CONVECTIVE HEAT-TRANSFER COEFFICIENT

21

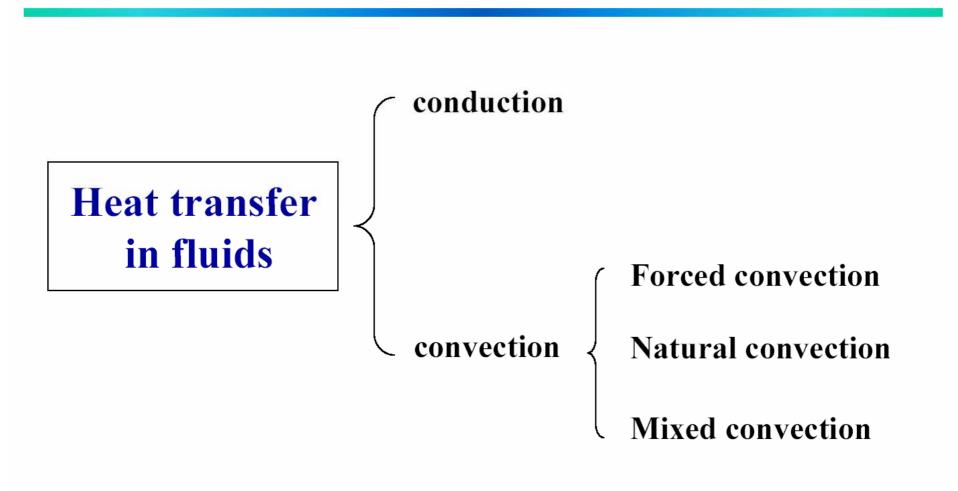
Introduction

In most transport processes heat transfer in fluids is accompanied by some form of fluid motion so that the heat transfer does not occur by conduction alone.

Forced convection: fluid motion arises principally from a pressure gradient caused by a pump or blower

Natural convection: fluid motion arises only from density differences associated with the temperature field

Heat transfer in fluids



Introduction

Whether the heat-transfer mechanism is natural or forced convection, the fluid motion can be described by the equations of fluid mechanics.

@ low velocities → the flow is laminar throughout the system
 @ high velocities → laminar near the heating surface
 + turbulent some distance away

Although fluid velocities in natural convection are usually lower than in forced convection, it is incorrect to think of natural convection as causing only laminar flow; turbulence dose occur when critical Reynolds number for the system is exceeded.

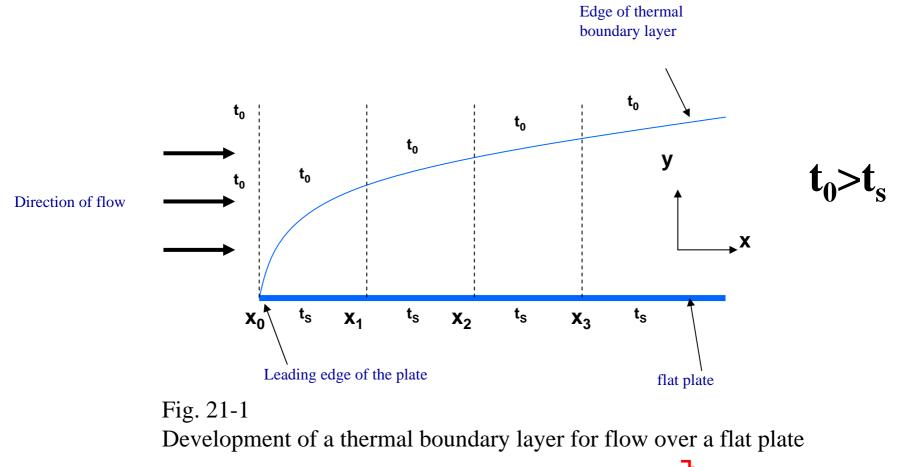
Analytical Solution

All problems of convective heat transfer can be expressed in terms of the differential mass, energy, and momentum balances. However, the mathematical difficulties connected with integration of these simultaneous nonlinear partial differential equations are such that analytical solutions exist only for simplified cases.

One of the problems simplest to deal with analytically is that of

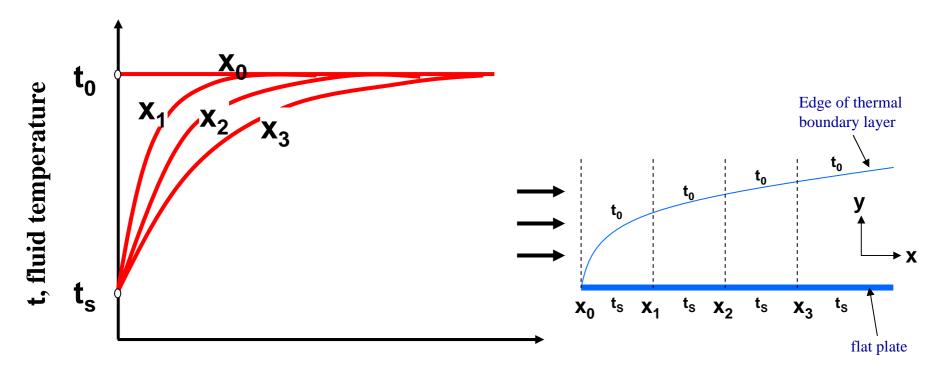
Heat transfer between a fluid and a flat plate when the fluid is flowing parallel to the plate. (Fig. 21-1)

Heat transfer between a fluid and a flat plate when the fluid is flowing parallel to the plate. (Fig. 21-1)



Supercritical Fluid Process Lab

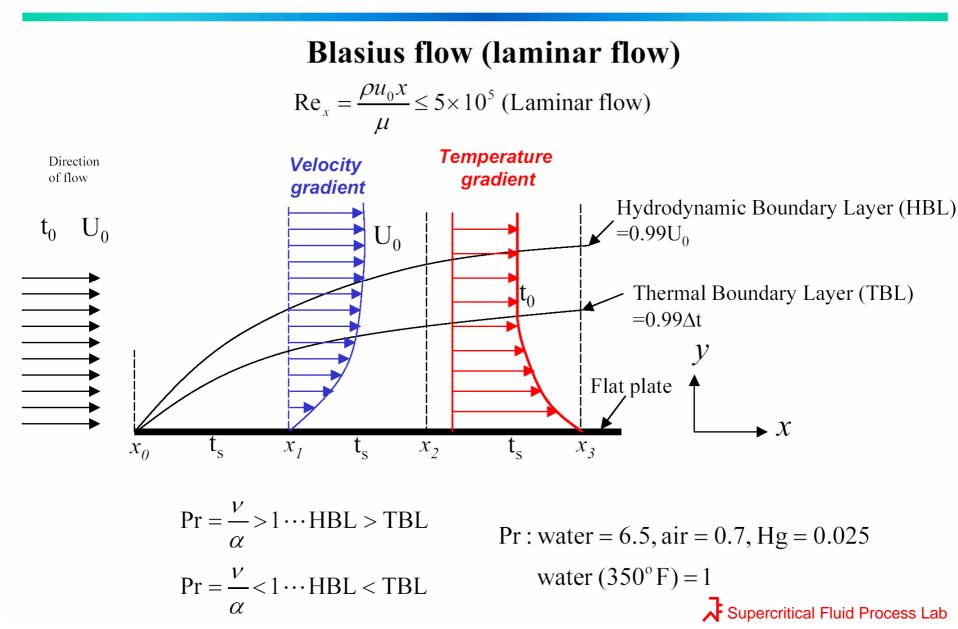
Temperature profiles in a developing thermal boundary layer on a flat plate



y, distance normal to flat plate

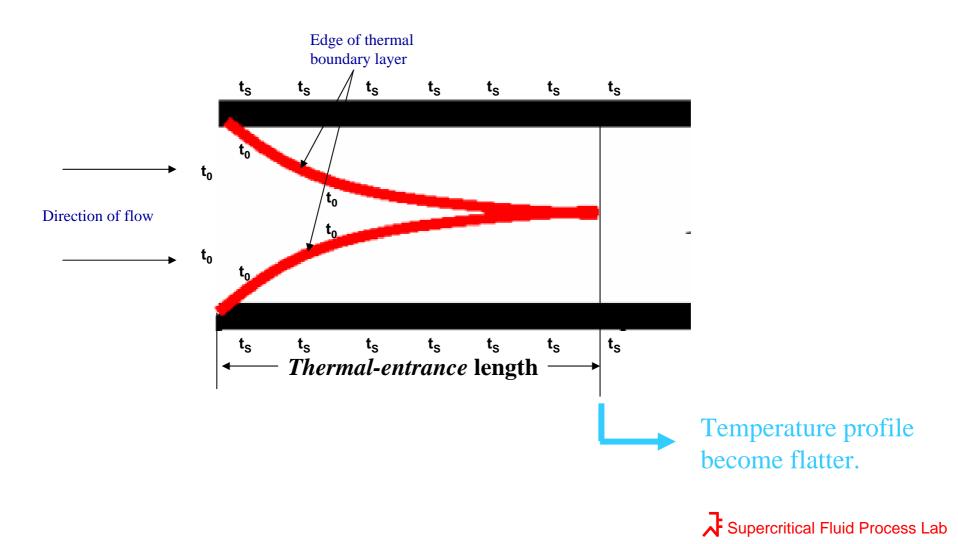
Supercritical Fluid Process Lab

Development of thermal boundary layer for flow over a flat plate

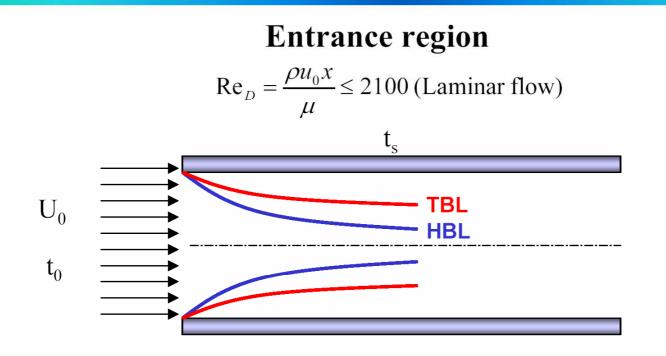


Heat transfer system

Heat is transferred between a fluid and the wall of a pipe

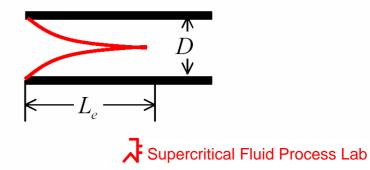


Development of thermal boundary layer for flow in a pipe



Thermal Entrance Length

$$HBLT: \quad \frac{L_e}{D} \cong 0.05 \operatorname{Re}_D$$
$$TBLT: \quad \frac{L_e}{D} \cong 0.05 \operatorname{Re}_D \cdot \operatorname{Pr}$$
$$in \ tubulent \ flow: \frac{L_e}{D} \cong 40 \sim 50$$



Temperature profiles near the entrance of a pipe

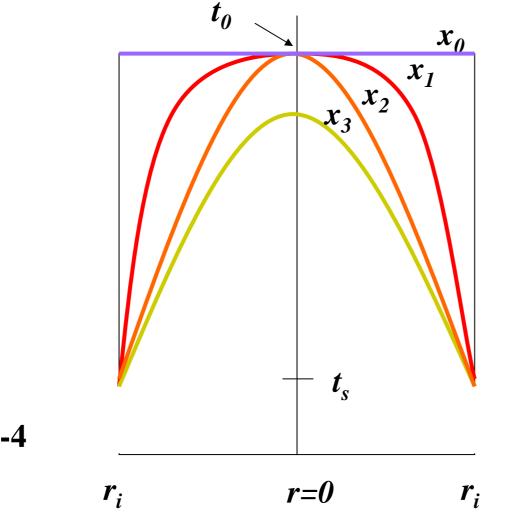


Figure 21-4

Supercritical Fluid Process Lab

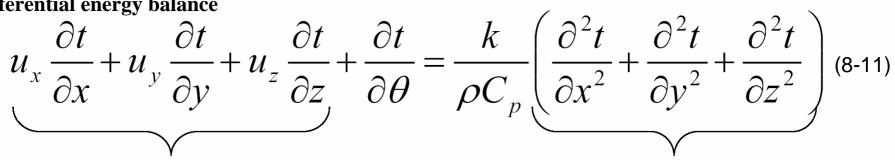
The temperature profile at a point in a flow system is influenced by the velocity profile.

