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5.1 Introduction 
5.1.1 Terminology 

Tree : a finite set of one or more nodes 
there is a specially designated node called the root 

the remaining nodes are partitioned into n≥0 disjoin
t sets T1, ..., Tn, where each of these sets is a tree. 
T1, ..., Tn are called the subtrees of the root. 

Degree of a node : the number of subtrees of 
a node 

Leaf (terminal node) : a node that has degree 
zero 

Nonterminals : the other nodes 

Children, parent, siblings 



5.1.1 Terminology

Degree of a tree : the maximum of degree of th
e nodes in the tree 

Ancestors of a node : all the nodes along the p
ath from the root to that node 

Level of a node : the distance from the root+1 

Height (or depth) of a tree : the maximum level 
of any node in the tree 
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5.1.1 Terminology
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Figure 5.2 : A sample tree 



5.1.2 Representation of Trees 

List representation 

The tree of Figure 5.2 

(A(B(E(K,L),F),C(G),D(H(M),I,J))) 

The degree of each node may be 
different

possible to use memory nodes with a 
varying number of pointer fields 

easier to write algorithms when the node 
size is fixed 



5.1.2 Representation of Trees 

List representation 
nodes of a fixed size 

for a tree of degree k 

Lemma 5.1: If T is a k-ary tree with n nodes, each ha
ving a fixed size, then n(k-1)+1 of the nk child fields 
are 0, n≥1. 

Proof: Since each non-zero child field points to a 
node and there is exactly one pointer to each node 
other than the root, the number of child fields in a 
k-ary tree with n nodes is nk. Hence, the number of
zero fields is nk – (n-1) = n(k-1)+1

DATA CHILD1 CHILD2 ⋯ CHILDk



5.1.2 Representation of Trees

Left child-right sibling representation 
node structure 

the left child field of each node points to its left
most child (if any), and the right sibling field po
ints to its closest right sibling (if any) 

data
left child right sibling

Figure 5.6 : Left child-right sibling representation of the tree of Figure 5.2 



5.1.2 Representation of Trees

Representation as a degree-two tree 

rotate the right-sibling pointers clockwis
e by 45 degrees 

the two children of a node are referred t
o as the left and right children 

A

B B



5.1.2 Representation of Trees

Figure 5.7 : Left child-right child tree representation 



5.1.2 Representation of Trees

Additional examples

left child-right child tree : binary tree 

any tree can be represented as a binary tree 

Figure 5.8 : Tree representations 



5.2 Binary Trees 

A binary tree 
a finite set of nodes that either is empty or consist
s of a root and two disjoint binary trees called the 
left subtree and the right subtree

Differences between a binary tree and a tree 
there is an empty binary tree 

the order of the children is distinguished in a binary 
tree 

Figure 5.9 : Two different binary trees 



5.2 Binary Trees 
template <class T> 
class BinaryTree
{ // objects: A finite set of nodes either empty or consisting of a 
//  root node, left BinaryTree and right BinaryTree. 

public: 
BinaryTree(); 
// creates an empty binary tree 

bool IsEmpty(); 
// return true if the binary tree is empty

BinaryTree(BinaryTree<T>& bt1, T& item, BinaryTree<T>& bt2); 
// creates a binary tree whose left subtree is bt 1, whose right 
// subtree is bt 2, and whose root node contains item 

BinaryTree<T> LeftSubtree();
// return the left subtree of *this

BinaryTree<T> RightSubtree();
// return the right subtree of *this

T RootData(); 
// return the data in root node of *this

}; 
---------------------------------------------------
ADT 5.1 : Abstract data type BinaryTree



5.2 Binary Trees 
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Figure 5.10 : Skewed and complete binary trees 



5.2.2 Properties of Binary Trees

Lemma 5.2 [Maximum number of nodes]: 

(1) The max number of nodes on level i of 
a binary tree is 2i-1, i≥1 

(2) The max number of nodes in a binary tree o
f depth k is 2k-1, k≥1 



5.2.2 Properties of Binary Trees

Proof:
(1) The proof is by induction on i.

Induction Base : The root is the only node on level i = 1. 
Hence, the maximum number of nodes on level i = 1 is 2i-1=20=1

Induction Hypothesis : Let i be an arbitrary positive integer greater than 1. 
Assume that the maximum number of nodes on level i-1 is 2i-2

Induction Step : The maximum number of nodes on level i-1 is 2i-2

by the induction hypothesis. Since each node in a binary tree has a 
maximum degree of 2, the maximum number of nodes on level i is two 
times the maximum number of nodes on level i-1, or 2i-1

(2) The maximum number of nodes in a binary tree of depth k is   
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5.2.2 Properties of Binary Trees

Lemma 5.3 [Relation between numbe
r of leaf nodes and degree-2 nodes]: 
For any non-empty binary tree, T, 
if n0 is the number of leaf nodes and 
n2 the number of nodes of degree 2, 
then n0=n2+1



5.2.2 Properties of Binary Trees
Proof : Let n1 be the number of nodes of degree one 
and n the total number of nodes. Since all nodes in 
T are at most of degree two, we have n=n0+n1+n2

If we count the number of branches in a binary tree, 
we see that every node except the root has a branch 
leading into it. If B is the number of branches, then 
n=B+1. All branches stem from a node of degree 
one or two. Thus, B=n1+2n2. Hence, 
we obtain n = B+1 = n1+2n2+1. We get n0 = n2 + 1

