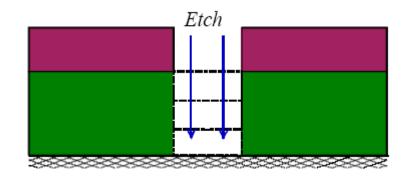

Non Silicon Dry Etching

Dong-il "Dan" Cho

School of Electrical Engineering and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

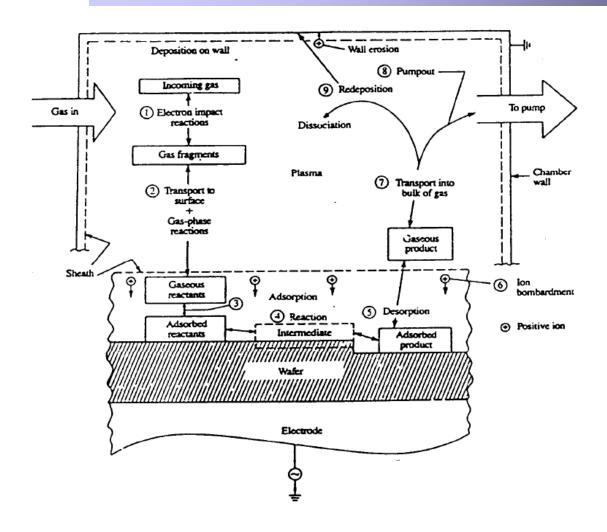

Etching Technology

- Wet etching
 - By Wet chemical solution
 - Isotropic etching

Vertical E/R = Horizontal E/R Pure Chemical Reaction High Selectivity CD Loss or Gain

- Dry Etching
 - By Plasma
 - Anisotropic etching

Vertical E/R >> Horizontal E/R Ion assisted Relatively low Selectivity No CD bias



Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

Plasma Etching Mechanism

★ Glow Discharge * Transport ***** Adsorption \oplus Desorption + Ion Bombardment \diamond Bulk Gas Stream ¤ Pumping Out *♦ Redeposition*

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

What is Plasma Etching

Take a Molecular Gas (Usually Relatively Inert)

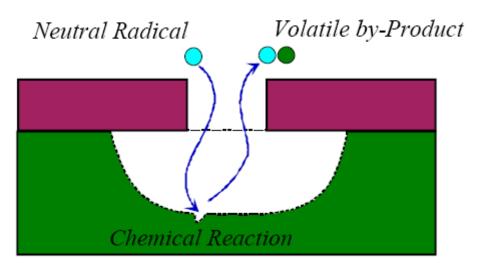
Establish a Glow Discharge & (Ion and Elctron Formation) **Create Reactive Species**

Chemical Reaction to form A VOLATILE product

Product Desorption & Pumping Away Volatile Product Cl_{2(gas)}

 $e + Cl_2 -> Cl_2^+ + 2e$ $e + Cl_2 -> 2Cl + e$

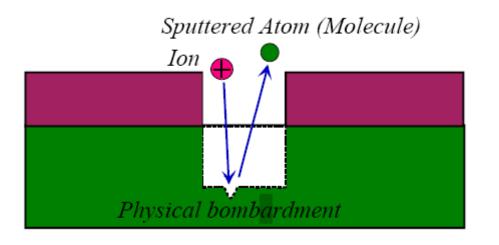
 $Si + 4CI \rightarrow SiCl_{4}$


 $SiCl_{4(ads)} \rightarrow SiCl_{4(ads)}$

Basic Method of Plasma Etching(1)

Chemical

Thermalized neutral radicals chemically combine with substrate material formaing volatile products


- Isotropic
- Purely Chemical Reaction
- High Pressure
- Batch Wafer Type
- Less Electrical Damage

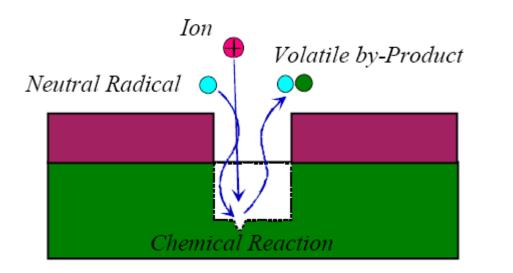
Basic Method of Plasma Etching(2)

