..., a_{n-1}) :
 - find the length, n, of the list
 - read the list from left to right (or reverse)
 - retrieve the i-th element, $0 \le i < n$
 - store a new value into the i-th position, $0 \le i < n$
 - insert a new element at the position i, $0 \le i \le n$
 - delete the element at position i, $0 \le i \le n$

Polynomial Abstract Data Type (cont.)

- Polynomial
 - requires ordered lists
 - the largest exponent is called degree
 - sum and product of polynomials
 - $A(x) = \sum a_i x_i$ and $B(x) = \sum b_i x_i$
 - $A(x) + B(x) = \sum (a_i + b_i)x_i$
 - $A(x) \cdot B(x) = \sum (a_i x_i \cdot \sum (b_j x_j))$

Abstract data type Polynomial

```
23456789
10
11
12
13
14
15
16
17
```

```
Class Polynomial {
  //p(x) = a0xe0 + \cdots anxen; a set of ordered pairs of <ei, ai>,
  // where ai is a nonzero float coefficient and ei is
  // a non-negative integer exponent.
public:
    Polynomial();
    // return the polynomial p(x)=0
    Polynomial Add(Polynomial poly);
    // Return the sum of the polynomials *this and poly.
   Polynomial Mult(Polynomial poly);
   // Return the product of the polynomials *this and poly.
   float Eval(float f);
   // Evaluate the polynomial *this at f and return the result.
```

Polynomial Representation

- Principle
 - unique exponents are arranged in decreasing order
- Representation 1
 - define the private data members of Polynomial
 - private :
 - int degree ; // degree≤MaxDegree
 - float coef[MaxDegree+1];
 - for Polynomial object a, n≤MaxDegree
 - a.degree=n
 - a.coef[i]=a_{n-i}, 0≤i≤n
 - a.coef[i] is the coefficient of xⁿ⁻ⁱ
 - $A(x) = a_n x^n + a_{n-1} x^{n-i} + \dots + a_1 x + a_0$
 - leads to a very simple algorithms for many of the operations on polynomials
 - wastes computer memory
 - for example, if a.degree≪MaxDegree

Polynomial Representation (cont.)

Representation 2

- define coef with size a.degree+1
- declare private data members
 - private :
 - int degree;
 - float *coef;
- add a constructor to Polynomial
 - Polynomial::Polynomial(int d)
 - {
 - degree=d;
 - coef=new float[degree+1];
- wastes space for sparse polynomials
 - for example, x¹⁰⁰⁰+1

Polynomial Representation (cont.)

- Representation 3
 - previously, exponents are represented by array indices
 - now, (non-zero) exponents are stored
 - all Polynomials will be represented in a single array called termArray
 - termArray is shared by all Polynomial objects
 - it is declared as static
 - each element in termArray is of type term
 - Class Term {
 - friend Polynomial;
 - private :
 - float coef ; // coefficient
 - int exp; // exponent
 - };
 - Class Polynomial {
 - Private:
 - Term *termArray; //size of nonzero terms
 - int capacity; //size of termArray
 - int terms; //number of nonzero terms
 - }

Adding two polynomials (1/2)

```
Polynomial Polynomial::Add(Polynomial b)
23456789
    {//Return the sum of of the polynomials *this and b.
      Polynomial c;
      int aPos=0,bPos=0;
      while ((aPos<terms)&&(bPos<b.terms))</pre>
         if((termArray[aPos].exp==b.termArray[bPos].exp){
            float t= termArray[aPos].coef+b.termArray[bPos].coef;
            if (t) c.NewTerm(t,termArray[aPos].exp);
            aPos++: bPos++:
10
         else if((termArray[aPos].exp<b.termArray[bPos].exp){</pre>
            c.NewTerm(b.termArray[bPos].coef,b.termArray[bPos].exp);
            bPos++:
         else {
15
            c.NewTerm(termArray[aPos].coef, termArray[aPos].exp);
16
17
            aPos++:
18
```

11

12 13

14

Adding two polynomials (2/2) (cont.)