Def : A full binary tree of depth k 

a binary tree of depth k having 2k-1 nodes, k≥0 



5.2.2 Properties of Binary Trees

A binary tree with n nodes and depth k is complete 
its nodes correspond to the nodes numbered from 1 to n in the 
full binary tree of depth k 

The height of a complete binary tree with 
n nodes is 

Figure 5.11 : Full binary tree of depth 4 with sequential node numbers

⎡ ⎤)1(log2 +n



5.2.3 Binary Tree Representation
5.2.3.1 Array Representations 

Lemma 5.4 : If a complete binary tree 
with n nodes is represented sequentially, 
then for any node with index i, 1≤i≤n, 
we have 
(1) parent(i) is at i/2 if i≠1. If i=1, i is at the r

oot and has no parent 

(2) leftChild(i) is at 2i if 2i≤n. If 2i>n, then i ha
s no left child 

(3) rightChild(i) is at 2i+1 if 2i+1≤n. If 2i+1>n, 
then i has no right child



5.2.3 Binary Tree Representation
5.2.3.1 Array Representations 

Proof : We prove (2). (3) is an immediate consequence 
of (2) and the numbering of nodes on the same level 
from left to right. (1) follows from (2) and (3). We prove 
(2) by induction on i. 
For i=1, clearly the left child is at 2 unless 2>n, in which 
chase i has no left child. Now assume that for all j, 
1≤j≤i, leftChild(j) is at 2j. 
Then the two nodes immediately preceding leftChild(i+1) 
are the right and left children of i. The left child is at 2i. 
Hence, the left child of i+1 is at 2i+2=2(i+1) unless 
2(i+1)>n, in which case i+1 has no left child



5.2.3.1 Array Representations

Figure 5.12 : Array representation of the binary trees of Figure 5.10 



data

LeftChild RightChild

LeftChild      data      RightChild

5.2.3.2 Linked representation 

Classes to define a tree 
class Tree; //forward declaration 

class TreeNode { 

friend class Tree; 

private: 
TreeNode *LeftChild; 
char data; 
TreeNode *RightChild;

}; 

class Tree { 

public: 
// Tree operations 
...

private: 
TreeNode *root; 

}; 

Figure 5.13 : Node representations 



5.2.3.2 Linked representation 
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Figure 5.14 : Linked representation for the binary trees of Figure 5.10 



5.3 Binary Tree Traversal and Tree Iterators
5.3.1 Introduction 

Tree traversal 
visiting each node in the tree exactly once 

a full traversal produces a linear order for the nodes 

Order of node visit 
L : move left 

V : visit node 

R : move right 

possible combinations  : LVR, LRV, VLR, 
VRL, RVL, RLV 

traverse left before right 

LVR : inorder

LRV : postorder

VLR : preorder 



5.3.1 Introduction
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Figure 5.16 : Binary tree with arithmetic expression 



5.3.2 Inorder Traversal 

LVR 

template<class T>
void Tree::inorder() 
{ // Driver call workhorse for traversal of entire tree. The driver is 
// declared as a public member function of Tree. 

inorder(root); 
}
template<class T>
void Tree<T>::inorder(TreeNode<T> *CurrentNode) 
{ // Workhorse traverses the subtree rooted at CurrentNode
// The workhorse is declared as a private member function of Tree. 

if (CurrentNode) { 
inorder(CurrentNode->leftChild); 
Visit(currentNode);
inorder(CurrentNode->rightChild); 

} 
} 
-----------------------------------------------------
Program 5.1 : Inorder traversal of a binary tree 

※ Visit(TreeNode<T> *CurrentNode) {
cout << currentNode->data

}



5.3.2 Inorder Traversal 
Call of
inorder

Value in
CurrentNode Action

Call of 
inorder

Value in
CurrentNode Action

Driver + 10 C

1 * 11 0

2 * 10 C cout<<'C'

3 / 12 0

4 A 1 * cout<<'*'

5 0 13 D

4 A cout<<'A' 14 0

6 0 13 D cout<<'D'

3 / cout<<'/' 15 0

7 B Driver + cout<<'+'

8 0 16 E

7 B cout<<'B' 17 0

9 0 16 E cout<<'E'

2 * cout<<'*' 18 0

Figure 5.17 : Trace of Program 5.1 

Output : A/B*C*D+E 

infix form of the expression 



5.3.3 Preorder Traversal 
VLR template <class T>

void Tree<T>::preorder() 
{ // Driver 

preorder(root); 
} 
template <class T>
void Tree<T>::preorder(TreeNode<T> *CurrentNode) 
{ // Workhorse

if (CurrentNode) { 
Visit(CurrentNode);
preorder(CurrentNode->leftChild); 
preorder(CurrentNode->rightChild); 

} 
}
-----------------------------------------
Program 5.2 : Preorder traversal of a binary tree 

∙ Output : +**/ABCDE 
- prefix form of the expression



5.3.4 Postorder Traversal 
LRV

template <class T>
void Tree<T>::Postorder() 
{ // Driver 

postorder(root); 
}
template <class T> 
void Tree::postorder(TreeNode *CurrentNode) 
{ // Workhorse

if (CurrentNode) { 
postorder(CurrentNode->LeftChild); 
postorder(CurrentNode->RightChild); 
Visit(currentNode);

} 
} 
-------------------------------------------------
Program 5.3 : Postorder traversal of a binary tree 