Sputtering

The ion energy mechanically ejects substrate material

- Anisotropic
- By Purely Physical Process
- High Directionality
- Low Pressure
 - : long mean free path
- Single Wafer Type
- Low Etch rate

Dong-il "Dan" Cho

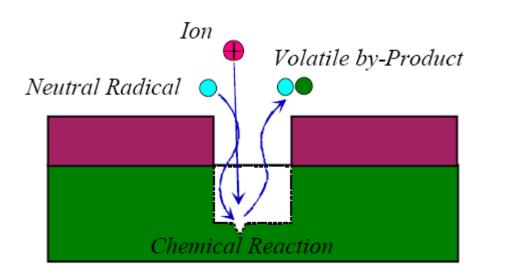

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

Basic Method of Plasma Etching(3)

Energetic Ion Enhanced

Ion bombardment enhances or promotes the reaction Between an active species and the substrate material


- Damage Enhanced **Chemical Reactivity**
- Chemical Sputtering
- Chemically Enhanced **Physical Sputtering**
- Ion Reaction

Basic Method of Plasma Etching(4)

Protective Ion Enhanced

An inhibitor film coats the surface forming a protective barrier which excludes the neutral etchant

- Sidewall Passivation
- Stopping lateral attack by neutral radical
- Ion directionality
- Involatile polymer film
- Additive film former
 (N₂, HBr, BCl₃, CH₃F)

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

Non Silicon Materials

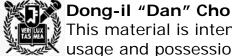
- Silicon dioxide (SiO_2) ٠
 - Insulator, sacrificial layer, passivation film, mask for dry or wet etch
- Silicon nitride (Si_xN_y)
 - Insulator, structure layer, passivation film, mask for wet etch
- Polymer •
 - Mask in photolithography, sacrificial layer
 - AZ series, SU-8, etc.
- Metal (Al, Ti, Au, Cu, Ni...)
 - Structure layer, electric line

Purpose of Etch Gases (1)

- Oxygen (O_2)
 - Pure O_2 plasma is used to etch PR.
 - In plasmas involving CF₄, O atoms displace F in the CF₄ \rightarrow generating more free F.
- Sulfur Hexafluoride (SF₆)
 - SF₆ is one source of very reactive F atoms that etch all of the materials.
 - F atoms are not very selective.
- Tetrafluoromethane (CF₄)
 - CF₄ is a source of C and F.
 - C-F sidewall-polymer formation.
- Trifluoromethane (CHF₃)
 - CHF₃ is a source of C and F \rightarrow with a lower ration of F to C.

Purpose of Etch Gases (2)

- Chlorine (Cl₂)
 - Cl₂ dissociated into Cl atoms.
 - Like F, Cl etches most materials, including aluminum.
- Trichloromethane (CHCl₃)
 - CHCl₃ supplies chlorine for etching.
 - CHCl₃ supplies carbon and chlorine for sidewall polymer.
- Boron Trichloride (BCl₃)
 - BCl₃ etches the native Al oxide on Al.
 - BCI_3 scavenges O_2 and H_2O in the vacuum system.
- Helium (He)
 - He is used in plasma system as a diluent and a plasma stabilizer.
- Nitrogen (N₂)
 - N₂ is used in plasma system as a diluent.



Fluorocarbon-Plasma SiO₂ Etches

Overall reactions

 $3SiO_2 + 4CF_3 \rightarrow 2CO + 2CO_2 + 3SiF_4$ $SiO_2 + 2CHF_2 \rightarrow 2CO_2 + H_2 + SiF_4$

- Etch conditions
 - CF₄+CHF₃+He (90:30:130 sccm), 450 W, 2.8 Torr, gap: 0.38 cm, 13.56 MHz, parallel-plate configuration
 - This etch target is SiO_2 , but also etches silicon nitride well.
 - This etch is anisotropic.
 - CF₄+CHF₃+He (90:30:130 sccm), 850 W, 2.8 Torr, gab: 0.38 cm, 13.56 MHz, parallel-plate configuration
 - This is the faster etch rate than the previous case.
 - Lower selectivity to PR

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

Fluorine-Atom-Plasma Nitride Etches (1)

- Reaction •
 - Fluorine atoms are absorbed onto the surface one at a time
 - In a surface reaction, volatile products are formed
 - Overall reactions