//add in remaining terms of *this for (; aPos<terms; aPos++) c.NewTerm(termArray[aPos].coef, //add in remining terms of b(x) for (;bPos<b.terms;b++) c.NewTerm(b.termArray[bPos].coef, b.termArray[bPos]exp); return c;

termArray[aPos].exp);

Adding a new term

```
void Polynomial::NewTerm(const float theCoeff, const int theExp)
    // Add a new term to the end of termArray
2
3
4
5
6
7
8
9
10
      if (terms==capacity)
       {//double capacity of termArray
         capacity*=2;
         term *temp = new term[capacity]; //new array
         copy(termArray, termArray+terms, temp);
         delete[] termArray; //deallocate old memory
         termArray=temp;
11
      termArray[terms].coef=theCoeff;
12
      termArray[terms++].exp=theExp;
13
14
```

Polynomial Addition (cont.)

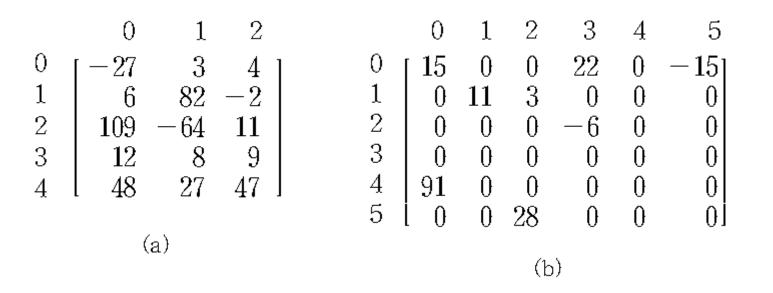
- Analysis of Add
 - m and n are number of nonzero-terms in A and B, respectively
 - the while loop of line 5 is bounded by m+n-1
 - the for loops of lines 20 and 23 are bounded by O(n+m)
 - summing up, the asymptotic computing time is O(n+m)
- Disadvantages of representing polynomials by arrays
 - space must be reused for unused polynomials
 - linked lists in chapter 4 provide a solution

Topics

- Abstract Data Types and the C++ Class
- Array As Abstract Data Type
- Polynomial Abstract Data Type
- Sparse Matrices
- Representation of Multidimensional Arrays
- String Abstract Data Type

Introduction

- Matrix with m rows and n columns
 - m×n (m by n)
 - mn elements
 - when m=n, the matrix is square
- Storing a matrix
 - two dimensional array A[m][n]
 - an element is A[i][j]
 - sparse matrix
 - store only the nonzero elements
- Matrix operations
 - creation
 - transposition
 - addition
 - multiplication



Abstract data type SparseMatrix (1/2)

Class SparseMatrix

// objects : A set of triples, <row, column, value>, where row // and column are integers and form a unique combination; value // is also an integer.

public:

SparseMatrix(int r, int c, int t);

// The constructor function creates a SparseMatrix with r rows, //c columns, and a capacity of t nonzero terms.

SparseMatrix Transpose();

// returns the SparseMatrix obtained by interchanging the // row and column value of every triple in *this SparseMatrix Add(SparseMatrix b);

// if the dimensions of a(*this) and b are the same, then

// the matrix produced by adding corresponding items,

// namely those with identical row and column values is

// returned else error.

Abstract data type SparseMatrix (2/2)(cont.)

- 19 20 21 22 23 24 25 26 27 28
- SparseMatrix Multiply(SparseMatrix b);
- // if number of columns in a (*this) equals number of
- // rows in b then the matrix d produced by multiplying a
- // by b according to the formula
- // d[i][j]= $\sum(a[i][k] \cdot b[k][j]),$
- // where d[i] [j] is the (i, j)th element, is returned.
- // k ranges from 0 to the number of columns in a-1
 // else error.

};

Sparse Matrix Representation

Representation

- use the triple <row, col, value> to represent an element
- store the triples by rows
- for each row, the column indices are in ascending order
- store the number of rows, columns, and nonzero elements

Sparse Matrix Representation (cont.)