∙ Output : AB/C*D*E+
- postfix form of the expression 



5.3.5 Iterative Inorder Traversal 

Tree is a container class 
may implement a tree traversal algorithm by 
using iterators

the algorithm needs to be non-recursive 

use template Stack class 

Definition 
a data object of Type A USES-A data object of 
Type B if a Type A object uses a Type B object 
to perform a task 

this relationship is typically expressed by emplo
ying the Type B object in a member function of 
Type A 



5.3.5 Iterative Inorder Traversal 
template <class T>
void Tree<T>::NonrecInorder() 
{ // nonrecursive inorder traversal using a stack 

Stack<TreeNode<T> *> s; // declare and initialize stack 
TreeNode<T> *currentNode = root; 
while(1) { 

while(currentNode) { // move down LeftChild fields 
s.Push(currentNode); // add to stack 
currentNode = currentNode->leftChild; 

} 
if (s.IsEmpty()) return;
currentNode = s.Top();
s.Pop();
Visit(currentNode);
currentNode = currentNode->rightChild; 

} 
} 
-----------------------------------------------
Program 5.4 : Nonrecursive inorder traversal 



5.3.5 Iterative Inorder Traversal
class InorderIterator { 
public: 

InorderIterator(){ CurrentNode = root;}; 
T* Next(); 

private: 
Stack <TreeNode<T> *> s; 
TreeNode<T>* currentNode; 

}; 
-----------------------------------------------
Program 5.5 : Definition of inorder iterator class 
T* InorderIterator::Next() 
{ 

while(currentNode) { 
s.Push(currentNode);
currentNode = currentNode->leftChild; 

} 
if (s.IsEmpty()) return 0;
currentNode = s.Top(); 
s.Pop();
T& temp = currentNode->data;
currentNode = currentNode->rightChild; // update 
return &temp; 

} 
-----------------------------------------------
Program 5.6 : Code for obtaining the next inorder element 



5.3.6 Level-Order Traversal 
Root-left child-right child 

requires a queue 

Output : +*E*D/CAB 

used the circular queue 

template <class T>
void Tree<T>::LevelOrder() 
{ // Traverse the binary tree in level order 

Queue<TreeNode<T>*> q; 
TreeNode<T> *currentNode = root; 
while(currentNode) { 

Visit(currentNode);
if (currentNode->leftChild) q.Push(currentNode->leftChild); 
if (currentNode->rightChild) q.Push(currentNode->rightChild); 
currentNode = *q.Front(); 
q.Pop();

}
}
------------------------------------------------------
Program 5.7 : Level-order traversal of a binary tree



5.3.7 Traversal without a Stack

Is binary tree traversal possible without 
the use of extra space for stack?

Add a parent field to each node

Another solution represents binary tree 
as threaded binary trees in Section 5.5



5.4 Additional Binary Tree Operations
5.4.1 Copying Binary Trees

Implement a copy constructor 

Using modified postorder traversal 
algorithm

Assume TreeNode has a constructor that 
sets all three data members of a tree 
node



5.4.1 Copying Binary Trees

template <class T>
bool Tree<T>::Tree(const Tree<T>& s) //driver
{ // Copy constructor

root = Copy(s.root);
}

template <class T>
TreeNode<T>* Tree<T>::Copy(TreeNode<T>* origNode) // Workhorse
{ // Return a pointer to an exact copy of the binary tree rooted at origNode.

if(!origNode) return 0;
return  new TreeNode<T>( origNode->data,

Copy(origNode->leftChild);
Copy(origNode->rightChild);

}
---------------------------------------------------------
Program 5.9 : Copying a binary tree



5.4.2 Testing Equality

Determining the equivalence of two 
binary trees

They have the same topology and data 
in corresponding node is identical

Function operator==() calls workhorse 
function Equal()



5.4.2 Testing Equality

template <class T>
bool Tree<T>::operator==(const Tree<T>& s) const//driver
{ 

return Equal(root, t.root);
}

template <class T>
bool Tree<T>::Equal(TreeNode<T>* a, TreeNode<T>* b)
{// Workhorse 

if((!a)&&(!b)) return true; // both a and b are 0
return ( a&&b // both a and are non-zero

&& (a->data==b->data) // data is the same
&& Equal(a->leftChild, b->leftChild) // left subtrees equal
&& Equal(a->rightChild, b->rightChild)); // right subtrees equal

}
---------------------------------------------------------
Program 5.10 : Binary tree equivalence



5.4.3 The Satisfiability Problem

Consider the operations ∧(and), 
∨(or), ￢(not)

The variables can hold only true or false

Example : x1∨(x2∧ ￢x3)

x1=x3=false, x2=true

false ∨(true∧ ￢false)

= false∨true = true

Let assume our formula is

(x1 ∧ ￢ x2 )∨(￢x1∧ x3)∨￢x3



5.4.3 The Satisfiability Problem
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Figure 5.18 : Propositional formula in a binary tree



5.4.3 The Satisfiability Problem

There are 2n possible combination

if n=3, true=t, false=f
(t,t,t),  (t,t,f), (t,f,t), (t,f,f), (f,t,t), (f,t,f) (f,f,t), (f,f,f)