The velocity profile is influenced by the temperature profile. (The velocity profile of an isothermal system may differ substantially from the velocity of a system in which heat is being transferred.)

Temperature profile in a fluid

Temperature profile in a fluid is influenced by the velocity profile

Differential energy balance



velocity profile

Temperature profile

Velocity profile is influenced by the temperature profile in a fluid **Navier-Stokes** equation

$$u_{x}\frac{\partial u_{x}}{\partial x} + u_{y}\frac{\partial u_{y}}{\partial y} + u_{z}\frac{\partial u_{z}}{\partial z} + \frac{\partial u_{x}}{\partial \theta} = g_{c}X - \frac{g_{c}}{\rho}\frac{\partial p}{\partial x} + v\left(\frac{\partial^{2}u_{x}}{\partial x^{2}} + \frac{\partial^{2}u_{x}}{\partial y^{2}} + \frac{\partial^{2}u_{x}}{\partial z^{2}}\right)$$

Note that viscosity is temp dependent !

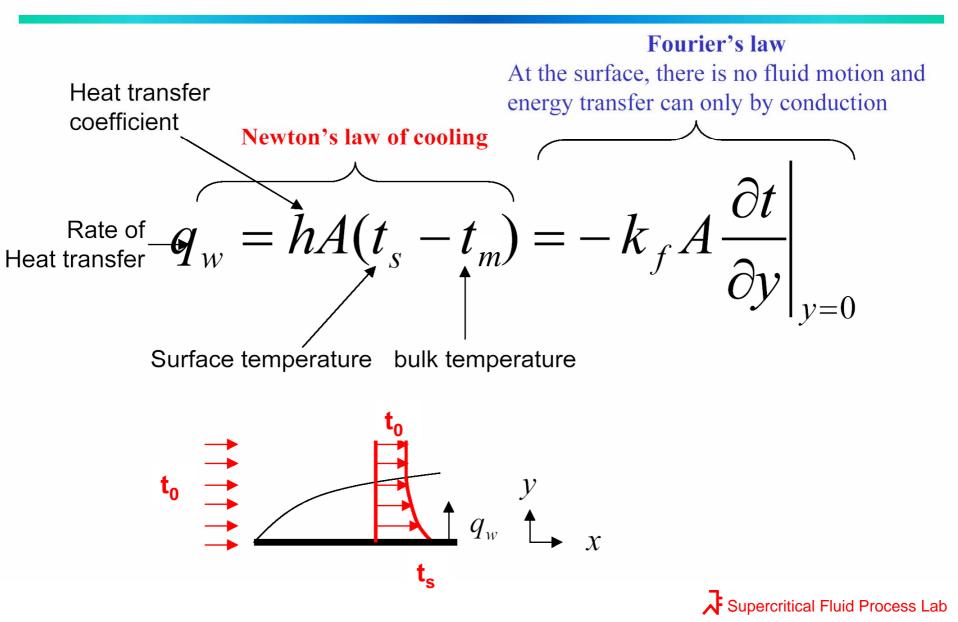
Simplification

The non-isothermal velocity profile can be used in solving the differential momentum and energy balances for a non-isothermal system.

This simplification may introduce a serious error when the viscosity of the fluid is strongly dependent on temperature.

Frequently the temperature gradient is greatest near the wall, and it is in this region that the velocity gradient is also greatest. The effect of temperature on the viscosity of the fluid at the wall may therefore have a pronounced effect on both the velocity and temperature profiles of the system.

Individual Heat-transfer Coefficients



Individual heat transfer coefficient, h

h is a function of

the properties of the fluid, the geometry and roughness of the surface, and the flow pattern of the fluid.

Evaluation of individual heat transfer coefficient, h

Several methods are available for evaluating $m{h}$

Laminar flow systems → Analytical methods

Turbulent systems

→ Integral methods
→ Mixing-length theory
→ Dimensional analysis

Evaluation of individual heat transfer coefficient, h

$$dq = kdA \left(\frac{dt}{dy}\right)_{y=0} = h(t_0 - t_s)dA$$
$$h = \frac{k}{t_0 - t_s} \left(\frac{dt}{dy}\right)_{y=0} = k \left\{\frac{d\left[(t - t_s)/(t_0 - t_s)\right]}{dy}\right\}_{y=0}$$

Velocity of flow past the heated surface \uparrow Temperature gradient at the wall \uparrow Heat transfer coefficient, $h \uparrow$

Individual Heat-transfer Coefficients

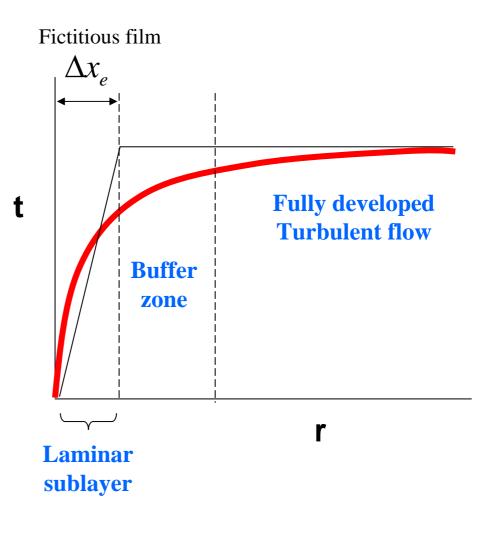
$$h = \frac{-k_f \left. \frac{\partial t}{\partial y} \right|_{y=0}}{t_s - t_0}$$

- The thermal boundary layer strongly influence the wall temperature gradient $\partial t / \partial y \Big|_{y=0}$
- The wall temperature gradient will determine the rate of heat transfer across the boundary layer
- Since (t_s-t_0) is a constant, independent of x, while δ_t increases with increasing x, temperature gradients in the boundary layer must decrease with increasing x.
- Accordingly, the magnitude of $\partial t / \partial y |_{y=0}$ decreases with increasing *x*, and if follows that q and h decreases with increasing *x*.

Individual film coefficient, h

$$h = \frac{k}{\Delta x_e}$$

If the resistance to heat flow is through of as existing only in a laminar film, h is $k/\Delta x_e$ where Δx_e is equivalent thickness of a the stationary film just thick enough to offer the resistance corresponding to observed value of h. Since there is often an appreciable resistance in the turbulent core and since the stationary film has not even an approximate physical counterpart in laminar flow, boiling and radiation, we shall refer h as an individual heat transfer coefficient.



Individual Heat-transfer Coefficients

Definition of *h*

Flow through a heated conduit

$$q = hA(t_s - t_b) \qquad t_b = \frac{1}{Au_{av}} \int_A u_x t dA$$

1

Natural convection

 $q = hA(t_s - t_\infty)$

 t_{∞} =Temp far from surface

Condensation

 $q = hA(t_{sv} - t_s)$ t_{sv} =Temp of sat vapor

Boiling fluid

 $q = hA(t_s - t_{sl})$ t_{sl} =Temp of sat liquid

Radiation

$$q = h_r A(t_{s1} - t_{s2})$$

Supercritical Fluid Process Lab

Individual Heat-transfer Coefficients

Convection in Circular pipes, Laminar : Eq. (22-40) pp352 Convection in Circular pipes, turbulent : Eq. (24-4) pp384 Convection from spheres : Eq. (24-18) pp395 Convection from a plane surface : Eq. (24-22)- Eq.(24-26) Boiling fluid : Eq. (25-5) pp412 Condensation on vertical tubes : Eq. (25-29) pp420 Condensation on horizontal tubes : Eq. (25-32) pp421

Individual heat transfer coefficients

h, Btu/(h)(ft²)(°F)

Steam, dropwise condensation Steam, film-type condensation Water, boiling Organic vapors, condensing Water, heating Oils, heating or cooling Steam, superheating Air, forced convection Air, natural convection

5,000-20,000 1,000-3,000 300-9,000 200-400 50-3,000 10-300 5-20 2 - 150.5-2

Multiply values of coefficients given in table by 5.678 to get $W/(m^2)(K)$

The analysis of unsteady-state heating or cooling of solid objects can be often be simplified by assuming that the resistance to heat conduction inside the solid is negligible compared to the convective heat-transfer resistance in the surrounding fluid.

The circumstances necessary to justify this assumption are a high thermal conductivity for the solid and a low convective heat transfer coefficient in the adjacent fluid. A metallic object being heated or cooled in air often constitute such a system. To illustrate, we shall calculate the time required for a mercury thermometer initially at 70°F, placed in an oven at 400°F, to reach 279°F. The thermometer bulb has a diameter of 0.24 in and will be assumed to be adequately represented as an infinitely long cylinder with negligible resistance to heat transfer either in the glass which is very thin or in the mercury, which has an adequately high thermal conductivity [k=5.6 Btu/(h)(ft)(°F) at 140°F]. The mean convective heat-transfer coefficient between the outside of the thermometer and the air in the oven will be taken as h=2 Btu/(h)(ft²)(°F).