- C++ code
 - class SparseMatrix; // forward declaration
 - class MatrixTerm {
 - friend class SparseMatrix
 - private:
 - int row, col, value;
 - };
- in class SparseMatrix
 - private:
 - int Rows, Cols, Terms;
 - MatrixTerm smArray[MaxTerms];

Sparse matrix and its transpose stored as triples

								row	col	value
							smArray[0]	0	0	15
							[1]	0	3	22
							[2]	0	5	-15
	0	1	2	3	4	5	[3]	1	1	11
0	-						[4]	1	2	3
0	[15	0	0	22	0	– 15	[5]	2	3	6
1	0	11	- 3	0	0	0	[6]	4	0	91
2	0	0	0	-6	0	θ	[7]	5	2	28
3	Ŏ	Ő	Ŏ	ŏ	Ŏ	ŏ		(a)		
4	91	0	Ŏ	ŏ	Ő	ŏ		row	col	value
							smArray[0]	0	0	15
5	l 0	0	28	0	0	01	[1]	0	4	91
							[2]	1	1	11
			(1))			[3]	2	1	3
							[4]	2	5	28
							[5]	3	0	22

(b)

3

5

[6]

[7]

2

0

-6

-15

Transposing a Matrix

- An element at [i] [j] will be at [j] [i]
 - for (each row i)

take element (i, j, value) and store it in (j, i, value) of the transpose;

- example
 - $(0, 0, 15) \rightarrow (0, 0, 15)$
 - $(0, 3, 22) \rightarrow (3, 0, 22)$
 - $(0, 5, -15) \rightarrow (5, 0, -15)$
 - $(1, 1, 11) \rightarrow (1, 1, 11)$
- need to insert many new triples, elements are moved down very often
- Find the elements in the order for (all elements in column j) place element (i, j, value) in position (j, i, value);

Transposing a matrix

```
SparseMatrix SparseMatrix::Transpose()
// return the transpose of a (*this)
```

23456789

10

11

12

13

14 15

16

17 18

19

```
SparseMatrix b(cols,rows,terms); //capacity of b.smArray is terms
if (terms > 0) // nonzero matrix
```

```
int CurrentB = 0;
for (int c = 0; c < cols; c++) // transpose by columns
for (int i = 0; i < terms; i++)
    // find and move terms in column c
    if (smArray[i].col ==c) {
        b.smArray[CurrentB].row = c;
        b.smArray[CurrentB].col = smArray[i].row;
        b.smArray[CurrentB].value = smArray[i].value;
        CurrentB++;
    }
} // end of if (Terms > 0)
return b;
} // end of transpose
```

Transposing a Matrix (cont.)

- Analysis of transpose
 - the number of iterations of the for loop at line 9 is terms
 - the number of iterations of the for loop at line 8 is columns
 - total time is O(terms·columns)
 - total space is O(space for a and b)
- Using two-dimensional arrays for(int j=0; j<columns; j++) for(int i=0; i<rows; i++) B[j][i]=A[i][j];
 - total time is O(rows·columns)
- Comparison
 - O(terms·columns) = O(rows·columns²)>O(rows·columns)
 - space-time trade-off

Transposing a Matrix (cont.)

- FastTranspose algorithm
 - determine the number of elements in each column of a
 - →the number of elements in each row of b
 - →starting point of each of b's rows
 - move elements of a one by one into their correct position in b

Transposing a Matrix (cont.)

	row	col	value	
smArray[0]	0	0	15	
[1]	0	4	91	
[2]	1	1	11	
[3]	2	1	3	
[4]	2	5	28	
[5]	3	0	22	
[6]	3	2	-6	
[7]	5	0	-15	

values fo	r F	igure	e ma	atrix			
		[0]	[1]	[2]	[3]	[4]	[5]
RowSize	=	2	1	2	2	0	1
RowStart	=	Ο	2	3	5	7	7

- asymptotic complexity
 - there are four unnested for loops
 - O(columns+terms)
 - if terms \rightarrow rows·columns, O(rows·columns)
 - if terms << rows·columns, less than O(rows·columns)
- requires space for RowSize and RowStart

Transposing a matrix faster (1/2)