O(2n) time complexity

To evaluate an expression, using 
postorder traversal

(x1 ∧ ￢ x2 )∨(￢x1∧ x3)∨￢x3

=> x2￢x1∧x1￢ x3∧∨x3￢∨



5.4.3 The Satisfiability Problem

Define new data type

T = pair<Operator, bool> 
enum Operator{Not, And, Or, True, False}

Program 5.11

n is the number of variables in formula

formula is the binary tree that represents 
the formula

Program 5.12

Assume every leaf node’s data.first filed 
has been set either True or false

first second



5.4.3 The Satisfiability Problem
for each of the 2n possible truth value combinations for the n variables
{

replace the variables by their values in the current truth value
combination evaluate the formula by traversing the tree it points
to in postorder;
if (formula.Data().second()){ cout << current combination; return;}

}
cout << “no satisfiable combination”;
--------------------------------------------------------
Program 5.11 : First version of satisfiability algorithm

// visit the node pointed at by p
switch (p->data.first) {

case Not: p->data.second = !p->rightChild->data.second; break;
case And: p->data.second = 

p->leftChild->data.second&&p->rightChild->data.second;
break;

case Or: p->data.second = 
p->leftChild->data.second||p->rightChild->data.second;
break;

case True: p->data.second=true; break;
case False: p->data.second=false;

}
---------------------------------------------------------
Program 5.12: Visiting a node in an expression tree



5.5 Threaded Binary Trees
5.5.1 Threads

There are more 0-links than actual pointers

Replace the 0-links to pointers, threads
(1) A 0 rightChild field in node p is replaced by a 

pointer to the node that would be visited after p 
when traversing the tree in inorder. That is, it is
replaced by the inorder successor of p

(2) A 0 leftChild field in node p is replaced by a 
pointer to the node that immediately precedes 
node p in inorder

A

B C

: actual pointer

: 0-links (unused pointer)



5.5.1 Threads

A

B C

E F GD

H I

root

Figure 5.20 : Threaded tree corresponding to Figure 5.10(b)

9 nodes 10 0-links which replaced by threads

Visit H, D, I, B, E, A, F, C, G

e.g.) Node E has a predecessor thread points B    
and a successor thread points to A



5.5.1 Threads

New node structure considering threads

bool leftTread, rightThread
If leftThread==true, leftChild contains a thread
otherwise, righThread==false, NO thread

leftThread leftChild data rightChild rightThread

true false

Figure 5.21 : An empty threaded binary tree



5.5.1 Threads

f - f

f A f

f B f f C f

f D f t E t t F t t G t

t H t t I t

Figure 5.22 : Memory representation of threaded tree

root



5.5.2 Inorder Traversal of 
a Threaded Binary Tree

Inorder traversal without a stack

If rightThread==true, next is rightChild

Otherwise follow the right child until 
reaching a node with leftThread==true

T* ThreadeInorderIterator::Next()
{ // Return the inorder successor of currentNode in a thread binary tree

ThreadedNode<T>* temp = currentNode->rightChild;
if(!currentNode->rightThread)

while(!temp->leftThread) temp = temp->leftChild;
currentNode = temp;
if( currentNode == root ) return 0;
else return &currentNode->data;

}
--------------------------------------------------------
Program 5.13 : Finding the inorder successor in a threaded binary tree



5.5.3 Inserting a Node into 
a Threaded Binary Tree

Consider only inserting r as the right child of 
a node s
(1) If s has an empty right subtree, then the 

insertion is simple

(2) If the right subtree of s is not empty, then this 
right subtree is made the right subtree of r after 
insertion. When this is done, r becomes the 
inorder predecessor of a node that has a 
leftThread==true field, and consequently there is a 
thread which has to be updated to point to r. The 
node containing this thread was previously the 
inorder successor of s.



5.5.3 Inserting a Node into 
a Threaded Binary Tree
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Figure 5.23 : Insertion of r as a right child of s in a threaded binary tree
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5.5.3 Inserting a Node into a 
Threaded Binary Tree

template <class T>
void ThreadedTree<T>::InsertRight(ThreadedNode<T> *s,

ThreadedNode<T> *r)
{ // Insert r as the right child of s.

r->rightChild = s->rightChild;
r->rightThread = s->rightThread;
r->leftChild = s;
r->leftThread = true; // leftChid is a thread
s->rightChild = r;
s->rightThread = false;
if(!r->rightThread) {

ThreadedNode<T> *temp = InorderSucc(r);
// returns the in order successor of r

temp->leftChild = r;
}

}
------------------------------------------------------
Program 5.14 : Inserting r as the right child of s



5.6 Heap
5.6.1 Priority Queues

Max(min) priority queue 

element with highest(lowest) priority is 
deleted 

element with arbitrary priority can be 
inserted 

frequently implemented using max(min) 
heap 



5.6.1 Priority Queues

Abstract class in C++ 
template <class T> 
class MaxPQ { 
public: 

virtual ~MaxPQ(){} 
// virtual destructor

virtual bool IsEmpty() const = 0; 
// return true if the priority queue is empty

virtual const T& Top() const = 0;
// return reference to max element

virtual void Push(const T&) = 0; 
// add an element to the priority queue

virtual void Pop() = 0; 
// delete element with max priority

}; 



5.6.2 Definition of a Heap 

Max(min) tree 

a tree in which the key value in each 
node is no smaller (larger) than the 
key values in its children (if any) 

the key in the root is the largest 
(smallest) 

Max(min) heap 

a complete binary tree that is also 
a max(min) tree 



5.6.2 Definition of a Heap 
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Figure 5.24 : Max heaps 
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Figure 5.25 : Min heaps 



