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8.1 INTRODUCTION

Binary search tree (Chapter 5)
GET, INSERT, DELETE – O(n)

Balanced binary search tree (Chapter 10)
GET, INSERT, DELETE – O(log n)

Hashing
GET, INSERT, DELETE – O(1)

Static hashing, dynamic hashing
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8.2 STATIC HASHING
8.2.1 Hash Tables

Static hashing
Dictionary pairs – stored in a hash table

Hash table
Partitioned into b buckets ht[0],…,ht[b-1]

Each bucket – holding s dictionary pairs (or 
pointers to this many pairs)

Key
Address of a pair

Determined by a hash function, h

h(k) – integer in the [0, b-1]

Under ideal condition
Dictionary pairs are stored in their home buckets.
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8.2 STATIC HASHING
8.2.1 Hash Tables

Definition

The key density of a hash table is the 
ratio n/T. 

n-number of pairs in the table 

T-total number of possible keys

The loading density or loading factor of 
a hash table is α=n/(sb) (s - # of each 
bucket’s slots, b - # of buckets)

4



8.2 STATIC HASHING
8.2.1 Hash Tables

Synonyms

Two identifiers I1 and I2 if h(I1) = h(I2)

Overflow

A new identifier is hashed into a full 
bucket.

Collision

Two nonidentical identifiers are hashed 
into the same bucket. When s = 1, 
collisions and overflows occur 
simultaneously.
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8.2 STATIC HASHING
8.2.1 Hash Tables
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8.2 STATIC HASHING
8.2.2 Hash Functions

Hash function

Easy to compute

Minimize collisions

Uniform hash function gives 1/b 
probability of h(x) = i to x.
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8.2 STATIC HASHING
8.2.2 Hash Functions

Division
We divide the identifier k by some number D and 
use the remainder as the hash address for k. 

h(k) = k % D
This gives bucket addresses that range 0 to D - 1, 
where D = that table size.

The choice of D is critical.

If D is divisible by 2, then odd keys are mapped to 
odd buckets and even keys are mapped to even 
buckets. 

When many identifiers are permutations of each 
other, a biased use of the table results.

In practice, choose D such that it has no prime 
divisors less than 20.
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8.2 STATIC HASHING
8.2.2 Hash Functions

Mid-Square

Used in many cases.

Square the identifier and use an 
appropriate number of bits from the 
middle.

r bits used - table size = 2r
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8.2 STATIC HASHING
8.2.2 Hash Functions

Folding
We partition the identifier x into several parts. 
All parts, except for the last one have the same 
length. We then add the parts together to 
obtain the hash address for x.
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8.2 STATIC HASHING
8.2.2 Hash Functions

Folding
There are two ways of carrying out this addition.

Shift folding: We shift all parts except for the 
last one, so that the least significant bit of 
each part lines up with corresponding bit of 
the last part. We then add the parts together 
to obtain f (x).

Ex: suppose that we have divided the identifier 
k=12320324111220 into the following parts: x1 = 
123, x2 = 203, x3 = 241, x4 = 112, and x5 = 20. 
We would align x1 through x4 with x5 and add. 
This gives us a hash address of 699.

………………………… 11



8.2 STATIC HASHING
8.2.2 Hash Functions

Folding
There are two ways of carrying out this addition.

…………………………

Folding at the boundaries: reverses every 
other partition before adding.

Ex: suppose the identifier x is divided into the 
same partitions as in shift folding. We would 
reverse the second and forth partitions, that is x2

= 302 and x4 = 211, and add the partitions. This 
gives us a hash address of 897.
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8.2 STATIC HASHING
8.2.2 Hash Functions

Digit Analysis
Digital analysis is used with static files. A static file
is one in which all the identifiers are known in 
advance.

Using this method,

We first transform the identifiers into numbers 
using some radix, r.
We then examine the digits of each identifier, 
deleting those digits that have the most skewed 
distribution.