SparseMatrix SparseMatrix::FastTranspose() {//Return the transpose of *this in O(terms+cols) time. 2 3 5 6 7 8 9 10 SparseMatrix b(cols,rows,terms); if (terms>0) {//nonzero matrix int *rowSize=new int[cols]; int *rowStart=new int[cols]; //compute rowSize[i]=number of terms in row i of b fill(rowSize,rowSize+cols,0);//initialize for (i=0; i<terms; i++) rowSize[smArray[i].col]++;</pre> 11 //rowStart[i]=starting position of row i in b 12 rowStart[0]=0; for (i=1; i<cols; i++) rowStart[i]=rowStart[i-1]+rowSize[i-1];</pre> 13

Transposing a matrix faster (2/2) (cont.)

for (i=0; i<terms; i++) 14 15 {//copy from *this to b int j=rowStart[smArray[i].col]; 16 17 b.smArray[j].row=smArray[i].col; 18 b.smArray[j].col=smArray[i].row; b.smArray[j].value=smArray[i].value; 19 rowStart[smArray[i].col]++; 20 21 }//end of for 22 delete[] rowSize; 23 delete[] rosStart; 24 }//end of if 25 return b: 26

Matrix Multiplication

 Definition : Given a and b, where a is m×n and b is n×p, the product matrix d has dimension m×p.

$$d_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}$$

for $0 \le i \le m$ and $0 \le j \le p$.

Change the size of a 1dimensional array

```
1 void ChangeSize1D(const int newSize)
2 {//Change the size of smArray to newSize.
3 if (newSize<terms)
4 throw "New size must be >= number of terms";
5 MatrixTerm *temp = new MatrixTerm[newSize];
6 //new Array
7 copy(smArray, smArray + terms, temp);
8 delete[] smArray; //deallocate old memory
9 smArray=temp;
10 capacity = newSize;
11 }
```

Storing a matrix term

```
1 void SparseMatrix::StoreSum ( const int sum, const int r, const int c)
2 {//If sum != 0, then it along with its row and column
3 //position are stored as the last term in *this.
4 if (sum!=0){
5 if (terms==capacity)
6 ChangeSize 1D(2*capacity); //double size
7 smArray[terms].row=r;
8 smArray[terms].col=c;
9 smArray[terms++].value=sum;
10 }
11 }
```

Matrix Multiplication (cont.)

- currRowA : currently being multiplied with the columns of b
- currRowBegin : position in a of the first element of currRowA
- currCoIB : currently being multiplied with currRowA
- currRowIndex, currColIndex : examine successive elements of currRowA, currColB

Multiplying sparse matrices (1/3)

- SparseMatrix SparseMatrix::Multiply(SparseMatrix b)
- {//Return the product of the sparse matrices *this and b.
 - if (cols!=b.rows) throw "Imcompatible matrices";
- SparseMatrix bXpose = b.FastTranspose();
- SparseMatrix d(rows,b,cols,0);
- int currRowIndex=0, currRowBegin=0, currRowA=smArray[0].row;
 - //set boundary conditions
- if (terms==capacity) ChangeSize1D(terms+1);
- 23456789 bXpose.ChangeSize1D(bXpose.terms+1);
- smArray[terms].row=rows; 10
- bXpose.smArray[b.terms].row=b.cols; 11
- bXpose.smArray[b.terms].col=-1; 12
- 13 int sum=0:
- while (currRowIndex<terms) 14
- 15 {//generate row currentRowA of d
 - int currColB=bXpose.smArray[0].row;
- int currCollndex=0: 17

18

16

Multiplying sparse matrices (2/3) (cont.)

19 20

21 22

23

24

25

26

27

28

29 30

31

32

33

34

35

36

37

while (currColIndex <= b.terms)</pre> {//multiply row currRowA of *this by column currColb of b if (smArray[currRowIndex].row!=currRowA) {//end of row currRowA d.storeSum(sum, currRowA, currColB); sum=0: //reset sum currRowIndex = currRowBegin; //advance to next column while (bXpose.smArray[currCollndex].row==currColB) currCollndex++; currColB=bXpose.smArray[currColIndex].row; else if (bXpose.smArray[currCollndex].row!=currColB) {//end of column currColB of b d.StoreSum(sum,currRowA,currColb); sum=0; //reset sum //set to multiply row currRowA with next Column currRowIndex = currRowBegin; currColB=bXpose.smArray[currColIndex].row;

Multiplying sparse matrices (3/3) (cont.)