5.6.2 Definition of a Heap 

Basic operations of a max heap
creation of an empty heap 

insertion of a new element into the heap 

deletion of the largest element from the heap 

Private data members of class MaxHeap
private: 

T *heap; // element array
int heapSize; // number of elements in heap
int capacity;    // size of the array heap



5.6.2 Definition of a Heap 

template <class T>
MaxHeap<T>::MaxHeap(int theCapacity = 10)
{

if (theCapacity < 1) throw “Capacity must be >= 1”;
capacity = theCapacity;
heapSize = 0;
heap = new T[capacity+1]; // heap[0] is not used

}
---------------------------------------------
Program 5.15 : Max heap constructor



5.6.3 Insertion into Max Heap 

Examples
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14 10
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Figure 5.26 : Insertion into a max heap 

Insert 5
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5.6.3 Insertion into Max Heap 

Implementation 

need to move from child to parent 

heap is complete binary tree 

use formula-based representation 

Lemma 5.4 : parent(i) is at i/2 if i≠1 

Complexity is O(log n) 



5.6.3 Insertion into Max Heap 

template <class T>
void MaxHeap<T>::Push(const T& e)
{ // Insert e into the max heap

if (heapSize == capacity) { // double the capacity
ChangeSize1D(heap, capacity, 2*capacity);
capacity *= 2;

}
int currentNode = ++heapSize;
while (currentNode != 1 && heap[currentNode / 2] < e)
{ // bubble up

heap[currentNode] = heap[currentNode / 2]; 
// move parent down

currentNode /= 2;
}
heap[currentNode] = e;

}
--------------------------------------------------
Program 5.16 : Insertion into a max heap



5.6.4 Deletion from Max Heap 

Example 
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Figure 5.27 : Deletion from a heap 

delete 21
reinsert 2

delete 20



5.6.4 Deletion from Max Heap
template <class T>
void MaxHeap<T>::Pop()
{ // Delete max element

if (IsEmpty()) throw “Heap is empty. Cannot delete.”;
heap[1].~T(); // delete max element

// remove last element from heap
T lastE = heap[heapSize--];

// trickle down
int currentNode = 1; // root
int child = 2; // a child of currentNode
while (child <= heapSize)
{

// set child to larger child of currentNode
if (child<heapSize && heap[child]<heap[child+1]) child++;
// can we put lastE in current Node?
if (lastE>=heap[child]) break; // yes

// no
heap[currentNode] = heap[child];
currentNode = child; child *= 2;

}
heap[currentNode] = lastE;

}
----------------------------------------------------------
Program 5.17 : Deletion from a max heap



5.7 Binary Search Trees 
5.7.1 Definition
Binary tree which may be empty 

if not empty 
(1) every element has a distinct key 

(2) keys in left subtree < root key 

(3) keys in right subtree > root key 

(4) left and right subtrees are also binary search trees 
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Figure 5.28 : Binary trees 



5.7.2 Searching Binary Search Tree

Recursive search by key value 

definition of binary search tree is recursive 

key(element) = x 
x=root key : element=root 

x<root key : search left subtree

x>root key : search right subtree



5.7.2 Searching Binary Search Tree

template <class K, class E> // Driver
pair<K, E>* BST<K, E>::Get(const K& k)
{ // Search the binary search tree (*this) for a pair with key k

// If such a pair is found, return a pointer to this pair; otherwise, return 0
return Get(root, k);

}

template <class K, class E> // Workhorse
pair<K, E>* BST<K, E>::Get(TreeNode<pair<K, E> >* p, const K& k)
{

if(!p) return 0;
if(k<p->data.first) return Get(p->leftChild, k);
if(k>p->data.first) return Get(p->rightChild, k);
return &p->data;

}
--------------------------------------------------------
Program 5.18 : Recursive search of a binary search tree



5.7.2 Searching Binary Search Tree

template <class K, class E> // Driver
pair<K, E>* BST<K, E>::Get(const K& k)
{ 

TreeNode<pair<K,E> > *currentNode = root;
while(currentNode)
{

if (k<currentNode->data.first)
currentNode = currentNode->leftChild;

else if ( k>currentNode->data.first)
currentNode = currentNode->rightChild;

else return &currentNode->data;
}
//no matching pair
return 0;

}
--------------------------------------------------------
Program 5.19 : Iterative search of a binary search tree



5.7.2 Searching Binary Search Tree

Search by rank 

node needs LeftSize field 

LeftSize=1 + #elements in left subtree
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5.7.2 Searching Binary Search Tree

template <class K, class E> // search by rank
pair<K,E>* BST<K,E>::RankGet(int r)
{ // Search the binary search tree for the rth smallest pair

TreeNode<pair<K,E> > *currentNode = root;
while (currentNode)

if(r<currentNode->leftSize)
currentNode = currentNode->leftChild;

else if (r>currentNode->leftSize)
{

r -= currentNode->leftSize;
currentNode = currentNode->rightChild;

}
else return &currentNode->data;

return 0;
}
-------------------------------------------------
Program 5.20 : Searching a binary search tree by rank



5.7.3 Insertion into Binary Search Tree 

New element x 

search x in the tree 
success : x is in the tree 

fail : insert x at the point the search terminated 
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Figure 5.29 : Inserting into a binary search tree 



5.7.3 Insertion into Binary Search Tree 

template <class K, class E>
void BST<K, E>::Insert(const pair<K, E>& thePair)
{ // Insert thePair into the binary search tree.