We continue deleting digits until the number of 
remaining digits is small enough to give an 
address in the range of the hash table.
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8.2 STATIC HASHING
8.2.2 Hash Functions

Converting Keys to Integers

Keys need to first be converted to 
nonnegative integers.
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Program 8.1:Converting a string 
into a non-negative integer
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8.2 STATIC HASHING
8.2.2 Hash Functions

Converting Keys to Integers

C++ STL provides specializations 
of the STL template class hash<T>

Transform instances of type T into 
a nonnegative integer of type size_t.
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Program 8.2:The specialization 
hash<string>
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8.2.3 Secure Hash Functions

One-way property

For a given c, it is computationally 
difficult to find a k such that h(k)=c

Weak collision resistance

When given input x and h, It is 
computationally difficult to find a x’ such 
that h(x’)=h(x) (x’ is a synonym for x)

Strong collision resistance

It is computationally difficult to find a 
pair (x,y) such that h(x)=h(y)
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8.2.3 Secure hash Functions

More practical

1. h can be applied to a block of data of 
any size

2. h produces a fixed-length hash code

3. h(k) is relatively easy to compute for 
any given k, making both hardware and 
software implementations practical.
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8.2.3 Secure hash Functions

Secure hash Algorithm(SHA)

Developed at the NIST

Input : any message with maximum 
length less than 264 bits

Output : 160-bit code
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Program 8.3: SHA algorithm

Step 1: Preprocess the message so that 
its length is q*512 bits for some integer 
q.

Step 2: Initialize the 160-bit output buffer 
OB, which comprises five 32-bit 
registers A, B, C, D, E with appointed 
value.

Step 3: for (int i=0; i<=q; i++){
Let Bi = ith block of 512 bits of the 
message; OB=F(OB,Bi);     }

Step 4: Output OB
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Program 8.3: SHA algorithm

The function F in Step 3 itself consists of 4 rounds of 20 
steps each.
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8.2.4 Overflow Handling

Two method of overflow handling

Open addressing (linear probing, linear 
open addressing)

Chaining
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8.2.4 Overflow Handling
8.2.4.1 Open Addressing

Linear probing

Inserting a new pair with key k

Search hash table buckets in the order, 
ht[h(k)+i]%b, 0≤i≤b-1

Terminate when reach the first unfilled 
bucket

No unfilled bucket, hash table full and 
increase the table size => Must change 
hash function as well.
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8.2.4 Overflow Handling
8.2.4.1 Open Addressing

Ex 8.6) 

26-bucket table, one slot per bucket

Hash function h(x) = first character of x

Identifiers : GA, D, A, G, L, A2, A1, A3, 
A4, Z, ZA, E
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8.2.4 Overflow Handling
8.2.4.1 Open Addressing

identifiers : GA, D, A, G, L, A2, A1, 
A3, A4, Z, ZA, E
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8.2.4 Overflow Handling
8.2.4.1 Open Addressing

Hash table search for the pair with key k

1. Compute h(k)

2. Examine the hash table buckets in the 
order ht[h(k)], ht[h(k)+1]%b], 
…,ht[(h(k)+j)%b] until one of the 
following happens:
1. The bucket ht[(h(k)+j)%b] has a pair 

whose key is k; in this case, the desired 
pair has been found.

2. ht[h(k)+j] is empty; k is not in the table.

3. We return to the starting position ht[h(k)]; 
the table is full and k is not in the table. 27



Program 8.4: Linear probing
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8.2.4 Overflow Handling
8.2.4.1 Open Addressing

Analysis of Ex 8.6)
The number of buckets examined

A – 1, A2 – 2, A1 – 2, D – 1, A3 – 5, A4 – 6,    
GA – 1, G – 2, ZA – 10, E – 6, L – 1, Z - 1

total : 39 buckets examined

average : 39/12 = 3.25

Approximation of average number of 
identifier comparison : P

P = (2 - α) / (2 - 2 α),  α = loading density

in Ex 8.6) α = 12/26 = 0.47

P = 1.5

but in the real case, the average was 3.25
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8.2.4 Overflow Handling
8.2.4.1 Open Addressing

Quadratic probing

Quadratic function of i is used as the 
increment

Examining buckets h(k), (h(k)+i2)%b, 
and (h(k)-i2)%b for 1≤i ≤(b-1)/2

When b is a prime number of the form 
4j+3, the quadratic search described 
above examines every bucket in the 
table.
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8.2.4 Overflow Handling
8.2.4.2 Chaining

Each bucket has one list of synonyms.

head node + linked list

Array ht[0:b-1] of type ChainNode 
<pair<K,E>>* : ht[i] pointing to the 
first node of the chain for bucket i.
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Program 8.5: Chain Search
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8.2.4 Overflow Handling
8.2.4.1 Chaining

identifiers : GA, D, A, G, L, A2, A1, A3, A4, Z, ZA, 
E
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8.2.5 Theoretical Evaluation of 
Overflow Techniques

Worst case performance can be very 
bad. – insertion or search may take 
O(n) time

In this section, We present a 
probabilistic analysis for the expected 
performance of the chaining method 
and state without proof the results of 
similar analyses for the other overflow 
handling methods.
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8.2.5 Theoretical Evaluation of 
Overflow Techniques

ht[0:b-1] each bucket having one slot.
h : uniform hash function with range 
[0,b-1] a

