
1

Arrays

Introduction to Data Structures

Kyuseok Shim

SoEECS, SNU.

2

Topics

Abstract Data Types and the C++ Class

Array As Abstract Data Type

Polynomial Abstract Data Type

Sparse Matrices

Representation of Multidimensional
Arrays

String Abstract Data Type

3

Topics

Abstract Data Types and the C++ Class

Array As Abstract Data Type

Polynomial Abstract Data Type

Sparse Matrices

Representation of Multidimensional
Arrays

String Abstract Data Type

C++ Class
Represents an ADT
Consists of four components

class name
data members
member functions
levels of program access

control the level of access to data members and
member functions
public : anywhere
private : within its class

a function or a class that is a friend
protected : within its class

friend its subclasses

4

Definition of the C++ class
Rectangle

5

Data Abstraction and
Encapsulation in C++

Data encapsulation of C++ class

all data members are private (or
protected)

external access to data members are by
member functions

member functions
that will be invoked externally are public

all others are private (or protected)

6

Data Abstraction and
Encapsulation in C++(cont.)

Separation of specification and
implementation of member functions

specification (function prototype)
name of functions
type of function arguments

type of function result Separation of
specification and implementation of member
functions

specification (function prototype)
name of functions
type of function arguments
type of function result

7

Data Abstraction and
Encapsulation in C++(cont.)

specification characteristics
inside the public portion of the class

implementation-independent description
using comments

placed separately in a header file

implementation
placed in a source file of the same name

can be included inside its class definition:
treated as an inline function

8

Implementation of
operations on Rectangle

9

Declaring class objects

in the same way as variables

Invoking member functions

using component selection operators
dot(.) : direct selection

arrow : indirect selection through a pointer

10

11

A C++ code fragment demonstrating how
Rectangle objects are declared and
member functions invoked

Special Class Operations

Constructor
a member function which initializes data
members of an object
If provided for a class, automatically
executed when an object of that class is
created
must be public
the name must be identical to the name of
the class
must not specify a return type or return a
value

12

Definition of a constructor
for Rectangle

13

Special Class Operations
(cont.)

initialize Rectangle object using
constructor

Rectangle r(1, 3, 6, 6) ;

Rectangle *s = new Rectangle(0, 0, 3,
4) ;

initialize using a default constructor

Rectangle r ;

14

A default constructor

15

Special Class Operations
(cont.)

Destructor
a member function which deletes data
members

automatically invoked when a class
object goes out of scope or is deleted

must be public

its class name prefixed with ~

if a data member is a pointer, only the
space of the pointer is returned

16

Special Class Operations
(cont.)

Operator overloading

polymorphism : same operator is used
for different situations

for example, algorithm comparing two
floats is different from algorithm
comparing two ints

programmer can overload operators for
user-defined data types

17

Overloading operator == for
class Rectangle

18

Overloading operator << for
class Rectangle

19

Special Class Operations
(cont.)

this

represents a pointer to the object that
invoked a member function

*this represents the object

20

Miscellaneous Topics

Union
reserves storage for the largest of its data
members
only one of its data members can be stored, at
any time
results in a more memory-efficient program

static class data member
a global variable for its class
there is only one copy of a static data member
and all class objects share it
declaration does not constitute a definition

21

ADTs and C++ classes

They are similar

Some operators in C++, when
overloaded for user defined ADTs,
are declared outside the C++ class
definition of the ADT

22

Abstract data type Natural
Number

23

24

Topics

Abstract Data Types and the C++ Class

Array As Abstract Data Type

Polynomial Abstract Data Type

Sparse Matrices

Representation of Multidimensional
Arrays

String Abstract Data Type

Array As Abstract Data Type
Array

a set of pairs <index, value>
ADT for array provides operations
retrieves a value
stores a value

C++ Array
index starts at 0
C++ does not check bounds for an array index
Example
float example[n];
ith element: example[i] and *(example+i)

25

Abstract data type General
Array (1/2)

26

Abstract data type General
Array (2/2)(cont.)

27

28

Topics

Abstract Data Types and the C++ Class

Array As Abstract Data Type

Polynomial Abstract Data Type

Sparse Matrices

Representation of Multidimensional
Arrays

String Abstract Data Type

Polynomial Abstract Data
Type

Ordered (or linear) list
days of the week : (Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday)
years Switzerland fought in WWII : ()

Operations on lists (a0, a1, ..., an-1) :
find the length, n, of the list
read the list from left to right (or reverse)
retrieve the i-th element, 0≤i<n
store a new value into the i-th position, 0≤i<n
insert a new element at the position i, 0≤i<n
delete the element at position i, 0≤i<n

29

Polynomial Abstract Data
Type (cont.)

