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Stress

• Normal Stress: force applied to surface 
/F Aσ =

measured in N/m2 or Pa,
compressive or tensile

• Shear Stress: force applied parallel 
to surface

/F Aτ
measured in N/m2 or Pa

/F Aτ =

Young’s Modulus:
/E σ ε=

Hooke’s Law:
/E σ ε

/ /K F l EA l= Δ =
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Strain

• Strain: ratio of deformation to length

/l lγ = Δ /l lγ = Δ

• Shear Modulus
/G τ γ=

• Relation among: ,  , and νG Eg

2(1 )ν
=

+
EG

, ,

2(1 )ν+
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Poisson’s Ratio

Tensile stress in x direction results in compressive stress in y and 
z direction (object becomes longer and thinner)

• Poisson’s Ratio:

ε ε
ν

ε ε
= − = − = −

transverse strain
 

longitudinal strain
y z

x x

Metals : 0.3ν ≈
0 5Rubbers 

Cork
: 0.5ν ≈
: 0ν ≈
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State of Stress

• The combination of forces generated by 
the stresses must satisfy the conditions y
for equilibrium:

0x y zF F F= = =∑ ∑ ∑
0x y zM M M= = =∑ ∑ ∑

C id th t b t th i

( ) ( )0

  and 
z xy yxM A a A aτ τ= = Δ − Δ∑

• Consider the moments about the z axis:

,   and xy yx yz zy yz zyτ τ τ τ τ τ= = =

• Only 6 components of stress are 
i d t d fi th l t t t frequired to define the complete state of 

stress.
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Stress and Strain Diagram

• Ductile Materials
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Stress and Strain Diagram (cont’d)

• Brittle Materials

Stress-strain diagram for a typical brittle material
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Deformations Under Axial Loading

Pσ
• From Hooke’s Law:

P
E

E AE
σσ ε ε= = =

• From the definition of strain:

L
δε =

• Equating and solving for the deformation:

PL
AE

δ =
AE

• With variations in loading, cross-section or 
material properties:material properties:

i i

i i i

PL
AE

δ = ∑
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Stress Concentration: Fillet

σmax

ave

K
σ
σ

=
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Symmetric Member in Pure Bending

• Pure Bending: Prismatic members subjected 
to equal and opposite couples acting in the

• Internal forces in any cross section are

to equal and opposite couples acting in the 
same longitudinal plane

Internal forces in any cross section are 
equivalent to a couple. The moment of the 
couple is the section bending moment

0x xF dAσ= =∫
0y xM z dA

M y dA M

σ

σ

= =

= =

∫
∫
∫z xM y dA Mσ= − =∫
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Strain Due to Bending

• Consider a beam segment of length L.
After deformation, the length of the neutralAfter deformation, the length of the neutral 
surface remains L.  
At other sections,

( )
( )

ρ θ

δ ρ θ ρθ θ

′ = −

′= − = − − = −

L y

L L y y

δ θε
ρθ ρ

= = − = −   (strain varies linearly)

        

x

y y
L
c cε
ρ ε

ε ε

= =

= −

    or    m
m

x m

ρ

y
x mc
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Stress Due to Bending

• For a linearly elastic material,
y

E E

(stress varies linearly)

x x m

m

y
E E

c
y
c

σ ε ε

σ

= = −

= −
c

• For static equilibrium,
y

∫ ∫0

0

x x m

m

y
F dA dA

c

y dA
c

σ σ

σ

= = = −

= −

∫ ∫

∫c ∫

First moment with respect to neutral 
plane is zero. Therefore, the neutral p
surface must pass through the section 
centroid.
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Stress Due to Bending (cont’d)

• For static equilibrium, Bending Momentum M
t

σ
=−

= =∫∫ ∫ ∫
2

2

( ) ( ( ) )
tA w h

M dF h h h dA h

σ σσ
=− = −

= = =∫ ∫ ∫ ∫
2 2

2max max
max( )

( ) ( ) ( )

t t

t tw wh h

h
M dA h h dA I

t t t
= =

=

2 2

max

( ) ( ) ( )
2 2 2

2

h h

Mt
s

EI

σmaxwhere  :magnitudeof stress

             :  moment of inertia of the cross-sectionI

max

             h :  height of a beam
             t : thickness of a beam
             s :maximum longitudinal strain
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Deformations in a Transverse Cross Section

• Deformation due to bending moment M is 
quantified by the curvature of the neutral q y
surface
1 1m m Mc

c Ec Ec I
ε σ

= = =
c Ec Ec I

M
EI

ρ

=

• Although cross sectional planes remain 
planar when subjected to bending p j g
moments, in-plane deformations are 
nonzero,

y yν ν
y x z x

y yν νε νε ε νε
ρ ρ

= − = = − =
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Bending of Beams