// search for thePair.first, pp is parent of p
TreeNode<pair<K, E> > *p = root, *pp = 0;
while(p) {

pp = p;
if (thePair.first < p->data.first) p = p->leftChild;
else if(thePair.first > p->data.first) p = p->rightChild;
else // duplicate, update associated element

{ p->data.second = thePair.second; return; }
}
//perform insertion
p = new TreeNode<pair<K, E> >(thePair);
if(root) // tree not empty

if (thePair.first<pp->data.first) pp->leftChild=p;
else pp->rightChild = p;

else root = p;
}
-----------------------------------------------------
Program 5.21 : Insertion into a binary search tree



5.7.4 Deletion from Binary Search Tree 

Leaf node 
corresponding child field of its parent is set to 0 

the node is disposed 

Nonleaf node with one child 
the node is disposed 

child takes the place of the node 

Nonleaf node with two children 
node is replaced by either 

the largest node in its left subtree

the smallest node in its right subtree

delete the replacing node from the subtree



5.7.4 Deletion from Binary Search Tree 
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Figure 5.30 : Deletion from a binary search tree 



5.7.5 Joining and Splitting Binary Trees 

ThreeWayJoin(small, mid, big) 
new BST ← BST small + node mid + BST big

each node in small has smaller key than mid.first

each node in big has larger key than mid.first

TwoWayJoin(small, big) 
new BST ← BST small + BST big

all keys of small are smaller than all keys of big

Split(k, small, mid, big) 
BST → BST small + node mid + BST big

all keys of small < k

all keys of big > k

if A contains a node with key=k, the node is copied into mid



5.7.5 Joining and Splitting Binary Trees 

template <class K, class E>
void BST<K,E>::Split(const K& k, BST<K,E>& small, 

pair<K,E>*& mid, BST<K,E>& big)
{ // Split the binary search tree with respect to key k

if(!root){ small.root=big.root=0; return;} // empty tree
// create header nodes for small and big
TreeNode<pair<K,E> > *sHead = new TreeNode<pair<K, E> >,

*s = sHead;
*bHead = new TreeNode<pair<K, E> >,
*b = bHead;
*currentNode = root;

while (currentNode)
if (k<currentNode->data.first) { // add to big

b->leftChild = currentNode;
b = currentNode; currentNode = currentNode->leftChild;

}
else if (k>currentNode->data.first) { // add to small

s->rightChild = currentNode;
s = currentNode; currentNode = currentNode->rightChild;

}
else { //split at currentNode

s->rightChild = currntNode->leftChild;
b->leftChild = currntNode->rightChild;
small.root = sHead->rightChild; delete sHead;
big.root = bHead->leftChild; delete bHead;
mid=new pair<K,E>(currentNode->data.first,

currentNode->data.second);
delete currentNode;
return;

}        

// no pair with key k
s->rightChild=b->leftChild = 0;
small.root = sHead->rightChild; delete sHead;
big.root = bHead->leftChild; delete bHead;
mid = 0;
return;

}
--------------------------------------
Program 5.22 : Splitting a binary search tree 



5.7.6 Height of Binary Search Tree 

Height of BST with n nodes 

worst-case : n 

average : O(log n) 

Balanced search trees 

worst-case height : O(log n) 

some perform search, insert, delete in O(h) 
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Selection Trees

k ordered sequences(runs) -> merge 
-> single ordered sequence.

Each run

consists of some records

In nondecreasing order of a designated 
field (key)

78



Winner Trees

A Complete binary tree 

Each node represents the smaller of 
its two children.

The root node represents the smallest 
node in the tree.

79



Figure 5.31 : Winner tree for k=8, showing 
the first three keys in each of the eight runs
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Winner Trees (cont.)

Construction
tournament in which the winner is the record 
with the smaller key.

Each nonleaf node - winner of a tournament

Root node - the overall winner.(smallest key)

Each leaf node - first record in the 
corresponding run

Each node contain only pointer to record.

81



Winner tree of Figure 5.31 after one record 
has been output and the tree restructured 
(nodes that were changed are shaded)
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Winner Trees (cont.)

Analysis of merging runs using winner 
trees

Level in the tree : log2(k+1)

time required to restructure the tree : 
O(log2k)

time required to merge all n records : 
O(nlog2k)

Set up the selection tree : O(k)

Total time : O(nlog2k)
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Loser Trees

A complete binary tree added node 0 
over the root node.

leaf node – element having smallest key 
value of each run.

internal node – loser of a tournament

root node(1) – loser of final tournament

node 0 – the overall winner

84



Loser Trees (cont.)

Construction
Leaf node is smallest key value of each run
Children nodes have tournament in parent 
node

loser - remain parent node
winner – go to parent’s parent node and perform 
another tournament

Tournament of node 1
loser – remain root node.
winner - up to node 0 and printed order 
sequence

85



Looser Trees corresponding 
to winner tree of Figure 5.31
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Forests

Definition : A forest is a set of n≥0 
disjoint trees.

88

5.34 : Three-tree forest



Transforming a Forest into a 
Binary Tree (cont.)

Definition : If T1,…,Tn is a forest of trees, 
then the binary tree corresponding to 
this forest, denoted by B(T1,…,Tn),

(1) is empty if n=0

(2) has root equal to root(T1); has left 
subtree equal to B(T11, T12, …, T1m), where 
T11,…,T1m are the subtrees of root(T1); and 
has right subtree B(T2,…,Tn).