Example 21-1: time required for a mercury thermometer

thermometer bulb ➡ infinite long cylinder with negligible resistance to heat transfer either in the glass or in the mercury

Heat balance on the thermometer bulb

$$hA(400-t) = \rho C_p V \frac{dt}{d\theta}$$

Rearrange and integrate

$$\frac{dt}{400-t} = \frac{hA}{\rho C_p V} d\theta \qquad \Rightarrow \qquad \ln \frac{400-279}{400-70} = -\frac{hA\theta}{\rho C_p V}$$

For a cylinder,

400°F

$$\frac{A}{V} = \frac{\pi DL}{\pi D^2 L / 4} = \frac{4}{D}$$

Example 21-1: time required for a mercury thermometer

$$\theta = \frac{\rho C_p}{h(A/V)} \ln \frac{400 - 279}{400 - 70}$$

$$\rho = 849 \ lb / ft^3$$

 $C_p = 0.033 \ Btu / (lb)(^{o}F)$

$$\theta = \frac{(849)(0.033)}{(2)(4/\frac{0.24}{12})} \ln \frac{330}{121} = 0.0707 \ln(2.72) = 0.0707 h$$
$$= 4.24 \text{ min}$$

For an infinite cylinder, $A/V = (\pi DL)/(\pi D^2/4) = 4/D$

Example 21-1: time required for a mercury thermometer

$$\ln \frac{400 - 279}{400 - 70} = -\frac{hA\theta}{\rho C_p V}$$

Biot number Fourier number
$$\frac{400 - 279}{400 - 70} = \exp\left(-\frac{hA\theta}{\rho C_p V}\right) = \exp\left[-\left(\frac{hL}{k}\left(\frac{k\theta}{\rho C_p L^2}\right)\right]$$

L : characteristic length scale
$$For an infinite cylinder, L=V/A=D/4$$

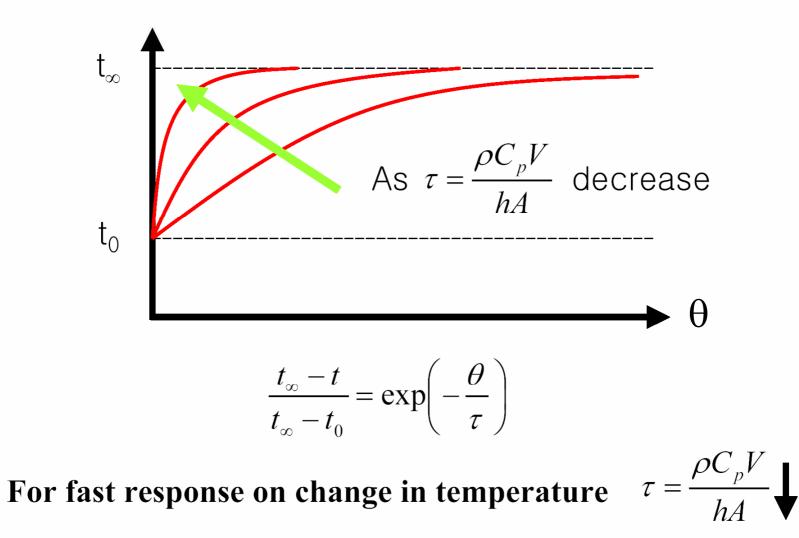
 $Y = e^{-\tau}$

 $\tau = 4.24 \min$

 $\tau = \frac{r}{hA}$: time constant (time required for the temperature difference driving force to fall to e⁻¹ or 0.368 of its initial value. ᢣᢄ

D: Co

Time constant



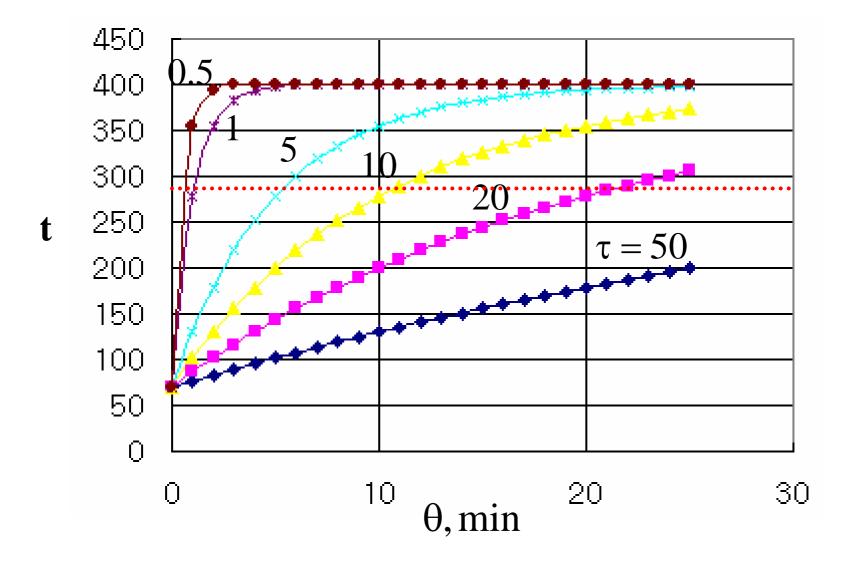
Supercritical Fluid Process Lab

Temperature response, t

τ =time constant

Ī		50	20	10	5	1	0.5
e	(0	Ŭ 70	70	70	70	70	70
	1	76,53444	86,09429	101,4037	129,8189	278,5998	355,3394
	2	82,93949	101,4037	129,8189	178,7944	355,3394	393,9558
	3	89,2177	115,9664	155,53	218,8922	383,5703	399,182
	4	95,37161	129,8189	178,7944	251,7214	393,9558	399,8893
	5	101,4037	142,9957	199,8449	278,5998	397,7765	399,985
	6	107,3163	155,53	218,8922	300,6059	399,182	399,998
	7	113,1118	167,4529	236,1268	318,623	399,6991	399,9997
	8	118,7925	178,7944	251,7214	333,3741	399,8893	400
	9	124,3608	189,5827	265,832	345,4514	399,9593	400
	10	129,8189	199,8449	278,5998	355,3394	399,985	400
	11	135,1688	209,6066	290,1525	363,435	399,9945	400
	12	140,4128	218,8922	300,6059	370,0631	399,998	400
	13	145,553	227,7249	310,0645	375,4897	399,9993	400
	14	150,5914	236,1268	318,623	379,9327	399,9997	400
	15	155,53	244,119	326,367	383,5703	399,9999	400
	16	160,3708	251,7214	333,3741	386,5485	400	400
	17	165,1158	258,9531	339,7144	388,9868	400	400
	18	169,7668	265,832	345,4514	390,9832	400	400
	19	174,3257	272,3755	350,6424	392,6176	400	400
	20	178,7944	278,5998	355,3394	393,9558	400	400
	21	183,1745	284,5205	359,5894	395,0515	400	400
	22	187,468	290,1525	363,435	395,9485	400	400
	23	191,6764	295,5099	366,9146	396,6829	400	400
	24	195,8015	300,6059	370,0631	397,2842	400	400
	25	199,8449	305,4534	372,912	397,7765	400	400

Temperature response, t, with time



Supercritical Fluid Process Lab

Biot Number (Bi)

$$Bi = \frac{hL}{k_s}$$

$Bi = \frac{\text{the internal thermal resistance of a solid}}{\text{the boundary layer thermal resistance}}$

Fourier Number (Fo)

$$Fo = \frac{\alpha\theta}{L^2}$$

$F_o = \frac{\text{the rate of heat conduction}}{\text{the rate thermal energy storage in a solid}}$

Reynolds Number (Re)

$$\operatorname{Re} = \frac{u_{\infty}L}{v}$$

$$Re = \frac{the inertia forces}{the viscous forces}$$

Prandtl Number (Pr)

$$\Pr = \frac{C_p \mu}{k} = \frac{\nu}{\alpha}$$

$Pr = \frac{the molecular momentum}{the thermal diffusivity}$

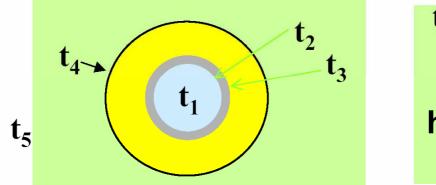
Individual heat transfer coefficient, hOverall heat transfer coefficient, U

 $q = hA\Delta t_{individual}$

$q = UA\Delta t_{overall}$

Overall Heat-Transfer Coefficient

Heat is transfer by a series of conduction and convection mechanisms



Г

$$\begin{array}{c|c} t_{5} \\ t_{4} \\ h_{0} \\ t_{3} \\ t_{2} \\ t_{1} \\ t_{1} \\ t_{1} \\ t_{1} \\ t_{2} \\ t_{1} \\ t_{1} \\ t_{1} \\ t_{2} \\ t_{1} \\ t_{1} \\ t_{1} \\ t_{2} \\ t_{1} \\ t_{1} \\ t_{2} \\ t_{1} \\ t_{2} \\ t_{1} \\ t_{2} \\ t_{1} \\ t_{1}$$

$$q = h_i A_i (t_1 - t_2) = k_b A_{b, lm} \frac{t_2 - t_3}{\Delta r_b} = k_c A_{c, lm} \frac{t_3 - t_4}{\Delta r_c} = h_0 A_0 (t_4 - t_5)$$

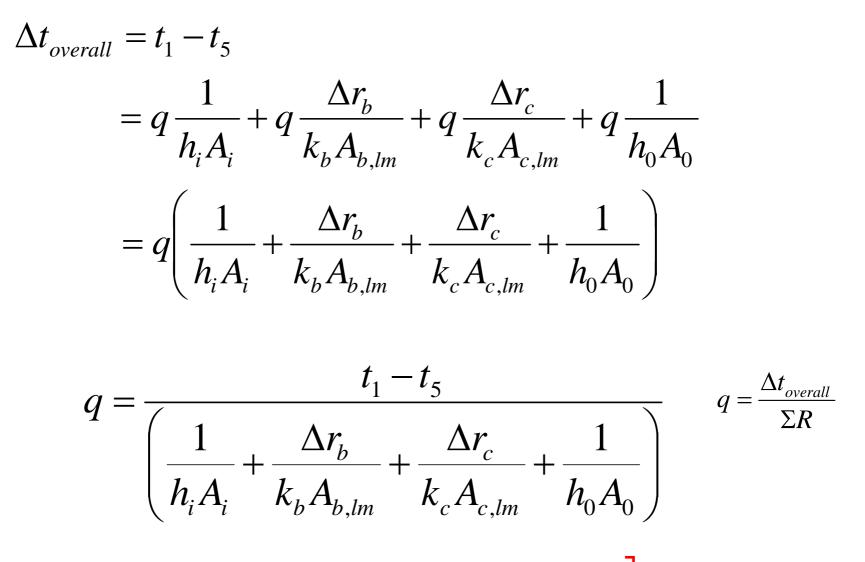
(21-12)

Thermal $\frac{1}{h_i A_i}$ $\frac{\Delta r_b}{k_b A_{b,lm}}$ $\frac{\Delta r_c}{k_c A_{c,lm}}$ $\frac{1}{h_0 A_0}$

Individual temperature drops

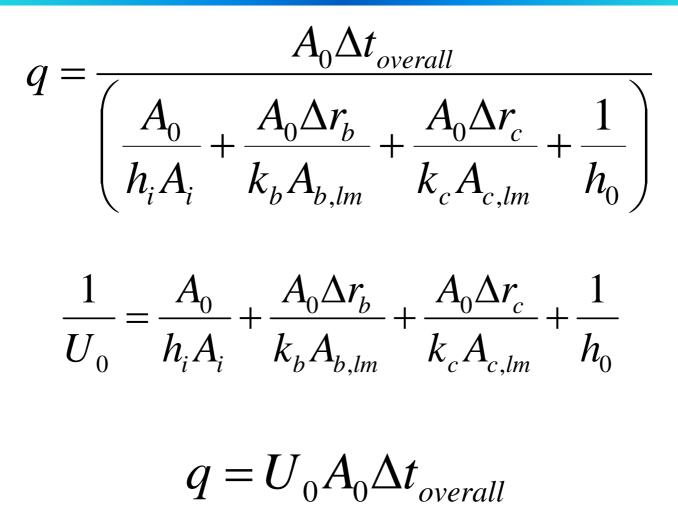
 $t_1 - \underbrace{t_2}_{i_2} = q \frac{\mathbf{I}}{h_i A_i}$ $t_{2} - t_{3} = q \frac{\Delta r_{b}}{k_{b} A_{b,lm}}$ $t_3 - t_4 = q \frac{\Delta r_c}{k_c A_{c \ lm}}$ $t_{4} - t_{5} = q \frac{1}{h_{0}A_{0}}$