38	else
39	if (smArray[currRowIndex].col <
40	bXpose.smArray[currColIndex].col)
41	currRowIndex++; //advance to next term in row
42	else if (smArray[currRowIndex].col ==
43	bXpose.smArray[currColIndex].col)
44	{//add to sum
45	sum += smArray[currRowIndex].value *
46	bXpose, smArray[currColIndex], value;
47	currRowIndex++; currColIndex++;
48	}
49	else currColIndex++; // next term in currColB
50	}//end of while(currColindex <= b.terms)
51	while (smArray[currRowIndex].row == currRowA)
52	//advance to next row
53	currRowIndex++;
54	currRowBegin = currRowIndex;
55	currRowA = smArray[currRowIndex].row;
56	}// end of while (currRowIndex < terms)
57	return d;
58	
00	J

Analysis of Multiply

- Line 3-13 : O(b.cols+b.terms)
- Line 14-56 : O(a.rows)
- Line 19-50 : O(b.cols+b.cols*t_r+b.terms.)
 t_r=number of terms in row r of a
- Line 51-53 : O(t_r)
- Line 14-56 : O(b.cols*t_r+b.terms)
- Overall time for this loop : O(∑_r(b.cols*t_r+b.terms))=O(b.cols*a.terms+ a.rows*b.terms)

Analysis of Multiply (cont.)

Arrays are used. for (int i=0; i<a.rows; i++) for (int i=0; i < b.cols; i++) sum=0; for (int k=0; k<a.cols; k++) sum+=a[i][l]*b[k][i]; c[i][i]=sum; Time for this : O(a.rows*a.cols*b.cols)

Topics

- Abstract Data Types and the C++ Class
- Array As Abstract Data Type
- Polynomial Abstract Data Type
- Sparse Matrices
- Representation of Multidimensional <u>Arrays</u>
- String Abstract Data Type

- A[p₁ ... q₁][p₂ ... q₂] ... [p_n ... q_n], Where p_i ... q_i is the range of index values in dimension i
 - the number of elements $\prod_{i=1}^{n} (q_i p_i + 1)$
 - an element A[i₁][i₂] ... [i_n] is mapped onto a position in a one-dim C++ array

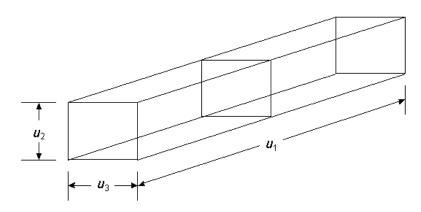
- Row major order example
 - A[4..5][2..4][1..2][3..4]
 - 2*3*2*2 = 24 elements
 - stored as A[4][2][1][3], A[4][2][1][4], ..., A[5][4][2][3], A[5][4][2][4]
 - indices are increasing : lexicographic order
 - translate to locations in the one-dim array
 - A[4][2][1][3] \rightarrow position 0
 - A[4][2][1][4] → position 1
 - A[5][4][2][4] → position 23

	Representation of Multidimensional Arrays (cont.)									
 Translation for an n-dim array assume p_i=0 and q_i=u_i-1 one-dim array A[u₁] 										
	array element:	A[0]	A[1]	A[2] …	A[i]	•••	A[u ₁ -1]			
	address:	α	a+1	a+2 …	a+i	•••	α+u₁-1			

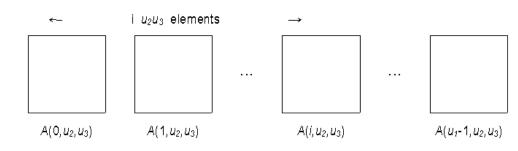
- two-dim array A[u₁][u₂]
 - let α be the address of A[0][0]
 - A[i][0] : α+i*u₂
 - A[i][j] : α+i*u₂+j

	col 0	col 1		col u ₂ -1	
row 0		<u> </u>		X	
row 1	X	X	.	x	
row 2	X	X	•••	x	
row u ₁ -1	х	х	.	x	
		(a)		ľ	
u ₂ elements	u ₂ elements	6			
		1			
row 0	row 1		rc	w i	row <i>u_i-1</i>
<i>← i*u</i> ₂	elem	ents	\rightarrow		