89



Transforming a Forest into a 
Binary Tree

90

5.35 : Binary tree representation of forest of 5.34



Forest Traversals

Preorder and inorder traversals of 
the corresponding binary tree T of a 
forest F have a natural 
correspondence to traversals on F.

No natural analog for postorder
traversal of the corresponding binary 
tree of a forest.
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Forest Traversals - preorder

1) If F is empty then return.

2) Visit the root of the first tree of F.

3) Traverse the subtrees of the first tree 
in forest preorder.

4) Traverse the remaining trees of F in 
forest preorder.
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Forest Traversals - inorder

1) If F is empty then return.

2) Traverse the subtrees of the first tree 
in forest inorder.

3) Visit the root of the first tree.

4) Traverse the remaining trees in 
forest inorder.
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Forest Traversals -
postorder

1) If F is empty then return.

2) Traverse the subtrees of the first tree 
of F in forest postorder.

3) Traverse the remaining trees of F in 
forest postorder.

4) Visit the root of the first tree of F.
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Forest Traversals (cont.)

The level-order traversal of a forest 
and that of its associated binary tree 
do not necessarily yield the same 
result.
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Introduction

Use of trees in the representation of 
sets.

Assume

Elements of the sets are the numbers 
0,1,2,3,…,n-1

Pairwise disjoint (Si and Sj, i≠j, there is 
no element that is in both Si and Sj)



Introduction (cont.)

Operation

1) Disjoint set union. If Si and Sj are two 
disjoint sets, then their union Si∪Sj = 
{ all elements x such that x in in Si or 
Sj }

2) Find(i). Find the set containing element 
i.



Introduction (cont.)
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5.36 : Possible tree representation of sets



Introduction (cont.)
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Pointer

Set Name

Data representation for S1, S2, and S3



Union and Find Operations

Union

Union of S1 and S2

4

1 90

76 8

0

76 4

1 9

8

Possible representations of S1∪S2



Union and Find Operations

Union

Set parent field of one of the roots to 
the other root.



Union and Find Operations

Since set elements are numbered 0 
through n-1, we represent the tree 
nodes using an array parent[n].

This array element gives the parent 
pointer of the corresponding tree 
node.

i
parent

[0]

-1

[1]

4

[2]

-1

[3]

2

[4]

-1

[5]

2

[6]

0

[7]

0

[8]

0

[9]

4

Array Representation of S1, S2, and S3 of 5.36



Union and Find Operations

Find(i)

Ex. Find(5)

Start at 5 -> moves to 5’s parent, 2 -> 
parent[2]=-1, we have reached root.

Union(i,j)

We pass in two trees with roots i and j, 
i≠j -> parent[i]=j

i
parent

[0]

-1

[1]

4

[2]

-1

[3]

2

[4]

-1

[5]

2

[6]

0

[7]

0

[8]

0

[9]

4



Class definition and constructor for 
Sets

class Sets{
pulib:

//set operations follow
.
.

private:
int *parent;
int n; //number of set elements

};

Sets::Sets(int numberOfElements)
{

if (numberOfElements<2) throw “Must have at least 2 elements”;
n=numberOfElements;
parent=new int[n];
fill(parent,parent+n,-1);

}



Simple function for union and fine

void Sets::SimpleUnion(int i, int j)
{//Replace the disjoint sets with roots i and j, i!=j with their union.

parent[i]=j;
}

int Sets::SimpleFind(int i)
{//Find the root of the tree containing element i.

while (parent[i]>=0) i=parent[i];
return i;

}



Union and Find operations

Analysis of SimpleUnion and 
SimpleFind

Start off with n elements each in a set of 
its own(i.e., Si={i}, 0≤i<n) -> Initial 
configuration consists of a forest with n 
nodes, and parent[i]=-1, 0≤i<n



Union and Find operations

Process the following sequence of 
operations:

Union(0,1), Union(1,2),…,Union(n-2,n-1)

Find(0),Find(1),…,Find(n-1)

Time Taken  for a union is constant : n-1 
unions in time O(n).

Each find operation requires following a 
sequence of parent pointers from the 
element to be found to the root.



Union and Find operations

Avoiding the creation of degenerate 
trees.

Definition [Weighting rule for 
Union(i,j)]:

If the number of nodes in the tree with 
root i is less than the number in the tree 
with root j, then make j the parent of i; 
otherwise make i the parent of j



Union and Find operations

0 1 n-1 0 2 n-1

1

0 3 n-1

1 2

0

1 2 3 n-1

initial

Union(0,1)

Union(0,2)
Union(0,n-1)

Trees obtained using the weighting rule



Union and Find operations

Unions have been modified so that 
the input parameter values 
correspond to the roots of the trees 
to be combined.



Union function with weighting rule

void Sets::WeightedUnion(int i, int j)
//Union sets with roots i and j, i≠j using the weighting rule.
//parent[i]=-count[i] and parent[j]= -count[j]
{

int temp=parent[i]+parent[j];
if (parent[i]>parent[j]){//i has fewer nodes

parent[i]=j;
parent[j]=temp;

}
else {//j has fewer nodes(or i and j have the same 

// number of nodes)
parent[j]=i;
parent[i]=temp;

}
}



Union and Find operations

Analysis of WeightedUnion and Simple Find
The time required to perform a union has increased 

somewhat but is still bounded by a constant.