• Reaction Forces and Moments

- For equilibrium

0 0,  therefore R RF F F F F∑ = = − = =

0 0 0,  therefore R RM M FL M FL∑ = = − + = =

Dong-il “Dan” Cho      Nano/Micro Systems & Controls Lab.
This material is intended for students in 4541.844 class in the Spring of 2009. Any other 
usage and possession is in violation of copyright laws 15



Bending of Beams (cont’d)

• Shear Forces and Moments (at any point in the beam)

At every point along the beam equilibrium requires that, 

0 and 0F M∑ = ∑ =

0 ( ) 0   F F V x V F∑ = = − + = → =
0 ( ) ( ) 0  ( ) ( ) LM M x F L x M x F L x∑ = = − + − = → = − −
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Bending of Beams – Differential Element

• Equilibrium of a fully loaded differential element: 

0 and 0F M∑ = ∑ =For equilibrium, 
+( )V dV V dV+ −

∑ = = + + − = → = − =

∑ = = + − − + − =

( )
0 ( ) 0  -  

0 ( ) ( ) 0 

V dV V dV
F qdx V dV V q

dx dx
dx

M M dM M V dV dx qdx∑ = = + − − + − =

+ −
→ = = 2

0 ( ) ( ) 0 
2

( )
  (neglecting ( ) terms).

M M dM M V dV dx qdx

M dM M dM
V q dx

dx dx
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Bending of Beams – Differential Element (cont’d)

• Approximation for radius of curvature: 

An increment of beam length dx is related to ds via

θ θcos( )  for small   
dx

dx ds

The slope of the beam at any point is given by 

θ θ= → ≈cos( ) ,  for small   dx ds
ds

dw dwθ θ θ= → ≈tan( ),  for small   
dw dw
dx dx

For a given radius of curvature, is related to viads dθ
2

2

1
,  so for small   

d d w
ds d

dx dx
θρ θ θ

ρ
= → ≈ ≈

For a given radius of curvature,     is related to      viads dθ
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Bending of Beams – Differential Element (cont’d)

• Basic Differential Equations for Beam Bending:

F ll
2 1d w

For small

Now that we have a relationship between         and    .  
h d h f f i f

θ
ρ

→ =2

1d w
dx

( )w x ρ

( )

2d dM

We can express the moment and shear forces as a function of        .   ( )w x

= − =
2

2

3

Moments: ,  now recall 

Sh    ll 

d w dM
M EI V

dx dx
d w dV

V EI= − = −

=

3

4

4

Shear: ,  now recall 

Uniform Load: 

V EI q
dx dx

d w
q EI

d 4q
dx
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Analysis of Cantilever Beam

• Cantilever Beam with Point Load:

( ) ( )M F L= − −

= − = −
2

2

( ) ( )

( )

M x F L x

d w M F
L x

dx EI EIdx EI EI

FL F

Integrating the above equation twice, 
we have

= + + −2 3( )
2 6
FL F

w x A Bx x x
EI EI

= =(0) 0     0
dw

w
d

Boundary conditions:

=0xdx
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Analysis of Cantilever Beam (cont’d)

• Cantilever Beam with Point Load (cont’d):

2FL

Using the boundary conditions, 
we obtain the beam deflection equation,

2

( ) (1 )
2 3
FLx x

w x
EI L

= −

3FL3
( )

3
FL

w x
EI

=

33EI EWH

Maximum deflection  :

3 3

3
4

EI EWH
k

L L
= =Spring constant  :
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Stress Concentration: Fillet

σmax

ave

K
σ
σ

=
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Simple Beam Equations

• Relation between Load and deflection (1)- concentrated load

Cantilever Guided-end Fixed-fixed

Elongation
(a) Cantilever beam

xF Lx
Ehw

= xF Lx
Ehw

=
4

xF Lx
Ehw

=

Deflection
(b) Guided end beam

3

3

4 yF Ly
Ehw

=

34F L

3

3
yF Ly

Ehw
=

3F L

3

3

1
16

yF Ly
Ehw

=

31 F L(b) Guided-end beam 3

3

4 zF Lz
Ewh

=
3

3
zF Lz

Ewh
=

3

3

1
16

zF Lz
Ewh

=

L : length of beam

(c) Fixed-fixed beam

L : length of beam
h : height of beam
w : width of beam 
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Simple Beam Equations (cont’d)

• Relation between Load and deflection (2)-Distributed load

Cantilever Guided-end Fixed-fixed

(a) Cantilever beam

xf Lx
E

= xf Lx
E

=
4
xf Lx
E

=Elongation

(b) Guided-end beam

4

3

3
2

yf Ly
Ehw

=

43 f L

4

3

1
2

yf Ly
Ehw

=

41 f L

4

3

1
32

yf Ly
Ehw

=

41 f L
Deflection 4

3

3
2

zf Lz
Ewh

=
4

3

1
2

zf Lz
Ewh

=
4

3

1
32

zf Lz
Ewh

=

L : length of beam

(c) Fixed-fixed beam

g
h : height of beam
w : width of beam 
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Stability of Structures