If n keys k1, k2,…,kn are entered into the 
hash table, there are bn distinct hash 
sequences h(k1), h(k2),…,k(kn).
Sn : expected number of key 
comparisons needed to locate a 
randomly chosen ki, 1≤i ≤ n
Un : expected number of key 
comparisons when a search is made for 
a key not in the hash table.
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8.2.5 Theoretical Evaluation of 
Overflow Techniques

Theorem 8.1: Let α=n/b be the 
loading density of a hash table using 
a uniform hashing function h. Then

(1) for linear open addressing
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8.2.5 Theoretical Evaluation of 
Overflow Techniques

Theorem 8.1: Let α=n/b be the 
loading density of a hash table using 
a uniform hashing function h. Then

(2) for rehashing, random probing, 
and quadratic probing
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8.2.5 Theoretical Evaluation of 
Overflow Techniques

Theorem 8.1: Let α=n/b be the 
loading density of a hash table using 
a uniform hashing function h. Then

(3) for chaining

38



8.2.5 Theoretical Evaluation of 
Overflow Techniques

Proof:

When n keys are distributed uniformly over the 
b possible chains, the expected number in 
each chain is n/b=α. Un equals the expected 
number of keys on a chain, α

When ith key, ki, is being entered into the table, 
the expected number of keys on any chain is 
(i-1)/b.

The expected number of comparisons needed 
to search for ki after all n keys have been 
entered is 1+(i-1)/b
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8.3 DYNAMIC HASHING
8.3.1 Motivation for Dynamic Hashing

When an insert causes the loading 
density to exceed the prespecified 
threshold, we use array doubling to 
increase the number of buckets to 2b+1.
=> hash function divisor changes to 
2b+1 => rebuild the hash table by 
collecting all dictionary pairs.

Dynamic Hashing (extendible hashing)
Reduce the rebuild time by ensuring that 
each rebuild changes the home bucket for 
the entries in only 1 bucket
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8.3 DYNAMIC HASHING
8.3.1 Motivation for Dynamic Hashing

Two forms of dynamic hashing

use a directory

don’t use a directory

Hash function h map keys into non-
negative integers

Range of h is assumed to be 
sufficiently large

h(k,p) : Denote the integer formed by 
the p least significant bits of h(k)
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8.3 DYNAMIC HASHING
8.3.1 Motivation for Dynamic Hashing

Ex) h(k) : transform key into 6-bit 
non-negative integers.

A,B,C -> 100, 101, 110

Digit 0 through 7 -> 000, 001,…, 111
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8.3 DYNAMIC HASHING
8.3.2 Dynamic Hashing Using Directory

Directory d – pointers to bucket

Directory depth - number of bits of 
h(k) used to index the directory

size of the directory depends on the 
directory depth

ex) h(k,2) – directory size=22=4

h(k,5) – directory size=25=32

To search for a key k, we merely 
examine the bucket pointed to by 
d[h(k,t)], t - directory depth.
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Figure 8.7: Dynamic hash 
tables with directories
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• When bucket becomes full, directory is doubled 
and pointers are copied



8.3 DYNAMIC HASHING
8.3.3 Directoryless Dynamic Hashing

Array ht of buckets is used.

Assume this array is as large as 
possible and so there is no possibility of 
increasing its size dynamically.

Only buckets 0 through 2r+q-1 are 
active. (q, r – variable to keep track of 
active bucket, 0≤q<2r)

Indexing
active buckets [0, q-1], [2r, 2r+q-1] are 
indexed h(k, r+1)

remaining buckets are indexed h(k, r)
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8.3 DYNAMIC HASHING
8.3.3 Directoryless Dynamic Hashing

Searching
if (h(k,r)<q) search the chain that begins at bucket h(k, r+1);

else search the chain that begins at bucket h(k, r);

An overflow is handled by activating bucket 2r+q
incrementing q by 1

In case q becomes 2r, increment r by 1 and reset q to 0
46



8.4 BLOOM FILTERS
8.4.1 An Application-Differential Files

Consider an application

maintain an indexed file

there is only one index – just a single 
key

dense index : has an entry for each 
record in the file

updates to the file (insert, delete, 
change) permitted

It is necessary to keep a backup copy of 
index and file
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8.4 BLOOM FILTERS
8.4.1 An Application-Differential Files

Transaction log

Log of all updates made since the 
backup copies were created

Time needed to recover

Function of the sizes of the backup 
index and file and the size of the 
transaction log

More frequent backups reduce time 
but it is not practical
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8.4 BLOOM FILTERS
8.4.1 An Application-Differential Files

Only the file is very large – keeping 
updated records in a separate file 
(called differential file) reduce 
recovery time

Master file is unchanged

Master index is changed to reflect the 
position of the most current version of 
the record with a given key
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8.4 BLOOM FILTERS
8.4.1 An Application-Differential Files

When a differential file is used, the 
backup file is an exact replica of the 
master file.