- three-dim array A[u₁][u₂][u₃]
 - the address of A[0][0][0]: α
 - A[i][0][0] : α+iu₂u₃
 - A[i][j][k] :
 α+iu₂u₃+ju₃+k



(a) 3-dimensional array $A[u_1][u_2][u_3]$ regarded as u_1 2-dimensional array



 (b) Sequential row major representation of a 3-demensional array. Each 2-dimensional array is represented as in Figure 2.6

- n-dim array $A[u_1][u_2] \dots [u_n]$
 - the address of A[0][0] ... [0] : α
 - $A[i_1][0], \dots, [0]$: **a+** $i_1 u_2 u_3 \cdots u_n$
 - $A[i_1][i_2][0], \dots, [0]$: $a + i_1 u_2 u_3 \cdots u_n + i_2 u_3 u_4 \cdots u_n$
 - $A[i_1][i_2], \dots, [i_n]$:
 - $a + i_1 u_2 u_3 \cdots u_n$
 - + $i_2 u_3 u_4 \cdots u_n$
 - + $i_3 u_4 u_5 \cdots u_n$

•

$$\begin{array}{c} + i_{n-1}u_n \\ + i_n \\ \alpha + \sum_{j=1}^n i_j a_j \quad where \begin{cases} a_j = \prod_{k=j+1}^n u_k \\ a_n = 1 \end{cases}, \quad 1 \le j < n \end{cases}$$

Topics

- Abstract Data Types and the C++ Class
- Array As Abstract Data Type
- Polynomial Abstract Data Type
- Sparse Matrices
- Representation of Multidimensional Arrays
- String Abstract Data Type

String Abstract Data Type

String ADT

■ S=s₀, ..., s_{n-1}

where $s_{\scriptscriptstyle i}$ are characters and n is the length of the string

- if n=0, S is an empty or null string
- operations for strings

C++ string

- string literal constants (e.g., "abc")
- array of chars : string characters + null character
- assigned to variables of type char* (e.g., char* str="abc";)
- ith character of str : str[i]

Abstract data type String (1/2)

```
class String
 2
3
    // objects : A finite ordered set of zero or more characters.
 4
5
6
7
8
9
       public:
           String(char *init, int m);
           // Constructor that initializes *this to string init of length m
           int operator==(String t);
           // if (the string represented by *this equals t)
10
           // return 1 (TRUE)
           // else return 0 (FALSE)
11
12
13
           int operator!();
           // if *this is empty then return 1 (TRUE);
14
           // else return 0 (FALSE)
15
16
17
           int Length();
           // return the number of characters in *this
18
19
20
           String Concat(String t);
           // return a string whose element are those *this followed by
21
22
           // those of t.
```

Abstract data type String (2/2) (cont.)

23		
24		String Substr(int i, int j);
25		// return a string containing j characters of *this at positions
26		// i, i+1,, i+j-1 if these are valid positions of *this;
27		// otherwise, return the empty string,
28		
29		int Find (String pat);
30		// return an index i such that pat matches the substring of
31		// *this that begins at position i.
32		// Return -1 if pat is either empty or not a substring of *this
33	}:	
00	,	

String Pattern Matching

Function Find

- two strings s and pat : pat is searched for in s
- invocation : s.Find(pat)
- return i : pat matches s beginning at position i
- return -1 : pat is empty or is not a substring of s
- Implementation
 - representation of strings
 - private

char* str

- sequentially consider each position of s
- positions to the right of position LengthS-LengthP need not be considered