• In the design of columns, cross-sectional 
area is selected such that

- Allowable stress is not exceeded

all

P
A

σ σ= ≤
A

- Deformation falls within specifications

spec

PL
AE

δ δ= ≤

• After these design calculations, may 
discover that the column is unstable 
under loading and that it suddenlyunder loading and that it suddenly 
becomes sharply curved or buckles.
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Stability of Structures (cont’d)

• Consider model with two rods and 
torsional spring After a smalltorsional spring. After a small 
perturbation,

( )θΔ2K = restoring moment( )θ

θ θ

Δ

Δ = Δ

2

sin
2 2

K

L L
P P

g

= destabilizing moment

• Column is stable (tends to return to 
aligned orientation) ifaligned orientation) if

( )2
2
L
P Kθ θΔ < Δ

4
cr

K
P P

L
< =
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Stability of Structures (cont’d)

• Assume that a load P is applied.  
After a perturbation, the system 
settles to a new equilibrium 
configuration at a finite deflection 
angle.g

( )sin 2
2
L
P Kθ θ=

4 sincr

PL P
K P

θ
θ

= =

• Noting that  sinθ < θ, the 
assumed configuration is onlyassumed configuration is only 
possible if  P > Pcr.
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Euler’s Formula for Pin-Ended Beams for Buckling

• Consider an axially loaded beam.  
After a small perturbation, the 
system reaches an equilibrium 
configuration such that

2 2d y M P d y P
2 2  0

d y M P d y P
y y

dx EI EI dx EI
= = − → + =

• Solution with assumed 
configuration can only be 
obtained if

2EI
P P

π

( )
2

2 2 2

cr

EI
P P

L
E ArP E

π

π πσ σ

> =

>
( )

( )2 2

where r= I/A

crA L A L r
σ σ= > = =
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Extension of Euler’s Formula

• A column with one fixed and one 
free end, will behave as the 
upper-half of a pin-connected 
column.

Th iti l l di i l l t d• The critical loading is calculated 
from Euler’s formula,

2EIπ

π

=
2

2

2

cr
e

EI
P

L

E

( )
πσ = 2

2

cr

e

E

L r

L L= equivalent length= 2eL L= equivalent length
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Net Torque Due to Internal Stresses

• Net of the internal shearing stresses 
is an internal torque equal and

( )T dF dAρ ρ τ= =∫ ∫

is an internal torque, equal and 
opposite to the applied torque:

( )T dF dAρ ρ τ= =∫ ∫

• Unlike the normal stress due to axial 
loads, the distribution of shearing 

d i l l dstresses due to torsional loads can not 
be assumed uniform.
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Shaft Deformations

• From observation, the angle of twist of the 
shaft is proportional to the applied torque p p pp q
and to the shaft length:

Tφ ∝
Lφ ∝

• Cross-sections for hollow and solid circular 
shafts remain plain and undistorted because a 

• Cross-sections of noncircular (non-

p
circular shaft is axisymmetric.

(
axisymmetric) shafts are distorted when 
subjected to torsion.
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Shearing Strain

• Since the ends of the element remain 
planar, the shear strain is equal to angle

   or   L
ρφγ ρφ γ= =

planar, the shear strain is equal to angle 
of twist:

   or   L
L

γ ρφ γ

• Shear strain is proportional to twist and 
radiusradius

max max   and   
c
L c
φ ργ γ γ= =a aL c
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Stresses in Elastic Range

• Multiplying the previous equation by 
the shear modulus,the shear modulus,

maxG G
c
ργ γ=

From Hooke’s Law, Gτ γ= , so

4
2
1 cJ π=

maxc
ρτ τ=

From Hooke s Law, Gτ γ , so

2
The shearing stress varies linearly with 
the radial position in the section.

2max maxT dA dA J
c c

τ τ
ρτ ρ= = =∫ ∫
T T

( )4
1

4
22

1 ccJ −= π

max    and   
Tc T
J J

ρτ τ= =
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Deformations Under Axial Loading

• The angle of twist and maximum shearing 
strain are related:

max

c
L
φγ =

• The shearing strain and shear are relatedThe shearing strain and shear are related 
by Hooke’s Law,

max
max

Tc
G JG

τ
γ = =max G JG
γ

TL
JG

φ =
JG

• With variations in the torsional loading and 
shaft cross-section along the length:

i i

i i i

T L
J G

φ = ∑

g g
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Torsion of a Rectangular Bar

Torsional 
beam

Comb

Assume that the torsional beam is isotropic material

Torsional stiffness (when, th>Wh)

π
π

⎡ ⎤⎛ ⎞⎛ ⎞
= ⋅ ⋅ − ⋅ ⋅ ⋅ =⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑3
5 5

2 192 1 1
1 tanh ,  1,3,5...

3 2
h h

h h
nh h h

w tG
k t w n n

L t n w⎝ ⎠⎣ ⎦

[Ref] S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity,” McGraw-Hill, pp. 309 – 313, 1970.
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