Overall temperature drops

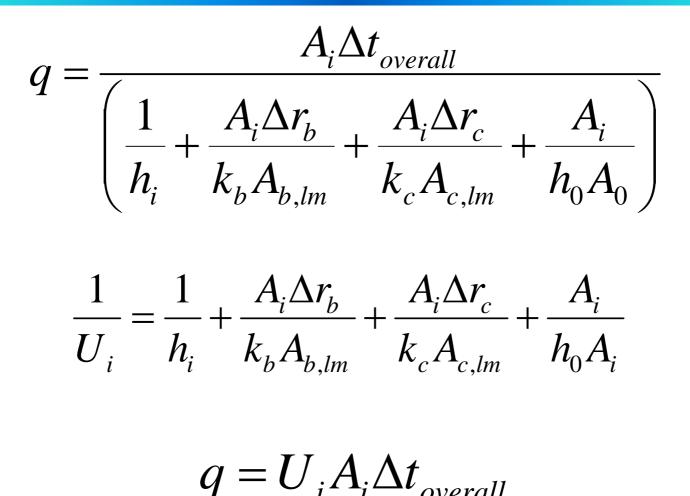


Supercritical Fluid Process Lab

Overall coefficients of heat transfer based on the outside area U₀



Overall coefficients of heat transfer based on the inside area U₀



Supercritical Fluid Process Lab

Overall coefficients of heat transfer

$q = U_0 A_0 \Delta t_{overall}$ $= U_i A_i \Delta t_{overall}$

Overall coefficients of heat transfer

$$q = \frac{\Delta t_{overall}}{\Sigma R}$$
$$\Sigma R = \frac{1}{U_0 A_0} = \frac{1}{U_i A_i}$$

$$U_0 A_0 = U_i A_i$$

Approximation of overall coefficients of heat transfer based on the inside area U_i

$$\frac{1}{U_i} = \frac{1}{h_i} + \frac{A_i \Delta r_b}{k_b A_{b,lm}} + \frac{A_i \Delta r_c}{k_c A_{c,lm}} + \frac{A_i}{h_0 A_i}$$
$$\frac{1}{h_i} \gg \frac{\Delta r_b}{k_b}, \frac{\Delta r_c}{k_c}, \frac{1}{h_0} \qquad \text{Approximation}$$
$$\frac{1}{U_i} = \frac{1}{h_i} + \frac{\Delta r_b}{k_b} + \frac{\Delta r_c}{k_c} + \frac{1}{h_0}$$

Supercritical Fluid Process Lab

Overall coefficients of heat transfer of the flat parallel walls

$\frac{1}{U_i} = \frac{1}{U_0} = \frac{1}{h_i} + \frac{\Delta x_b}{k_b} + \frac{\Delta x_c}{k_c} + \frac{1}{h_0}$

Overall coefficients of heat transfer

Table 21-2

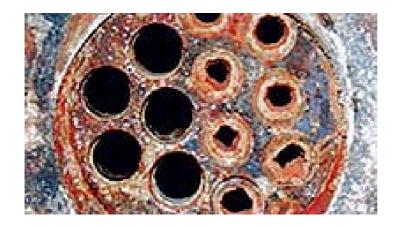
U, Btu/(h)(ft^2)(°F)

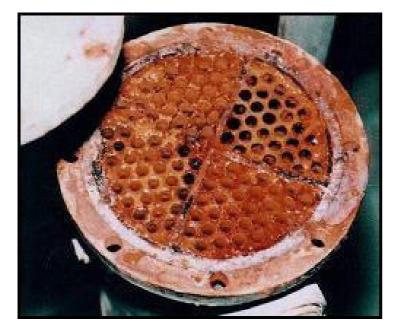
Stabilizer reflux condenser	94
Oil pre-heater	108
Reboiler (condensing steam to re-boiling water)	300-800
Air heater (molten salt to air)	6
Steam-jacketed vessel evaporating milk	500

Fouling in heat exchanger



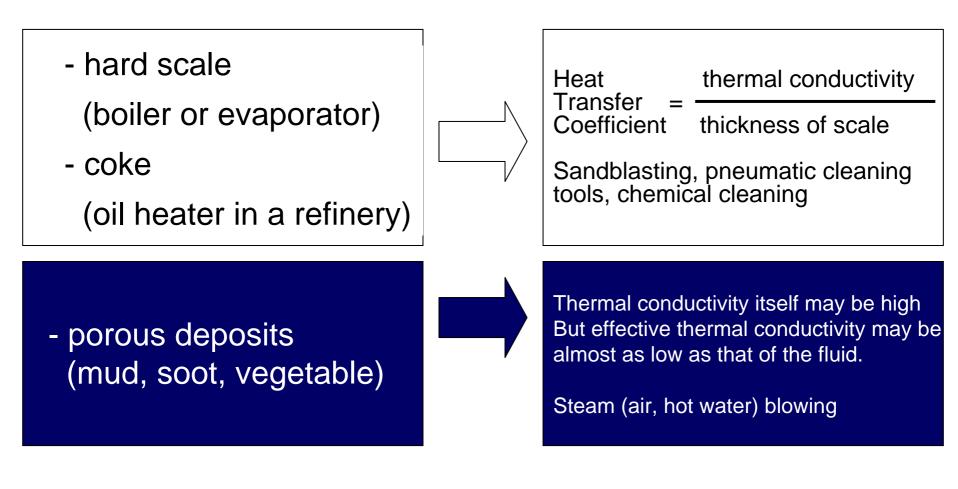
Fouling in heat exchanger



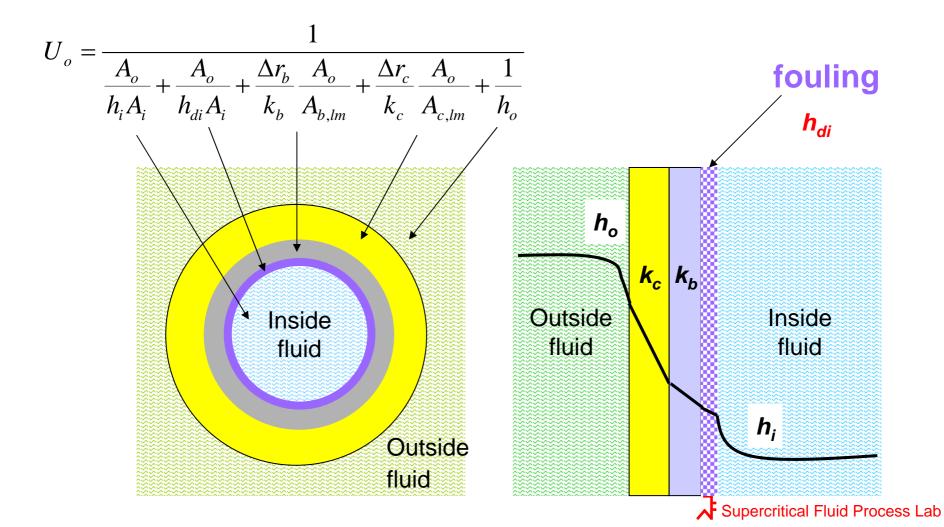




Fouling: deposits on heat transfer surface



 $q = h_d A \Delta t_{scale}$



 $q = h_d A \Delta t_{scale}$

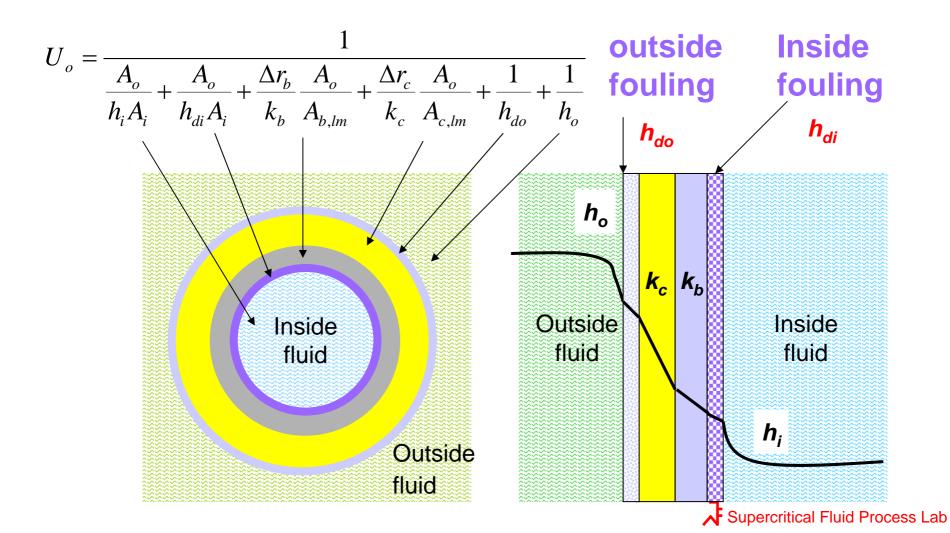


Table 21-3

	h _d , Btu/(h)(ft²)(⁰F)
Overhead vapors from crude-oil distillation Dry crude oil (300-100°F):	1000
Velocity under 2 ft/sec	250
Velocity 2-4 ft/sec	330
Velocity over 4 ft/sec	500
Air	500
Steam (non-oil-bearing)	200
Water, Great Lakes, over 125°F	500

A reflux condenser contains $\frac{3}{4}$ in. 16-gauge copper tubes in which cooling water circulates. Hydrocarbon vapors condense on the exterior surfaces of the tubes. Find the overall heat-transfer coefficient U_o . The inside convective coefficient can be taken as 4500 W/m²·K, and the outside coefficient as 1500 W/m²·K.

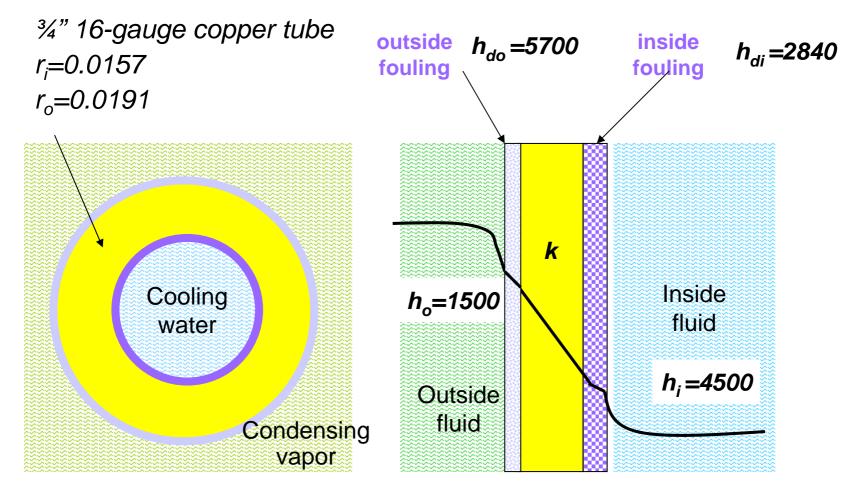
Approximately fouling coefficients from Table 21-3 are

 $h_{d0} = 5700 \text{ W/m}^2 \cdot \text{K}$ $h_{di} = 2840 \text{ W/m}^2 \cdot \text{K}$