The maximum time to perform a find is determined by 
Lemma 5.5

Lemma 5.5: Assume that we start with a forest of 
trees, each having one node. Let T be a tree with 
m nodes created as a result of a swquence of 
unions each performed using function 
WeightedUnion. The Height of T is no greater than



Union and Find operations 
(cont.)

Proof : 
true for m=1

Assume true for all trees with i nodes, i≤m-1 
-> show that also true for i=m

Let T be a tree with m nodes created by function 
WeightedUnion.

Consider the last union operation performed, Union(k,j).

Let a be the number of nodes in tree j and m-a the number in k

Without loss of generality we may assume 1≤a≤m/2

Height of T is either the same as that of k or is one more than 
that of j

former : T ≤[log2(m-a)]+1 ≤[log2m]+1

latter  : T ≤[log2a]+2 ≤[log2m/2]+2 ≤[log2m]+1



Union and Find operations

Definition [Collapsing rule] : 

If j is a node on the path from i to its 
root and parent[i]≠root(i), then set 
parent[j] to root(i).

int Sets::CollasingFind(int i)
{//Find the root of the tree containing element i.
//Use of collapsing rule to collapse all nodes from i to the root.

for (int r=i; parent[r]>=0; r=parent[r]);//find foot
while (i!=r){//collapse

int s=parent[i];
parent[i]=r;
i=s;

}
return r;

}



Union and Find operations

Analysis of WeightedUnion and CollapsingFind
Use of the collapsing rule roughly doubles the time for 
an individual find.
It reduce worst case time over a sequence of finds.
The worst-case complexity of processing a swquence of 
unions and finds is stated in Lemma 5.6.

Lemma 5.6[Tarjan and Van Leeuwed]: Assume that we 
start with a forest of trees, each having one node. Let 
T(f,u) be the maximum time required to process any 
intermixed sequence of f finds and u unions. Assum
that u≥n/2. 
Then k1(n+fα(f+n,n))≤T(f,u) ≤ k2(n+fα(f+n,n)) for 
some positive constants k1 and k2.



Application to Equivalence 
Class

0
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4 1 10 9

Height-2 trees following 0≡4, 3≡1, 6≡10, 8≡9



Application to Equivalence 
Class

0

[-3]

3

[-3]

4
1

Trees following 7≡4, 3≡5, 6≡8, 2≡11
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Application to Equivalence 
Class

0

[-5]

3

[-3]

4 1

Trees following 11≡0

7 52

11

6

[-4]

10 8

9



5.8 SELECTION TREES

5.9 FOREST

5.10 REPRESENTATION OF DISJOINT 
SETS

5.11 COUNTING BINARY TREES
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Counting binary trees

Determine the number of distinct 
binary trees having n nodes.

Number of distinct permutations of the 
numbers from 1 through n obtainable by 
a stack.

Number of distinct ways of multiplying 
n+1 matrices.
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Distinct Binary Trees

122

Distinct binary trees with n=2

Distinct binary trees with n=3



Stack Permutations

Suppose we have the preorder and inorder
sequence of the same binary tree

Preorder sequence :

A B C D E F G H I
Inorder sequence :

B C A E D G H F I

A – root of the tree by VLR
(B C) – left subtree by LVR
(E D G H F I) – right subtree
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Stack Permutations (cont.)

Right in the preorder sequence

B – next root

No node precedes B in inorder : 

B has an empty left subtree, 

C is right subtree of B

…………
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Stack Permutations (cont.)
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(a)

(b)

Constructing a binary tree from its inorder and preorder 
sequences



Stack Permutations (cont.)
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(a)
(b)

Binary tree constructed from its inorder and preorder sequences



Stack Permutations (cont.)

127

Binary trees corresponding to five permutations



Stack Permutations (cont.)

Number of distinct binary trees is 
equal to the number of distinct 
inorder permutations obtainable from 
binary trees having the preorder 
permutation, 1, 2, …, n.
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Stack Permutations (cont.)

Distinct permutations obtainable by 
passing the numbers 1 through n 
though a stack and deleting in all 
possible ways = the number of distinct 
binary trees with n nodes.

{1,2,3} possible permutation obtainable 
by a stack

(1,2,3)(1,3,2)(2,1,3)(2,3,1)(3,2,1)

(3,1,2) - impossible
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Matrix Multiplication

Compute the product of n matrices:
M1*M2*M3*…*Mn

n=3:
(M1*M2)*M3

M1*(M2*M3)

n=4:
((M1*M)*M3)*M4

((M1*M)*M3) )*M4

M1*((M*M3)*M4)
(M1*(M)*(M3*M4)

((M1*M)*(M3*M4) )

130



Matrix Multiplication (cont.)

bn : different ways to compute the product 
of n matrices.

b2=1, b3=2, b4=5

Mij, i≤j : product Mi*Mi+1*…*Mj.

M1n : M1i*Mi+1,n, 1≤i≤n

Distinct ways to obtain M1i:bi, Mi+1,n:bn-i,

131



Number of Distinct Binary 
Trees

Solve the recurrence of

Begin we let

- generating function for the number of 
binary trees.       

-by the recurrence relation

-B(0)=b0=1

132

- by binomial theorem to expand (1-4x)1/2



Number of Distinct Binary 
Trees(cont.)

Comparing

bn = coefficient of xn

133
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