It is necessary to backup only master 
index and differential file frequently 
(relatively small)
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8.4 BLOOM FILTERS
8.4.1 An Application-Differential Files

Both the index and the file are very 
large – differential file scheme does 
not work.

Using differential file and differential 
index

master index and master file remain 
unchanged as update are performed

differential file contain current version of 
all changed record

differential index – index to differential 
file
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8.4 BLOOM FILTERS
8.4.1 An Application-Differential Files

Access Step
(a) No differential file

Step 1: Search master index for record address.
Step 2: Access record from this master file 
address.
Step 3: If this is an update, then update master 
index, master file, and transaction log.

(b) Differential file in use
Step 1: Search master index for record address.
Step 2: Access record from either the master file 
or the differential file, depending on the address 
obtained in Step 1.
Step 3: If this is an update, then update master 
index, master file, and transaction log.
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8.4 BLOOM FILTERS
8.4.1 An Application-Differential Files

(c) Differential index and file in use
Step 1: Search differential index for record 
address. If the search is unsuccessful, then 
search the master index.

Step 2: Access record from either the master 
file of the differential file, depending on the 
address obtained in Step 1.

Step 3: If this is an update, then update 
differential index, differential file, and 
transaction log.
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8.4 BLOOM FILTERS
8.4.2 Bloom Filter Design

(d) Differential index and file and Bloom 
filter in use

Step 1: Query the Bloom filter. If the answer 
is “maybe,” then search differential index for 
record address. If the answer is “no” or if 
the differential index search is unsuccessful, 
then search the master index.

Step 2: Access record from either the master 
file or the differential file, depending on the 
address obtained in Step 1.

Step 3: If this is an update, then update 
Bloom filter, differential index, differential file, 
and transaction log. 54



8.4 BLOOM FILTERS
8.4.1 An Application-Differential Files

Comparing with (a),(c)
additional disk access are frequently 
needed, as we will often first query the 
differential index and then the master 
index.

Differential file is much smaller than the 
master file – most request are satisfied 
from the master file.

Differential index and file are used –
backup both high frequency (both are 
relatively small)
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8.4 BLOOM FILTERS
8.4.2 Bloom Filter Design

Bloom filter
m bits of memory, h uniform and 
independent hash functions f1,…,fh
fi hash a key k to an integer [1,m]

Initially all m filter bits are zero and 
differential index and file are empty

When key k is added to the differential 
index, bits f1(k), …, fh(k) of the filter are set 
to 1.

“Is key k in the differential index?” – bits 
f1(k), …, fh(k) are examined.

“maybe” if all these bits are 1

“no” otherwise 56



8.4 BLOOM FILTERS
8.4.2 Bloom Filter Design

Probability of a filter error
n records, u updates (none of these is 
insert or delete)
record keys – uniformly distributed
probability update request for record i = 1/n, 
1≤i≤n
probability particular update does not 
modify record i = 1-1/n
probability none of the u update modify 
record i = (1-1/n) u

expected number of unmodified record = 
n(1-1/n)u

probability (u+1)’st update is for an 
unmodified record = (1-1/n) u

57



8.4 BLOOM FILTERS
8.4.2 Bloom Filter Design

Probability of a filter error
bit i of the Bloom filter, hash function 
fj(uniform hash function) 1≤j ≤ h

k : the key corresponding to one of the u 
update 

probability fj(k)≠i => 1-1/m

probability fj(k) ≠ i for all h hash functions 
=> (1-1/m)h

If only update, probability bit i of the filter is 
zero => (1-1/m) h

probability bit i is zero following u updates 
=> (1-1/m)uh
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8.4 BLOOM FILTERS
8.4.2 Bloom Filter Design

Probability of a filter error

probability of a filter = (1-(1-1/m)uh)h

P(u) : probability arbitrary query made 
after u updates results in a filter error => 
(1-1/n) u(1-(1-1/m) uh) h

(1-1/x) q~e-q/x

P(u)~e-u/n (1-e-uh/m)h (large x,n,m)

In most application, m, n fixed but h can 
be designed.

The fittest h = (loge2)m/u~0.693m/u
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