Exhaustive pattern matching

```
int String::Find(String pat)
2
    {//Return -1 if pat does not occur in *this;
3
    //otherwise return the first position in *this, where pat begins.
4
5
6
7
8
9
       for (int start=0; start<=Length()-pat.Length(); start++)
       {//check for match beginning at str[start]
          int i;
          for (j=0; j<pat.Length()&&str[start+j]==pat.str[j];j++)</pre>
          if(j==pat.Length())return start; //match found
          //no match at positino start
10
11
       return -1;//pat is empty of does not occur in s
    }
12
13
```

String Pattern Matching (cont.)

the complexity is O(LengthP·LengthS)

- the number of execution of *while* loop to check *p==*s ≤ LengthP
- the number of execution of *while* loop by incrementing i < LengthS</p>

String pattern Matching : The Knuth-Morris-Pratt Algorithm

- We would like an algorithm that works in O(*lengthP*+*lengthS*) time.
- Knuth, Morris, and Pratt have developed a pattern matching algorithm that has linear complexity.

String pattern Matching : The Knuth-Morris-Pratt Algorithm (cont.)

Definition : If p=p₀p₁·····p_{n-1} is a pattern, then its failure function, f, is defined as

 $f(j) = \begin{cases} \text{largest } k < j \text{ such that } p_0 \dots p_k = p_{j-k} \dots p_j \\ (\text{if such a } k \ge 0 \text{ exists}) \\ -1 & (\text{otherwise}) \end{cases}$

String pattern Matching : The Knuth-Morris-Pratt Algorithm (cont.)											
$f(j) = \begin{cases} \text{largest } k < j \text{ such that } p_0 \dots p_k = p_{j-k} \dots p_j \\ (\text{if such a } k \ge 0 \text{ exists}) \\ -1 & (\text{otherwise}) \end{cases}$										_k p _j wise)	
	j Pat f	0 a -1	1 b -1	2 c -1	3 a 0	4 b 1	5 c 2	6 a 3	7 c -1	8 a 0	9 b 1

String pattern Matching : The Knuth-Morris-Pratt Algorithm (cont.)

j	0	1	2	3	4	5	6	7	8	9
Pat	а	b	С	а	b	С	а	С	а	b
f	-1	-1	-1	0	1	2	3	-1	0	1

- If a partial match is found such that s_{i-j}...s_{i-1} = p₀...p_{j-1} and s_i≠p_j then matching may be resumed by comparing s_i and p_{f(j-1)+1} if j≠0.
- If j=0, then we may continue by comparing s_{i+1} and p₀

Pattern-matching with a failure function

```
2
3
5
6
7
8
9
10
11
12
13
14
15
16
```

```
int String∷FastFind (String pat)
{//Determine if pat is a substring of s.
  int posP=0, posS=0;
  int lengthP=pat.Length(), lengthS=Length();
  while((posP<lengthP) && (posS<lengthS))
     if (pat.str[posP] == str[posS]){//character match
        posP++; posS++;
     else
        if(posP==0)
           posS++;
        else posP=pat.f[posP-1]+1;
  if (posP<lengthP) return -1;
  else return posS-legnthP;
```

String pattern Matching : The Knuth-Morris-Pratt Algorithm (cont.)

We can compute the failure function in O(lengthP) time, then the entire patternmatching process will have a computing time proportional to the sum of the lengths of the string and pattern.

$$f(j) = \begin{cases} -1 & (\text{if } j = 0) \\ f^{m}(j-1) + 1 & (\text{where m is the least integer k for which } p_{f^{k}(j-1)+1} = p_{j}) \\ -1 & (\text{if there is no k satisfying the above}) \end{cases}$$

(Note that $f^1(j)=f(j)$ and $f^m(j)=f(f^{m-1}(j))$).

Computing the failure function

```
void String::FailureFunction()
23456789
    {//Compute the failure function for the pattern *this.
       int lengthP=Length();
       f[0] = -1;
       for (int j=1; j<lengthP; j++) //compute f[j]
           int i=f[j-1];
           while ( (*str+j) != *(str+i+1) ) && (i>=0) )
              i=f[i];
10
           if ( *(str+j) == *(str+i+1))
              f[j]=i+1;
11
           else f[j] = -1;
12
13
14
```