Polynomial

requires ordered lists

the largest exponent is called degree

sum and product of polynomials

A(x) = ∑aixi and B(x) = ∑bixi

A(x) + B(x) = ∑(ai + bi)xi

A(x) · B(x) = ∑(aixi ·∑(bjxj))

30

Abstract data type
Polynomial

31

Polynomial Representation
Principle

unique exponents are arranged in decreasing order

Representation 1
define the private data members of Polynomial

private :
int degree ; // degree≤MaxDegree
float coef[MaxDegree+1] ;

for Polynomial object a, n≤MaxDegree
a.degree=n
a.coef[i]=an-i, 0≤i≤n

a.coef[i] is the coefficient of xn-i

A(x)=anx
n+an-1x

n-i+...+a1x+a0

leads to a very simple algorithms for many of the operations on
polynomials
wastes computer memory

for example, if a.degree≪MaxDegree

32

Polynomial Representation
(cont.)

Representation 2
define coef with size a.degree+1
declare private data members

private :
int degree ;
float *coef ;

add a constructor to Polynomial
Polynomial::Polynomial(int d)
{

degree=d ;
coef=new float[degree+1] ;

wastes space for sparse polynomials
for example, x1000+1

33

Polynomial Representation
(cont.)

Representation 3
previously, exponents are represented by array indices
now, (non-zero) exponents are stored
all Polynomials will be represented in a single array called termArray

termArray is shared by all Polynomial objects
it is declared as static
each element in termArray is of type term

Class Term {
friend Polynomial ;
private :

float coef ; // coefficient
int exp ; // exponent

} ;

Class Polynomial {
Private:
Term *termArray; //size of nonzero terms
int capacity; //size of termArray
int terms; //number of nonzero terms
}

34

Adding two polynomials
(1/2)

35

Adding two polynomials
(2/2) (cont.)

36

Adding a new term

37

Polynomial Addition (cont.)
Analysis of Add

m and n are number of nonzero-terms in A and B,
respectively
the while loop of line 5 is bounded by m+n-1
the for loops of lines 20 and 23 are bounded by
O(n+m)
summing up, the asymptotic computing time is
O(n+m)

Disadvantages of representing polynomials by
arrays

space must be reused for unused polynomials
linked lists in chapter 4 provide a solution

38

39

Topics

Abstract Data Types and the C++ Class

Array As Abstract Data Type

Polynomial Abstract Data Type

Sparse Matrices

Representation of Multidimensional
Arrays

String Abstract Data Type

Introduction
Matrix with m rows and n columns

m×n (m by n)
mn elements
when m=n, the matrix is square

Storing a matrix
two dimensional array A[m][n]

an element is A[i][j]

sparse matrix
store only the nonzero elements

Matrix operations
creation
transposition
addition
multiplication

40

Two matrices

41

Abstract data type
SparseMatrix (1/2)

42

Abstract data type
SparseMatrix (2/2)(cont.)

43

Sparse Matrix
Representation

Representation

use the triple <row, col, value> to
represent an element

store the triples by rows

for each row, the column indices are in
ascending order

store the number of rows, columns, and
nonzero elements

44

Sparse Matrix
Representation (cont.)

C++ code
class SparseMatrix; // forward declaration
class MatrixTerm {
friend class SparseMatrix
private:

int row, col, value;
};

in class SparseMatrix
private:

int Rows, Cols, Terms;
MatrixTerm smArray[MaxTerms];

45

Sparse matrix and its
transpose stored as triples

46

Transposing a Matrix
An element at [i][j] will be at [j][i]
for (each row i)

take element (i, j, value) and store it in (j, i, value) of the
transpose;
example

(0, 0, 15) → (0, 0, 15)
(0, 3, 22) → (3, 0, 22)
(0, 5, -15) → (5, 0, -15)
(1, 1, 11) → (1, 1, 11)

need to insert many new triples, elements are moved
down very often

Find the elements in the order
for (all elements in column j)

place element (i, j, value) in position (j, i, value);

47

Transposing a matrix

48

Transposing a Matrix (cont.)
Analysis of transpose

the number of iterations of the for loop at line 9 is terms
the number of iterations of the for loop at line 8 is columns
total time is O(terms·columns)
total space is O(space for a and b)

Using two-dimensional arrays
for(int j=0; j<columns; j++)

for(int i=0; i<rows; i++)
B[j][i]=A[i][j];

total time is O(rows·columns)

Comparison
O(terms·columns) = O(rows·columns2)>O(rows·columns)
space-time trade-off

49

Transposing a Matrix (cont.)