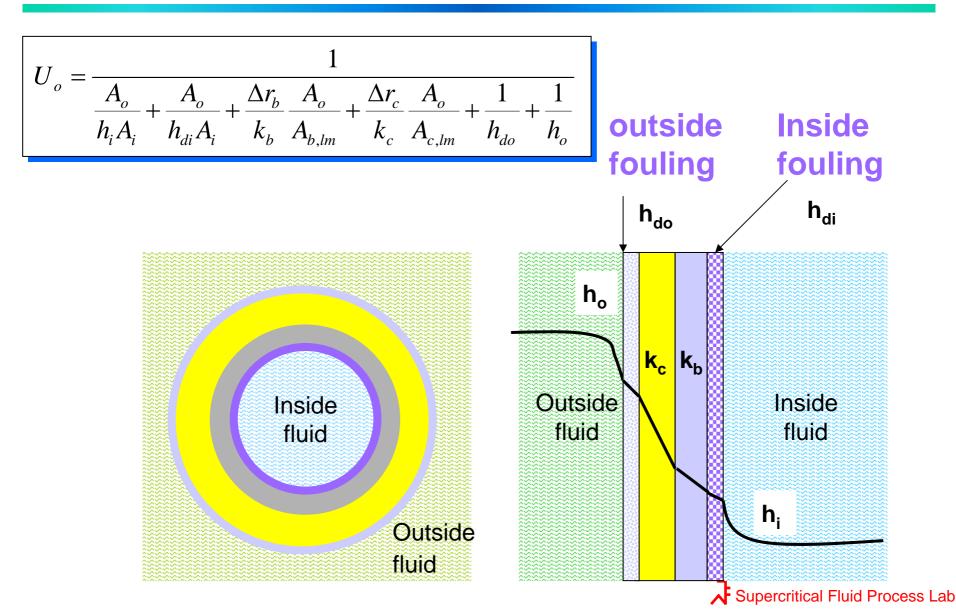
Overhead vapors from crude-oil distillation	1000
Water, Great Lakes, over 125°F	500

Btu/(h)(ft²)(°F)

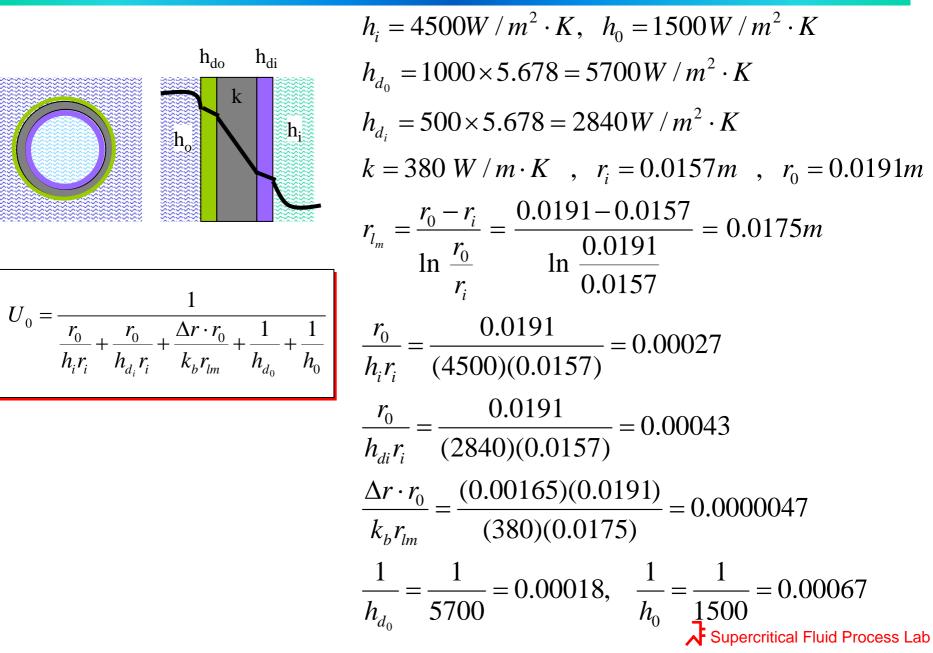
Example 21-2 Find U_o



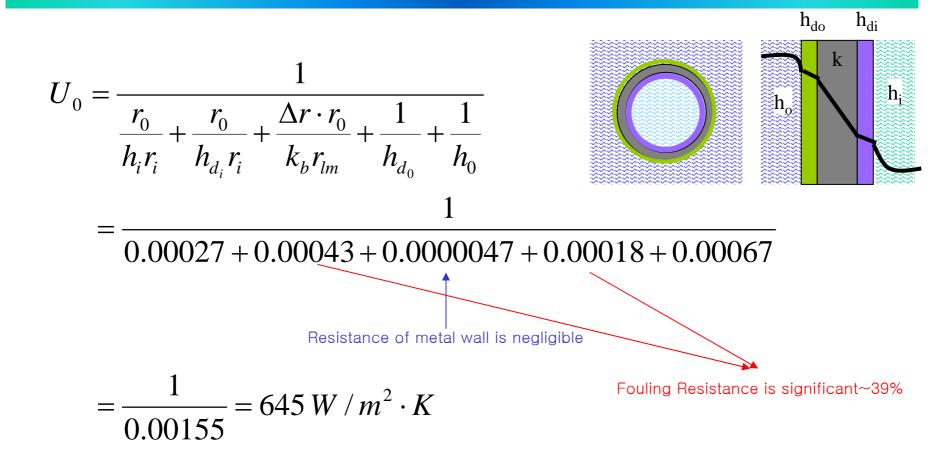
unit: W/m²·K



Example 21-2

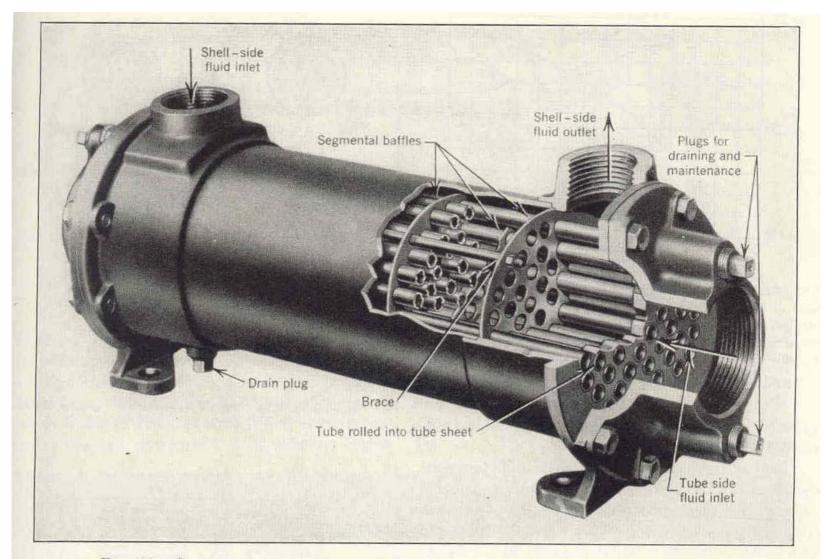


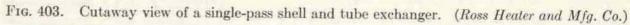
Example 21-2



$$U_i A_i = U_o A_o$$

 $U_i = (645)(0.0191) / ((0.0157) = 785 W / m^2 \cdot K)$





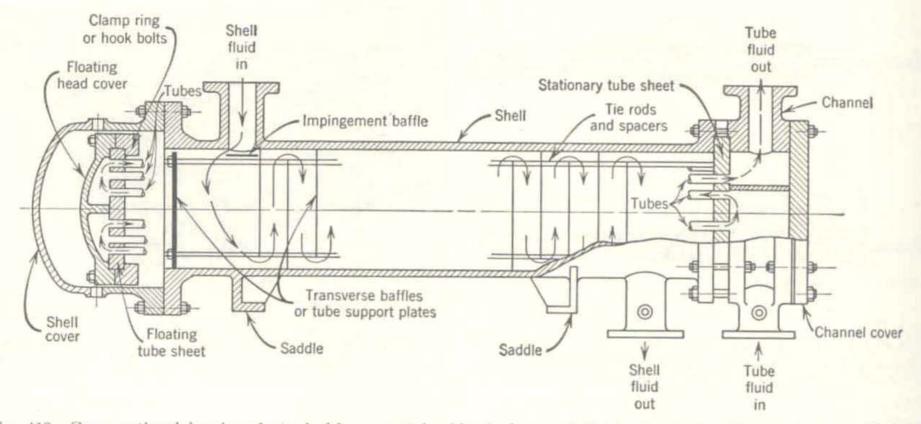


FIG. 410. Cross-sectional drawing of a typical four-pass tube side, single-pass shell side, floating head heat exchanger. (Tubular Exchanger Manufacturers Association.)

Supercritical Fluid Process Lab

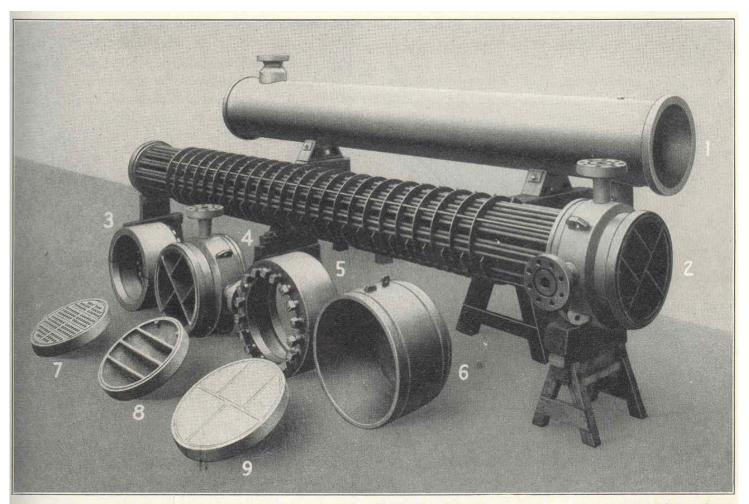
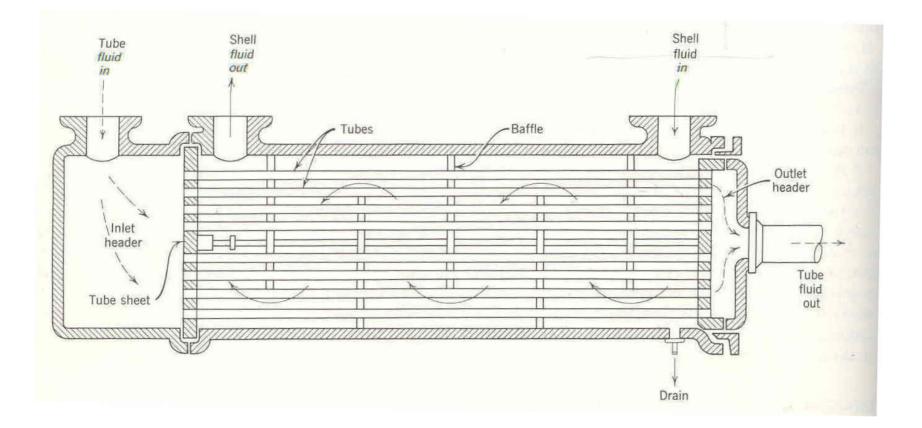


Fig. 412. Component parts of a feed water heater. (American Locomotive Co.) 1, shell; 2, assembled tube bundle; 3, clamp ring for floating head; 4, channel with integral tube sheet; 5, clamp ring for channel cover; 6, shell cover; 7, floating head tube sheet; 8, floating head cover; 9, channel cover.



