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STEADY STATE 

HEAT CONDUCTION



Supercritical Fluid Process Lab

Overview 

Steady-State Heat Conduction in a 
(1) Flat Wall
(2) Multilayer Flat Wall
(3) Hollow Cylinder
(4) Multilayer Cylinder
(5) Thermal Contact Resistance
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Heat Conduction in a Flat Wall
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If heat is flowing normal to the principal 
surfaces, the area term A is constant.

If k is assumed to be constant, q at any 
cross section is proportional to dt/dx.

If energy is neither generated nor 
accumulated in the wall, q is identical at all 
cross sections and so is dt/dx.

Fourier conduction equation
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Heat Conduction in a Flat Wall
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If k varies with temp, dt/dx ≠ constant.
If q and A = constant, and k increases 

with decreasing temp(Al2O3), the 
temperature gradient must diminish in the 
direction of decreasing temperature. Thus 
the curve representing temperature in 
steady-state flow for this system is concave 
upward.

Fourier conduction equation
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t2

k increasing with 
increasing T
ex: SUS304, Fused quartz, 
mercury (l), H2(g), CO2(g), 
air(g), steam

k decreasing 
with increasing T

ex: copper, tungsten, Al2O3, NH3(l) 

k independent of T
ex: Engine oil, gylcerine

x1 x2

Influence of the temperature dependence of k on dt/dx
in a flat wall during heat transport by conduction
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t1

t2

k increasing with 
increasing T
ex: SUS304, Fused quartz, 
mercury (l), H2(g), CO2(g), 
air(g), steam

k decreasing with 
increasing T
ex: copper, tungsten, Al2O3, 
NH3(l), 

k independent 
of T
ex: Engine oil

x1 x2

Influence of the temperature dependence of k on dt/dx
in a flat wall during heat transport by conduction
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dx
dtkAq −=Fourier conduction equation

Temperature Profile in a flat wall

(18-1)

The integration of Eq (18-1) is readily performed when q, k, and A are constant,
And this gives

x
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Δ
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The equation can also be integrated and solved for the temperature at any point x.
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Conduction in a multi-layer flat wall
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Analogy to Ohm’s law for electric conduction
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t1 t2 t3 t4

Distance, x

R1 R2 R3

(a)   (b)        (c)

Δxa

Te
m

pe
ra

tu
re

ka

Δxb

kb

Δxc

kc

t1 t2 t3 t4



Supercritical Fluid Process Lab

Ak
x

Ak
x

Ak
x

ttq

c

c

b

b

a

a Δ
+

Δ
+

Δ
−

= 41

Overall resistanceIndividual resistance

Overall Thermal resistances

Because q/A is the same for all layers, it 
follows that k(Δt/Δx) is the same for all layers;
thus Δt/Δx is inversely proportional to the 
thermal conductivity (열전도도가 크면 온도구

배가 작다).
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Example 18-1

A cold-storage room has walls constructed of a 4-in layer of corkboard 
contained between double wooden walls, each 1/2 in thick. (1) Find 
the rate of heat loss in But/(h)(ft2) if the wall surface temperature is 
10°F inside room and 70 °F  outside the room. In addition, (2) find the 
temperature at the interface between the outer wall and the corkboard.
Although thermal conductivity is a function of temperature, it is often 

assumed to be constant at the arithmetic average temperature of the 
layer involved. The conductivities of many materials have not been 
measured over a temperature range; in addition, other factors such as 
the density (in the case of corkboard) and the presence of impurities 
(e.g., moisture) can have an effect on the conductivity. Data limitations 
such as these often have a direct effect on the accuracy of the solution 
and guide the engineer in determining the degree of simplification he 
can use in his calculations.
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Example 18-1

Thermal conductivity of corkboard ?

Cork board ρ=10 lb/ft3, k=0.024 Btu/(h)(ft2)(oF/ft) @30oC

Thermal conductivity of wood ?

Wood Balsa (벽오동) ρ=7-8   lb/ft3, k=0.025 Btu/(h)(ft2)(oF/ft) @30oC
Wood Oak (참나무) ρ=51.5 lb/ft3, k=0.12 Btu/(h)(ft2)(oF/ft) @15oC
Wood Maple (단풍나무)ρ=44.7 lb/ft3, k=0.11 Btu/(h)(ft2)(oF/ft) @50oC
Wood Pine (소나무) ρ=34.0 lb/ft3, k=0.087 Btu/(h)(ft2)(oF/ft) @15oC
Wood Teak (티크나무) ρ=40.0 lb/ft3, k=0.10 Btu/(h)(ft2)(oF/ft) @15oC
White fir (전나무) ρ=28.1 lb/ft3, k=0.062 Btu/(h)(ft2)(oF/ft) @60oC
(전나무의가격이싸고벽의건축자재로널리사용됨)

Table A-14 Thermal conductivities of some building materials (Page 805)
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4“Cork board , k=0.024 Btu/(h)(ft)(F)

½” Wood layer, k=0.062 Btu/(h)(ft)(F)

The temperature at the interface between the outer 
wooden wall and the corkboard can be determined by 
rearranging the equation for the individual 
temperature drops which led to Eq. (18-5).
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Heat Conduction in the walls of a Hollow cylinder
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Integration Eq (18-6) yields

(18-10)
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Heat Conduction in the walls of a Hollow cylinder
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in flat wall

In most engineering applications (e.g., pipe), r2/r1<<2. In these 
circumstance the arithmetic mean area may be used in Eq. (18-10), 
with a consequent error in q less than 4%.
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Heat Conduction in Multi-layer cylinder

Consider the case of three concentric hollow cylinders, 
e.g., a pipe with two layers of insulation around it. The 
thickness the three layers will be designated Δra, Δrb, 
and Δrc, and the temperature drops over the individual 
layer Δta, Δtb, and Δtc .

