

2006 Term Project Review

Dong-il "Dan" Cho

School of Electrical Engineering and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

> Email: dicho@snu.ac.kr URL: http://nml.snu.ac.kr

Project Goals & Design Constraints

- Design a resonator to resonate at exactly 10 kHz ۲
 - Atmospheric pressure
 - Resonate at 10 kHz ± 0.5 kHz
 - Low actuation voltage
- **Design Constraints** ٠
 - Die size: 4mm X 4 mm
 - Lithography, etch constraints: 4 um (line and space)
 - Minimize the footing phenomenon _
 - Resonance frequency: 10 kHz ± 0.5 kHz
 - Actuation voltage: The lower, the better

Dong-il "Dan" Cho Nano/Micro Systems & Controls Lab. This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

Measurement Considerations

Why use biased AC voltage?

 $F \propto V_{\rm AC}^{2} = V_{\rm AC MAX}^{2} \cos^{2} \omega t$

 \rightarrow DC term & 2 ω term remains

 $F \propto V^2$

 $F \propto (1 + \cos 2\omega t)$

Dong-il "Dan" Cho Nano/Micro Systems & Controls Lab. This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

2006 Design Summary

	#		1	2	3	4	!	5	6	7	8	3	9	10	11
	Туре	#1	#2	#1	#1	#2	#1	#2	#1	#1	#1	#2	#1	#1	#1
	type	folded -flexure	folded -flexure	folded -flexure	folded	folded	folded -flexure	folded -flexure	folded	folded	folded	folded	folded -flexure	folded	guided -end
spring design	spring constant [N/m]	396	206.4	429.93	178	30.6	729	1978	2112	625	94.6	109.6	24.1	654	108.7
mass design	Mass [kg]	1.00E-07	4.70E-08	1.09E-07	5.19E-08	9.02E-09	1.29E-07	3.51E-07	4.01E-07	1.58E-07	2.20E-08	2.30E-08	6.13E-09	1.71E-07	2.75E-08
target frequency	[kHz]	10.02	10.55	10.00	9.32	9.27	11.96	11.95	11.60	10.00	10.40	11.00	9.98	9.85	10.00

result	actuation	ο	x	0	x	x	x	0	x	x	0	0	ο	ο	ο
	actuation frequency [kHz]	9.5	-	9.2	-	-	-	9.8	-	-	9.8	10	10.1	9.9	10
	applied voltage	24V (DC) 16V (AC)	-	12.5 (DC) 5V (AV)	-	-	-	9V (DC) 8.5V (AC)	-	-	24V (DC) 16V (AC)	40V (DC) 32V (AC)	- (DC) 10.1(AC)	28V (DC) 5V (AC)	4.8V (DC) 5V (AC)

Nano/Micro Systems & Controls Lab. This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

4

DC Voltage	24 V	DC Voltage	-
AC Voltage	16 V	AC Voltage	-
Natural Frequency	9.1 kHz ~ 10.1 kHz	Natural Frequency	-
Remarks	# of spring : 4	Remarks	# of spring : 8

[Design 1]

[Design 2]

• Too small etch hall → Release failure

Dong-il "Dan" Cho This material is intende

Nano/Micro Systems & Controls Lab.

DC Voltage	12.5 V				
AC Voltage	5 V				
Natural Frequency	ISRC: 9.2 kHz KETI: 9.9 kHz				
Remarks	Spring width : 5um (ISRC Fab., KETI Fab.)				

• Less footing effect \rightarrow More accurate frequency

AC Voltage5 VNatural FrequencyISRC: 7.5 kHzRemarksSpring width : 10um
(ISRC Fab.)

Footing effect → Frequency spec out

Dong-il "Dan" Cho This material is intend Nano/Micro Systems & Controls Lab.

Nano/Micro Systems & Controls Lab.

DC Voltage	20 V	DC Voltage	15 V	
AC Voltage	15 V	AC Voltage	10 V	
Natural Frequency	8.3 kHz	Natural Frequency	9.27 kHz	
Remarks	Design 2/ISRC Fab.	Remarks	Design 2/KETI Fab.	

• Footing & Under cut difference \rightarrow Spring & Mass difference \rightarrow Frequency difference

Dong-il "Dan" Cho Nano/Micro Systems & Controls Lab. This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

8

[Design 1]

[Design 2]

• All spring is close each other \rightarrow Wrong actuating mode

Nano/Micro Systems & Controls Lab.

L.	ayout]		Design]	
DC Voltage	-	DC Voltage	-	
AC Voltage -		AC Voltage	-	
Natural Frequency	-	Natural Frequency	-	
Remarks Designed Freq.: 9.475 kHz		Remarks Designed Free 10.01 kHz		
[Desi	gn 1]	[Des	ign 2]	

• Two beams are close etch other \rightarrow Electrostatic force problem

Large mass & short spring

Nano/Micro Systems & Controls Lab.

- Two modes are close etch other \rightarrow Wrong actuating mode
- Cleaning problem after release \rightarrow Particle under the structure

Nano/Micro Systems & Controls Lab.

Acc.V Mac 5.00 kV 71x	инически и и и и и и и и и и и и и и и и и и	Acc. V Magn WD 5.00 kV 58x 23.4	-1 500 μm

DC Voltage	24 V	DC Voltage	40 V
AC Voltage	16 V	AC Voltage	32 V
Natural Frequency	9.7 kHz ~ 10.3 kHz	Natural Frequency	10 kHz
Remarks	No Tuning	Remarks	Tuning Voltage : 0 V

[Design 1]

[Design 2]

• Using the negative stiffness effect

for natural frequency control

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

Dong-il "Dan" Cho Nano/Micro Systems & Controls Lab.

Nano/Micro Systems & Controls Lab.

Histogram

Nano/Micro Systems & Controls Lab.

Natural Frequency

Conclusions & Q/A

- Layout Design with Fabrication error compensation •
 - Etch lag phenomenon, Footing effect, etc _
- Release •
 - Anchor design issue
- Simple design ٠
- Negative Stiffness Effect
 - Can control frequency by applying voltage _

Nano/Micro Systems & Controls Lab.