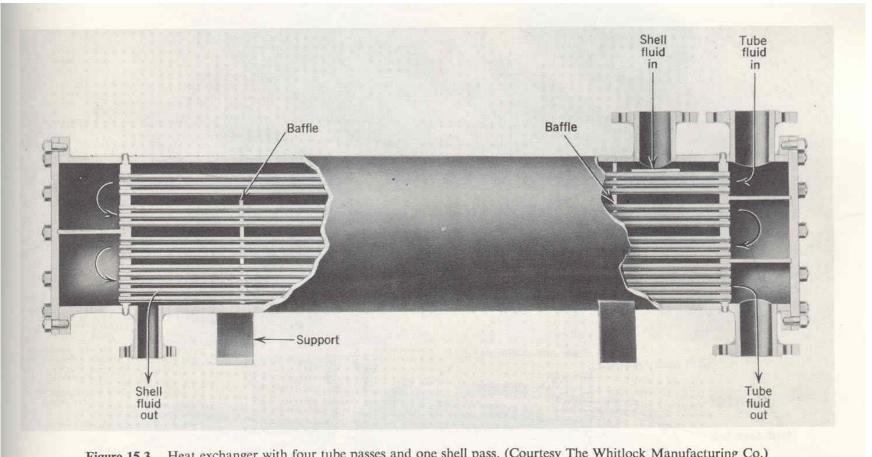
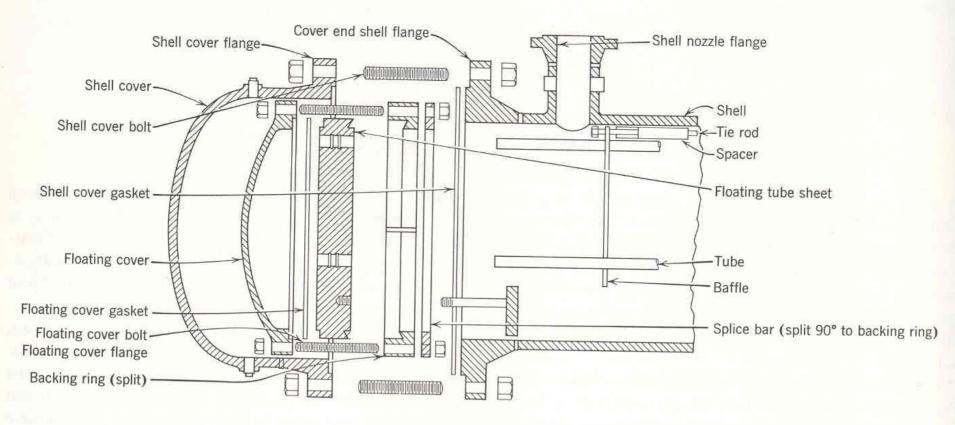


Figure 15.3. Heat exchanger with four tube passes and one shell pass. (Courtesy The Whitlock Manufacturing Co.)



(c) Detail of floating head.

Figure 15.4. Two-tube-pass, one-shell-pass, floating-head heat exchangers. (Courtesy National U.S. Radiator Corp., Heat Transfer Division.)

Shell-and-Tube Heat Exchangers

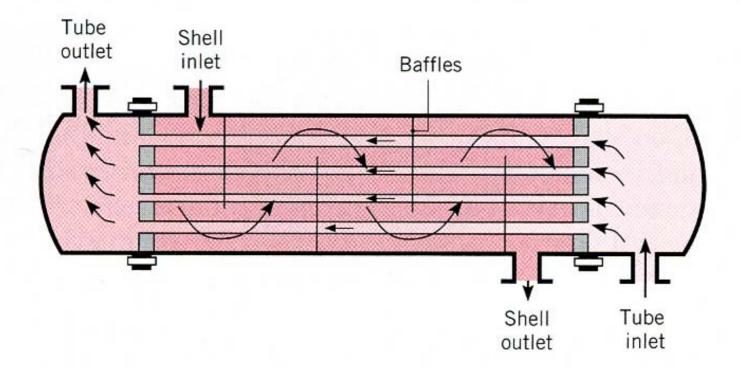


FIGURE 11.3 Shell-and-tube heat exchanger with one shell pass and one tube pass (cross-counterflow mode of operation).

Shell-and-Tube Heat Exchangers

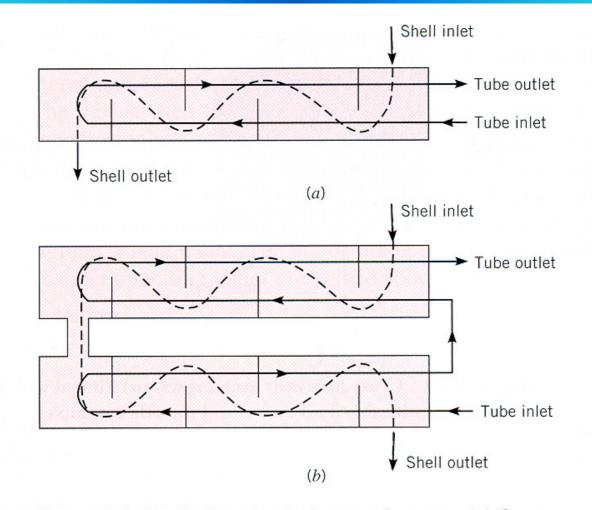
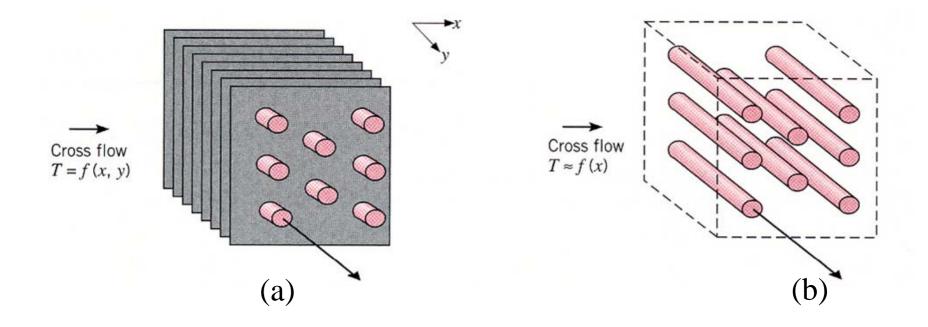


FIGURE 11.4 Shell-and-tube heat exchangers. (*a*) One shell pass and two tube passes. (*b*) Two shell passes and four tube passes.

Figure 15.5 Extended surface tubing. (Courtesy The Griscom-Russell Co.)

Crossflow heat exchangers



- (a) Finned with both fluid unmixed
- (b) Unfinned with one fluid mixed and the other unmixed

Compact heat exchangers

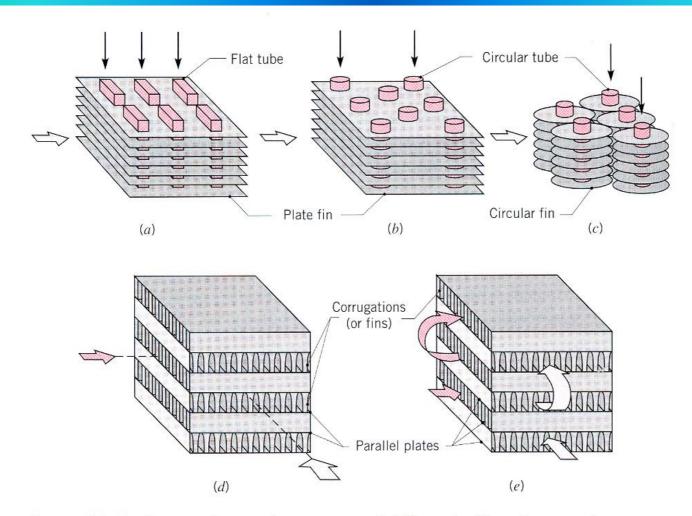
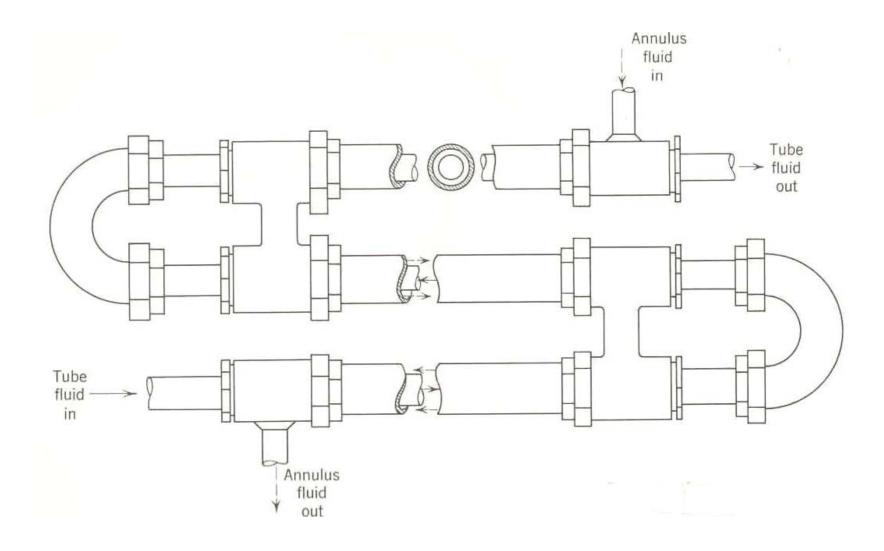
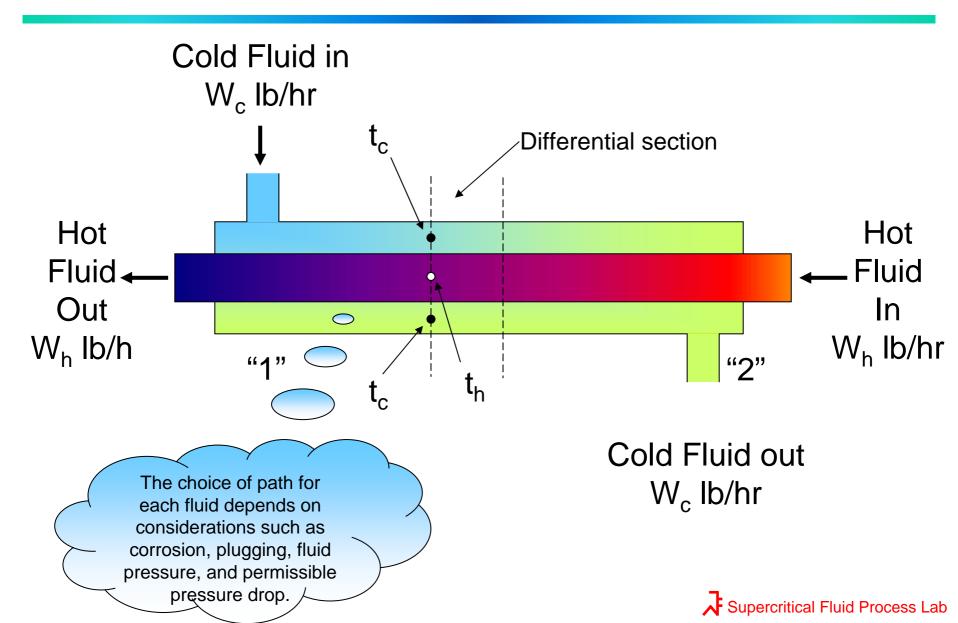
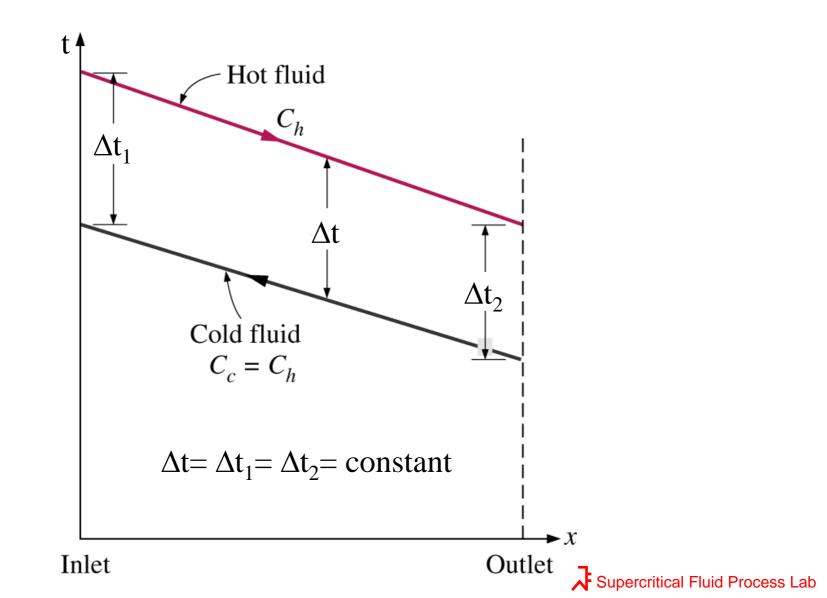
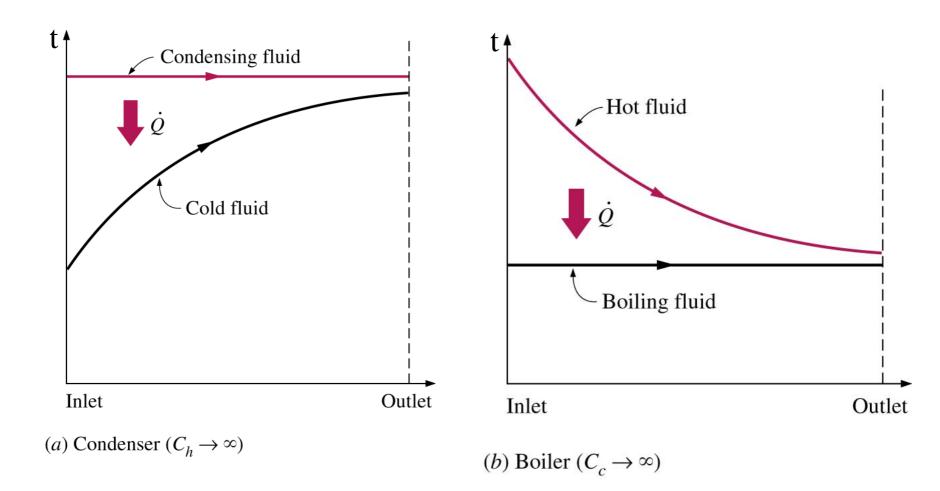