The total heat-transfer rate, which will be the same for 
all the cylinders, can be written
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Heat Conduction in Multi-layer cylinder

The individual temperature drops may be found by 
rearranging (18-11).

Δta
Δtb

Δtc clm
c

blm
b

alm
a

kA
rqt

kA
rqt

kA
rqt

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
=Δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
=Δ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
=Δ

(18-12)

Adding and rearranging these three equations gives

clmblmalm

overall

kA
r

kA
r

kA
r

tq

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
Δ

=

Individual resistance

+



Supercritical Fluid Process Lab

A 6-in, schedule-80 steel pipe is covered with a 0.1-m layer 
of 85 percent magnesia insulation. The temperature of the 
inner surface of the pipe is 250°C, and the temperature of 
the outer surface of the insulation is 40°C. (1) Calculate the 
rate of heat loss per meter of pipe and (2) the temperature 
at the interface between the pipe and the insulation. 

The thermal conductivity of the steel pipe can be taken as 
44.8W/m·K (Perry, p. 3-220), and that of the 85 percent 
magnesia as 0.066 (Perry, p. 3-221). The OD of the pipe is 
0.1683 m, and the ID is 0.1463 m.

Example 18-2
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Heat Conduction to the walls of a Hollow Sphere
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Integration Eq (18-6) yields
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Heat Conduction to the walls of a Hollow Sphere
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Heat Conduction of Three Concentric Spherical Layer
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Heat Conduction
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Thermal Contact Resistance

(1) Solid to solid conduction
(2) Conduction/convection/radiation through

entrapped gas in the void spaces

For solids whose thermal conductivities exceed that of the interfacial 
fluid, the contact resistance may be reduced by increasing the area of 
the contact spots. Such an increase may be effected by increasing 
the joint pressure and/or by reducing the roughness of the mating 
surfaces. The contact resistance may also reduced by selecting an 
interfacial fluid of large thermal conductivity. (e.g.; thermal grease 
such as silicon oil)

Supercritical Fluid Process Lab
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Thermal Contact Resistance

Protuberance at the contact point (spot)
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Thermal Contact Resistance

Contact pressure 102 kN/m2 104 kN/m2

SUS 6~25 0.7~4.0

Thermal Contact Resistance RTCx104 (m2·K/W)

Copper 1~10 0.1~0.5

Magnesium 1.5~3.5 0.2~0.4

Aluminum 1.5~5.0 0.2~0.4

Al-Al interface (10 μm roughness) under 105 kN/m2

Thermal Contact Resistance RTCx104 (m2·K/W) with different interfacial fluids

Air 2.75

He 1.05

H2 0.720

Silicone oil 0.525

Glycerine 0.265

Fried, E., “Thermal Conduction
Contribution to Heat Transfer 
at Contacts”, in R.P. Tye, Ed., 
Thermal Conductivity, vol 2, 
Academic Press, London, 1969
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Thermal Dissipation of the Chip

Epoxy joint ~0.02 mm
RTC=9x10-5 m2K/W

Silicon chip

8 mm Aluminum
Substrate

kaluminum=240 W/mK

105 W/m2

t2=25oCq2

q1

Wq 11.810

240
108109

2535 4
3

5
2 =×

×
+×

−
= −

−
−

RTC kaluminum
Cross-sectional area

A=10 cm2
t1=35oC
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A heating element is constructed from carbon in the shape of a 
bar 3” wide, ½” thick, and 3 ft long. When a potential of 12 V is 
applied to the ends of the bar, its surface reaches a uniform 
temperature of 1400°F, as indicated by an optical pyrometer. 
What is the temperature at the center of the bar? The electrical
resistivity of the bar is 1.30*10-4(Ω)(ft), and its thermal 
conductivity is 2.9 Btu/(h)(ft)( °F).

Only heat conduction normal to the largest forces of the bar 
will be considered, since heat leaves the bar principally 
through these faces. A differential equation is obtained by 
writing an energy balance on a differential segment dx of the 
bar, as shown in Fig. 18-4.

Example 18-3
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Heat flow into element =
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@steady state: Heat flow in - heat flow out + rate of heat generation = 0

Energy Balance on the Element

Rate of heat generation in the element = 419,000 Adx Btu/h
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Integration with BCs: dt/dx=0 @x=0 (the bar is symmetrical) 
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Second Integration with BCs: t=1400oF @x=1/48 ft
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Supercritical Fluid Process Lab

Homework #1

PROBLEMS
18-1; 18-4; 18-5; 18-7; 18-8

Due date: Before quiz on September 21

Quiz: September 21 13:00-14:15 (302-509)
Closed book, Calculator
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dydzudydzudu xxx ρ−ρ+ρ )]([ (7-1)

@steady state: Mass in - Mass out = Accumulate 

Differential element for mass balance
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FIGURE 7-1
Differential element of mass balance

The second term is the input in the x-direction through the face of area dydz located at a distance x 
from the plane x=0; the first term is the output through the parallel face located at x+dx. The express
(7-1) reduces to

It will be convenient to express the differential change
in uxρ over the distance dx by

As a result the output minus input in the x-direction is

In the x direction, output less input by mass flow is given by 
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Differential element for mass balance

(7-5)

(7-6)

(7-7)

Similar expression can be written for flow in the y and z directions. 
The rate of accumulation in the element is
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