FastTranspose algorithm

determine the number of elements in
each column of a
→the number of elements in each row of b

→starting point of each of b's rows

move elements of a one by one into
their correct position in b

50

Transposing a Matrix (cont.)

values for Figure matrix

asymptotic complexity
there are four unnested for loops

O(columns+terms)

if terms → rows·columns, O(rows·columns)

if terms << rows·columns, less than
O(rows·columns)

requires space for RowSize and
RowStart

51

Transposing a matrix faster
(1/2)

52

Transposing a matrix faster
(2/2) (cont.)

53

Matrix Multiplication

Definition : Given a and b, where a is
m×n and b is n×p, the product
matrix d has dimension m×p.

for 0<=i<m and 0<=j<p.

54

Change the size of a 1-
dimensional array

55

Storing a matrix term

56

Matrix Multiplication (cont.)

currRowA : currently being multiplied
with the columns of b

currRowBegin : position in a of the
first element of currRowA

currColB : currently being multiplied
with currRowA

currRowIndex, currColIndex : examine
successive elements of currRowA,
currColB 57

Multiplying sparse matrices
(1/3)

58

Multiplying sparse matrices
(2/3) (cont.)

59

Multiplying sparse matrices
(3/3) (cont.)

60

Analysis of Multiply

Line 3-13 : O(b.cols+b.terms)

Line 14-56 : O(a.rows)

Line 19-50 : O(b.cols+b.cols*tr+b.terms.)

tr=number of terms in row r of a

Line 51-53 : O(tr)

Line 14-56 : O(b.cols*tr+b.terms)

Overall time for this loop :
O(∑r(b.cols*tr+b.terms))=O(b.cols*a.terms+
a.rows*b.terms)

61

Analysis of Multiply (cont.)

Arrays are used.

for (int i=0; i<a.rows; i++)

for (int j=0; j<b.cols; j++){

sum=0;

for (int k=0; k<a.cols; k++)

sum+=a[i][l]*b[k][j];

c[i][j]=sum;

Time for this : O(a.rows*a.cols*b.cols)

62

63

Topics

Abstract Data Types and the C++ Class

Array As Abstract Data Type

Polynomial Abstract Data Type

Sparse Matrices

Representation of Multidimensional
Arrays

String Abstract Data Type

Representation of
Multidimensional Arrays

A[p1 ... q1][p2 ... q2] ... [pn ... qn],
Where pi ... qi is the range of index
values in dimension i

the number of elements : (qi-pi+1)

an element A[i1][i2] ... [in] is mapped
onto a position in a one-dim C++ array

64

Representation of
Multidimensional Arrays (cont.)

Row major order example
A[4..5][2..4][1..2][3..4]
2*3*2*2 = 24 elements
stored as A[4][2][1][3], A[4][2][1][4],
..., A[5][4][2][3], A[5][4][2][4]
indices are increasing : lexicographic order
translate to locations in the one-dim array

A[4][2][1][3] → position 0
A[4][2][1][4] → position 1
A[5][4][2][4] → position 23

65

Representation of
Multidimensional Arrays (cont.)

Translation for an n-dim array

assume pi=0 and qi=ui-1

one-dim array A[u1]

66

Representation of
Multidimensional Arrays (cont.)

two-dim array
A[u1][u2]

let α be the address
of A[0][0]

A[i][0] : α+i*u2

A[i][j] : α+i*u2+j

67

Representation of
Multidimensional Arrays (cont.)

three-dim array
A[u1][u2][u3]

the address of
A[0][0][0] : α

A[i][0][0] : α+iu2u3

A[i][j][k] :
α+iu2u3+ju3+k

68

Representation of
Multidimensional Arrays (cont.)

69

70

Topics

Abstract Data Types and the C++ Class

Array As Abstract Data Type

Polynomial Abstract Data Type

Sparse Matrices

Representation of Multidimensional
Arrays

String Abstract Data Type

String Abstract Data Type
String ADT

S=s0, ..., sn-1
where si are characters and n is the length of the string

if n=0, S is an empty or null string

operations for strings

C++ string
string literal constants (e.g., "abc")
array of chars : string characters + null character
assigned to variables of type char* (e.g., char*
str="abc";)
ith character of str : str[i]

71

Abstract data type String
(1/2)

72

Abstract data type String
(2/2) (cont.)

73

String Pattern Matching
Function Find

two strings s and pat : pat is searched for in s
invocation : s.Find(pat)
return i : pat matches s beginning at position i
return -1 : pat is empty or is not a substring of s

Implementation
representation of strings

private
char* str

sequentially consider each position of s
positions to the right of position LengthS-LengthP
need not be considered

74

Exhaustive pattern matching

75

String Pattern Matching
(cont.)

the complexity is O(LengthP·LengthS)

the number of execution of while loop to
check *p==*s ≤ LengthP

the number of execution of while loop
by incrementing i < LengthS

76

String pattern Matching : The
Knuth-Morris-Pratt Algorithm

We would like an algorithm that works
in O(lengthP+lengthS) time.