FIGURE 11.5 Compact heat exchanger cores. (a) Fin-tube (flat tubes, continuous plate fins). (b) Fin-tube (circular tubes, continuous plate fins). (c) Fin-tube (circular tubes, circular fins). (d) Plate-fin (single pass). (e) Plate-fin (multipass).

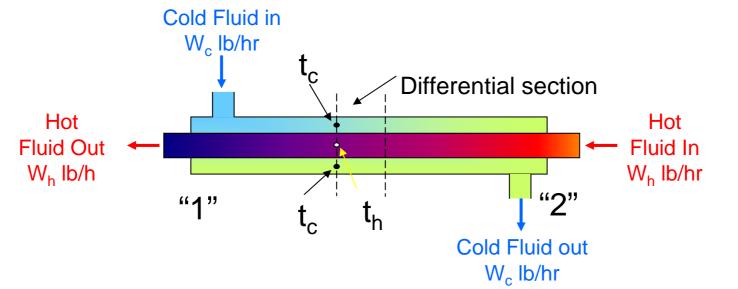








Double-pipe heat exchanger



The determination of the required heat transfer area is one of the principal objective in the design of heat exchangers. For a differential segment of the exchanger for which the outside tube area is dA_0 ,

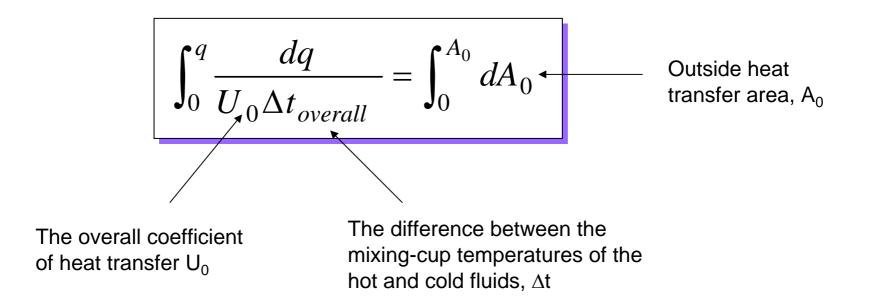
$$q = U_{0}A_{0}\Delta t_{overall}$$
Generally,

$$dq = U_{0}\Delta t_{overall}dA_{0} \leftarrow U_{0} \& \Delta t \text{ are varing}$$

$$= U_{i}\Delta t dA_{i}$$

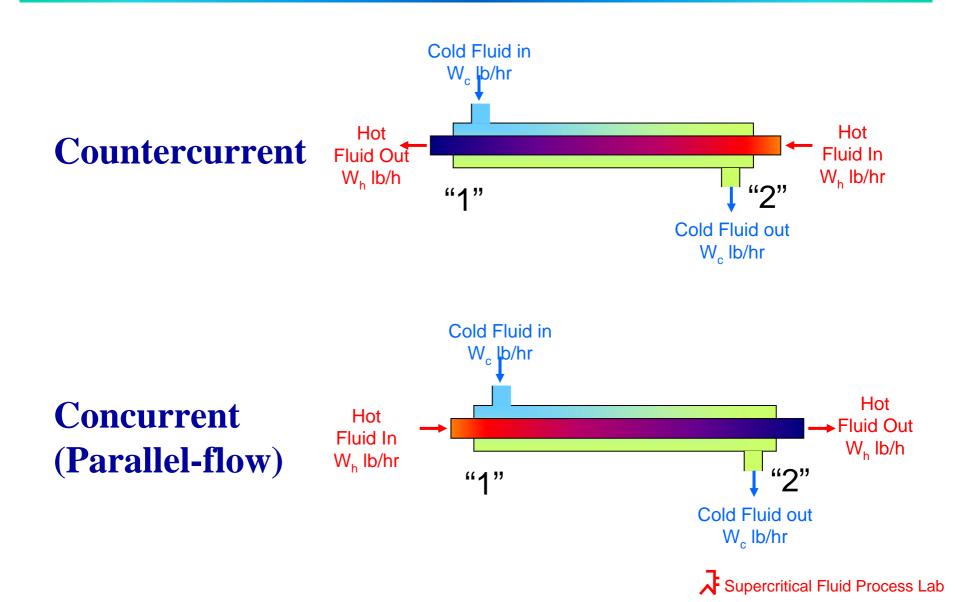
$$\int_{0}^{q} \frac{dq}{U_{0}\Delta t_{overall}} = \int_{0}^{A_{0}} dA_{0}$$
(21-23)
Supercritical Fluid Process Lab

Double-pipe heat exchanger

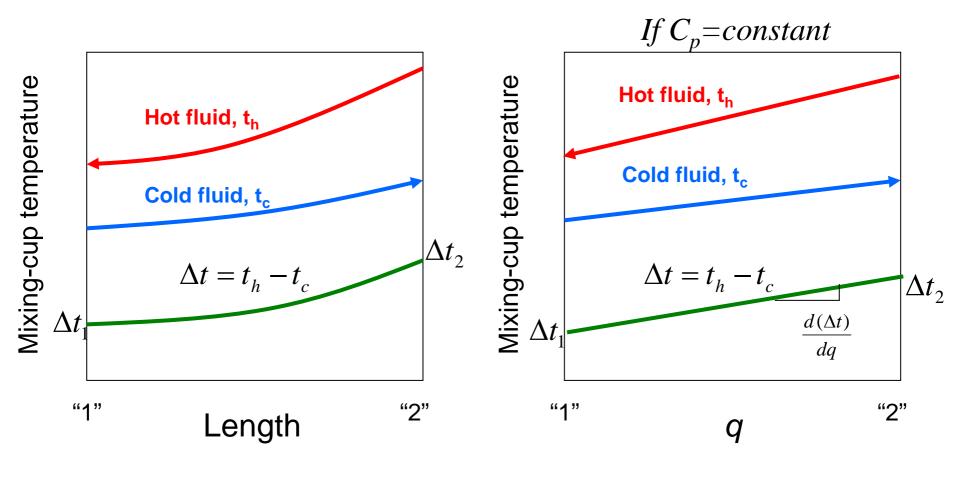


Under steady conditions, the mixing-cup temperature of the hot and cold fluids in a heat exchanger are assumed to be fixed at any cross section normal to the flow. The overall temperature difference is $\Delta t = t_h - t_c$.

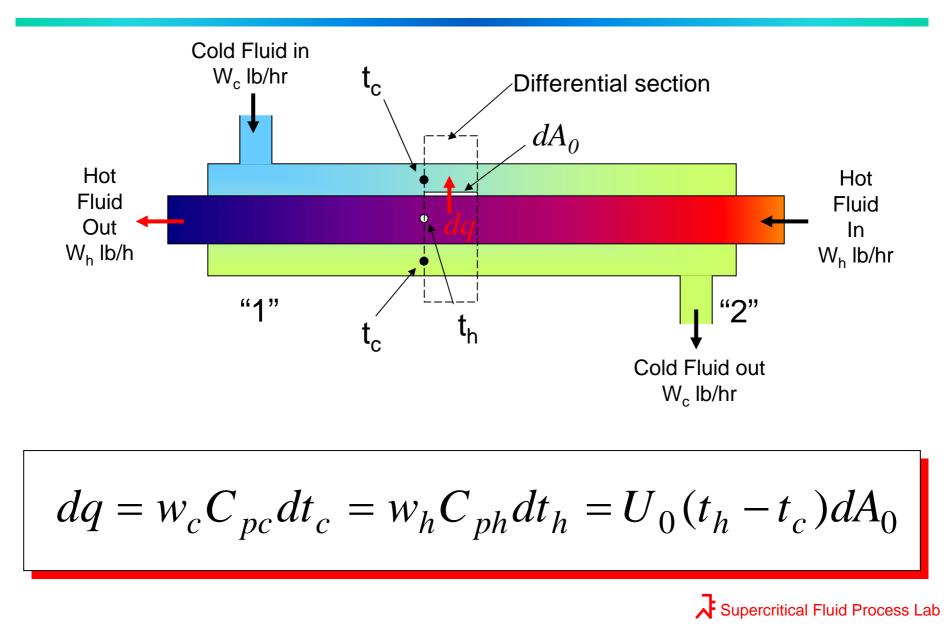
Countercurrent vs. Concurrent



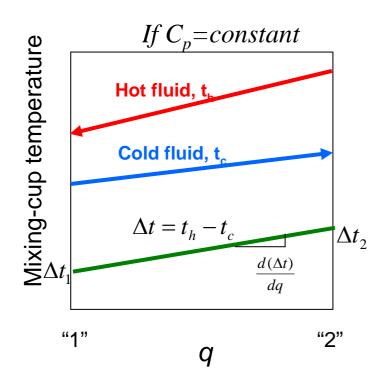
Double-pipe heat exchanger Countercurrent



Heat balance for the differential section



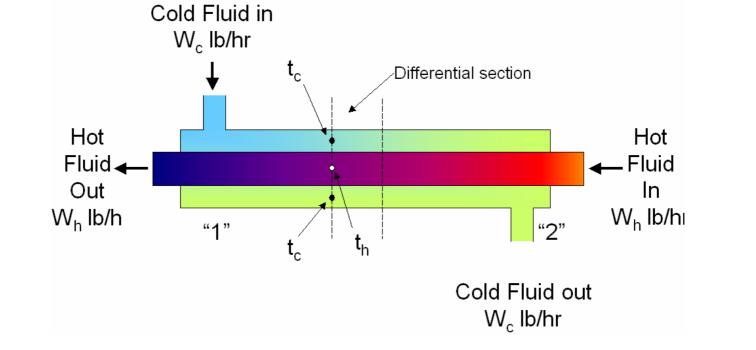
Double-pipe heat exchanger



The difference between the mixing cup temperatures, Δt , is also linear w.r.t. *q*.

 $\frac{d(\Delta t)}{dq} = \frac{\Delta t_2 - \Delta t_1}{q}$

Heat Balance in the differential section of the exchanger



 $dq = w_c C_{pc} dt_c = w_h C_{ph} dt_h = U_0 (t_h - t_c) dA_0 = U_0 \Delta t dA_0 \quad (21-25)$

$$\frac{d(\Delta t)}{dq} = \frac{\Delta t_2 - \Delta t_1}{q}$$
(21-26)

Heat Balance in the differential section of the exchanger

$$dq = U_0 \Delta t dA_0 \qquad \frac{d(\Delta t)}{dq} = \frac{d(\Delta t)}{U_o \Delta t dA_o} = \frac{\Delta t_2 - \Delta t_1}{q}$$
(21-27)

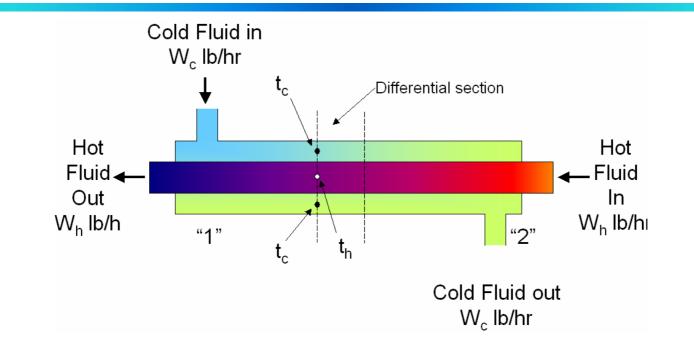
$$\int_{\Delta t_1}^{\Delta t_2} \frac{d(\Delta t)}{U_o \Delta t} = \frac{\Delta t_2 - \Delta t_1}{q} \int_0^{A_o} dA_o$$
(21-28)

If U_o=constant

$$q = U_o A_o \left[\frac{\Delta t_2 - \Delta t_1}{\ln(\Delta t_2 / \Delta t_1)} \right] \qquad \qquad \text{LMTD} \qquad (21-29)$$

$$Mean \qquad \qquad \text{Temperature} \qquad \text{Difference} \qquad \qquad \text{Supercritical Fluid Process Lab}$$

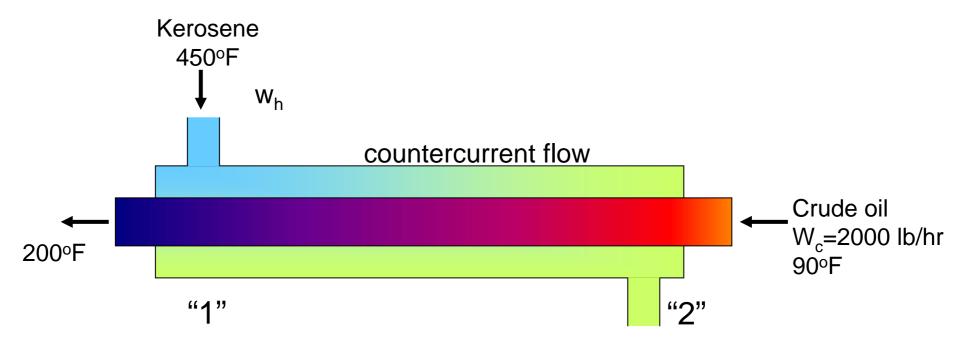
Heat Exchange in double pipe heat exchanger



$$q = U_o A_o \left[\frac{\Delta t_2 - \Delta t_1}{\ln(\Delta t_2 / \Delta t_1)} \right] = w_c C_{pc} \Delta t_c = w_h C_{ph} \Delta t_h$$

Example 21-3

If the temperature of approach (minimum temperature difference between fluids) is 20°F, determine the A_o , w_h for (a) concurrent flow and (b) countercurrent flow.



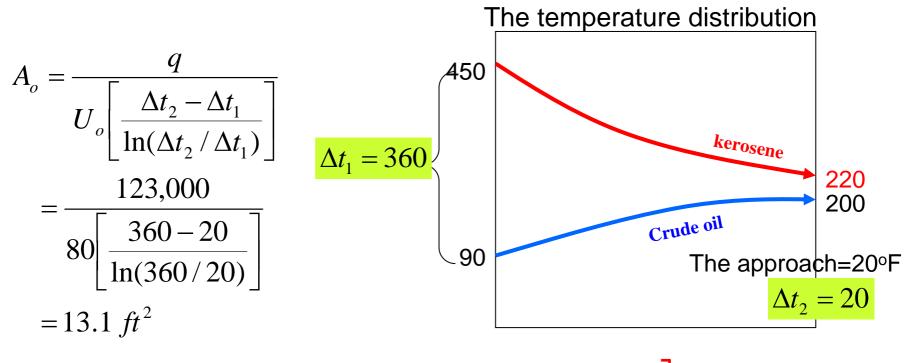
Overall coefficient U_o=80 Btu/(h)(ft²)(°F) Specific heat of crude oil = 0.56 Btu/(ib)(°F) Specific heat of kerosene = 0.60 Btu/(ib)(°F)

Example 21-3 (a) Concurrent flow

Total heat load:

 $q = w_c C_{pc} \Delta t_c = (2000)(0.56)(200 - 90) = 123,000 Btu / h$

$$w_h = \frac{q}{C_{ph}\Delta t_h} = \frac{123,000}{(0.60)(450 - 220)} = 891 \, lb \, / \, h$$

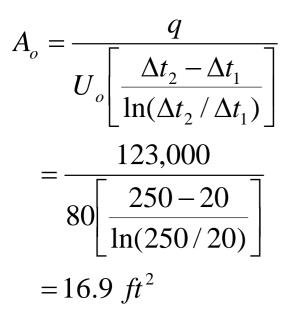


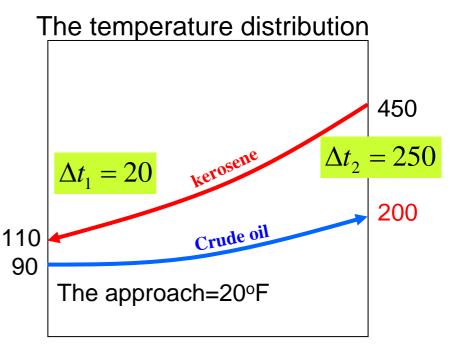
Example 21-3 (b) Countercurrent flow

Total heat load:

 $q = w_c C_{pc} \Delta t_c = (2000)(0.56)(200 - 90) = 123,000 Btu / h$

$$w_h = \frac{q}{C_{ph}\Delta t_h} = \frac{123,000}{(0.60)(450 - 110)} = 603 \, lb \, / \, h$$





If
$$U_0$$
 is a function of temperature
 $U_o = a + b\Delta t$

$$(21-30) \quad \int_{\Delta t_1}^{\Delta t_2} \frac{d(\Delta t)}{U_o \Delta t} = \frac{\Delta t_2 - \Delta t_1}{q} \int_0^{\Lambda_0} dA_o \rightarrow \int_{\Delta t_1}^{\Delta t_2} \frac{d(\Delta t)}{(a + b\Delta t)\Delta t} = \frac{\Delta t_2 - \Delta t_1}{q} A_o$$

$$\int_{\Delta t_1}^{\Lambda t_2} \frac{d(\Delta t)}{(a + b\Delta t)\Delta t} = \int_{\Delta t_1}^{\Lambda t_2} \left(\frac{1/a}{\Delta t} + \frac{-b/a}{a + b\Delta t}\right) d(\Delta t)$$

$$= \left[\frac{1}{a} \ln \Delta t - \frac{1}{a} \ln(a + b\Delta t)\right]_{\Lambda t_1}^{\Delta t_2}$$

$$= \left[\frac{1}{a} \ln \frac{\Delta t}{a + b\Delta t}\right]_{\Delta t_1}^{\Delta t_2}$$

$$= \frac{1}{a} \ln \left(\frac{\Delta t_2}{a + b\Delta t_2}\right) \left(\frac{a + b\Delta t_1}{\Delta t_1}\right)$$

$$= \frac{1}{a} \ln \frac{U_{o1}\Delta t_2}{U_{o2}\Delta t_1} \qquad (21-31)$$

If U_o is a function of temperature $U_o = a + b\Delta t$

$$U_{o2} = a + b\Delta t_2$$
$$U_{o1} = a + b\Delta t_1$$

$$U_{o2} - U_{o1} = b(\Delta t_2 - \Delta t_1)$$

$$b = \frac{U_{o2} - U_{o1}}{\Delta t_2 - \Delta t_1}$$

$$a = \frac{U_{o1}\Delta t_2 - U_{o2}\Delta t_1}{\Delta t_2 - \Delta t_1}$$
(21-32)

If U_o is a function of temperature $U_o = a + b\Delta t$

$$\frac{\Delta t_2 - \Delta t_1}{q} A_o = \frac{1}{a} \ln \frac{U_{o1} \Delta t_2}{U_{o2} \Delta t_1}$$

$$a = \frac{U_{o1}\Delta t_2 - U_{o2}\Delta t_1}{\Delta t_2 - \Delta t_1}$$

$$q = \frac{U_{o1}\Delta t_2 - U_{o2}\Delta t_1}{\ln \frac{U_{o1}\Delta t_2}{U_{o2}\Delta t_1}} A_o$$

(21-34)

Heat transfer rate in double pipe heat exchanger

$$U_{o} = const \qquad \qquad q = U_{o}A_{o} \frac{\Delta t_{2} - \Delta t_{1}}{\ln\left(\frac{\Delta t_{2}}{\Delta t_{1}}\right)} \qquad (21-29)$$

$$U_{o} = a + b\Delta t \qquad q = \frac{U_{o1}\Delta t_{2} - U_{o2}\Delta t_{1}}{\ln \frac{U_{o1}\Delta t_{2}}{U_{o2}\Delta t_{1}}} A_{o} \qquad (21-34)$$

Homework

PROBLEMS 21-1 21-6 21-10 21-15 21-17

Due on November 2