Knuth, Morris, and Pratt have
developed a pattern matching
algorithm that has linear complexity.

77

String pattern Matching : The
Knuth-Morris-Pratt Algorithm
(cont.)

Definition : If p=p0p1……pn-1 is a
pattern, then its failure function, f, is
defined as

78

String pattern Matching : The
Knuth-Morris-Pratt Algorithm
(cont.)

79

j 0 1 2 3 4 5 6 7 8 9

Pat a b c a b c a c a b

f -1 -1 -1 0 1 2 3 -1 0 1

String pattern Matching : The
Knuth-Morris-Pratt Algorithm
(cont.)

80

j 0 1 2 3 4 5 6 7 8 9

Pat a b c a b c a c a b

f -1 -1 -1 0 1 2 3 -1 0 1

If a partial match is found such that
si-j…si-1 = p0…pj-1 and si≠pj then
matching may be resumed by
comparing si and pf(j-1)+1 if j≠0.

If j=0, then we may continue by
comparing si+1 and p0

Pattern-matching with a failure
function

81

String pattern Matching : The
Knuth-Morris-Pratt Algorithm
(cont.)

We can compute the failure function in
O(lengthP) time, then the entire pattern-
matching process will have a computing
time proportional to the sum of the lengths
of the string and pattern.

(Note that f1(j)=f(j) and fm (j)=f(fm -1(j))).

82

Computing the failure function

83

	Arrays
	Topics
	Topics
	C++ Class
	Definition of the C++ class Rectangle
	Data Abstraction and Encapsulation in C++
	Data Abstraction and Encapsulation in C++(cont.)
	Data Abstraction and Encapsulation in C++(cont.)
	Implementation of operations on Rectangle
	Declaring class objects
	A C++ code fragment demonstrating how Rectangle objects are declared and member functions invoked
	Special Class Operations
	Definition of a constructor for Rectangle
	Special Class Operations (cont.)
	A default constructor
	Special Class Operations (cont.)
	Special Class Operations (cont.)
	Overloading operator == for class Rectangle
	Overloading operator << for class Rectangle
	Special Class Operations (cont.)
	Miscellaneous Topics
	ADTs and C++ classes
	Abstract data type Natural Number
	Topics
	Array As Abstract Data Type
	Abstract data type General Array (1/2)
	Abstract data type General Array (2/2)(cont.)
	Topics
	Polynomial Abstract Data Type
	Polynomial Abstract Data Type (cont.)
	Abstract data type Polynomial
	Polynomial Representation
	Polynomial Representation (cont.)
	Polynomial Representation (cont.)
	Adding two polynomials (1/2)
	Adding two polynomials (2/2) (cont.)
	Adding a new term
	Polynomial Addition (cont.)
	Topics
	Introduction
	Two matrices
	Abstract data type SparseMatrix (1/2)
	Abstract data type SparseMatrix (2/2)(cont.)
	Sparse Matrix Representation
	Sparse Matrix Representation (cont.)
	Sparse matrix and its transpose stored as triples
	Transposing a Matrix
	Transposing a matrix
	Transposing a Matrix (cont.)
	Transposing a Matrix (cont.)
	Transposing a Matrix (cont.)
	Transposing a matrix faster (1/2)
	Transposing a matrix faster (2/2) (cont.)
	Matrix Multiplication
	Change the size of a 1-dimensional array
	Storing a matrix term
	Matrix Multiplication (cont.)
	Multiplying sparse matrices (1/3)
	Multiplying sparse matrices�(2/3) (cont.)
	Multiplying sparse matrices (3/3) (cont.)
	Analysis of Multiply
	Analysis of Multiply (cont.)
	Topics
	Representation of Multidimensional Arrays
	Representation of Multidimensional Arrays (cont.)
	Representation of Multidimensional Arrays (cont.)
	Representation of Multidimensional Arrays (cont.)
	Representation of Multidimensional Arrays (cont.)
	Representation of Multidimensional Arrays (cont.)
	Topics
	String Abstract Data Type
	Abstract data type String (1/2)
	Abstract data type String (2/2) (cont.)
	String Pattern Matching
	Exhaustive pattern matching
	String Pattern Matching (cont.)
	String pattern Matching : The Knuth-Morris-Pratt Algorithm
	String pattern Matching : The Knuth-Morris-Pratt Algorithm (cont.)
	String pattern Matching : The Knuth-Morris-Pratt Algorithm (cont.)
	String pattern Matching : The Knuth-Morris-Pratt Algorithm (cont.)
	Pattern-matching with a failure function
	String pattern Matching : The Knuth-Morris-Pratt Algorithm (cont.)
	Computing the failure function