 $Si_3N_4 + 12F \rightarrow 3SiF_4 + 2N_2$

- Etch conditions
 - SF₆+He (13:21 sccm), 100 W, 250 mTorr, 50 kHz, gap: 2.6 cm, parallel-plate configuration
 - This etch is used to plasma etch silicon nitride
 - Plasma etching, especially at higher power, heats the chamber, which can effect etch rates and thus selectivity

Fluorine-Atom-Plasma Nitride Etches (2)

- Etch conditions
 - CF₄+CHF₃+He (10:5:10 sccm), 200 W, 250 mTorr, 50 kHz, gap: 2.6 cm, parallel-plate configuration
 - This nitride plasma etch uses fluorocarbons rather than SF₆ as the source of F atoms.
 - SF₆+He (175:50 sccm), 150 W, 375 mTorr, 13.56 kHz, gap: 1.35 cm, parallel-plate configuration
 - Slow etch rate \rightarrow for thin nitride film etch
 - The etch is anisotropic.
 - SF₆+He (175:50 sccm), 250 W, 375 mTorr, 13.56 kHz, gap: 1.35 cm, parallel-plate configuration
 - Fast etch rate \rightarrow for thick nitride film etch

Fluorine-Atom-Plasma Nitride Etches (3)

- Etch conditions
 - SF₆ (25 sccm), 125 W, 200 mTorr, 13.56 MHz, gap: 3.8 cm, parallel-plate configuration
 - This slower etch rate is intended for thinner, stoichiometric silicon nitride films.
 - CF₄+CHF₃+He (45:15:60 sccm), 100 W, 300 mTorr, 13.56 MHz, gap: 3.8 cm, parallel-plate configuration
 - This etch is intended for thicker, silicon rich nitride film.

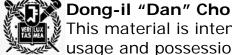
Plasma Metal Etches (1)

- Cl₂+BCl₃+CHCl₃+N₂ (30:50:20:50 sccm), 250 W, 250 mTorr, 60 °C, 13.56 MHz, gap: 2.5 cm, parallel-plate ground chuck configuration
 - This is an anisotropic Al plasma etch due to the sidewall inhibit formed from CHCl₃.
 - Due to poor selectivity, for thick layer of Al, thicker PR must be used.
 - Overall reaction

 $2AI + 3CI_2 \rightarrow AI_2CI_6$

- Cl₂ rather than Cl appears to be the main etchant.
- The etch product becomes $AlCl_3$ at higher temperatures.

Plasma Metal Etches (2)


- SF₆ (80 sccm), 200 W, 150 mTorr, 40 °C, 13.56 MHz, gap: 3.8 cm, parallel-plate configuration
 - This W plasma etch is fairly isotropic.
 - CF₄ added to the feed gas increases anisotropy as sidewall polymer form, but decreases etch rate.
 - The chuck is heated to enhanced the etch rate.
 - Overall reaction

 $W + 6F \rightarrow WF_6$

Oxygen Plasma PR Etches (1)

- Reaction
 - Oxygen atoms "burn" or "ash" the organic PR, forming mostly H_2O , CO_2 , and CO
 - Activation energies for O-atom etching of PR have been measured in the range 0.22 eV to 0.65 eV.
- Etch conditions
 - O₂ (51 sccm), 50 W, 300 mTorr, 50 kHz sq. wave, gap: 2.6 cm, parallel-plate configuration
 - This plasma processing step is used for descumming of freshly developed PR, typically for one minute.
 - Unbaked OCG 820 PR was removed 6 % faster than hardbaked PR during a descum test.

Dong-il "Dan" Cho This material is intended for students in 4541.844 class in the Spring of 2009. Any other

usage and possession is in violation of copyright laws

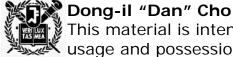
Oxygen Plasma PR Etches (2)

- Etch conditions
 - O₂ (51 sccm), 400 W, 300 mTorr, 50 kHz sq. wave, gap: 2.6 cm, parallel-plate configuration
 - This oxygen plasma is used to ash (strip) PR for 5-10 min.
 - A power of 300 W is also often used.
 - The etch rate decreases when there is more PR surface area.

Plasmaless HF Vapor SiO₂ Etches

- HF vapor etches silicon dioxide.
- It has been used to remove native oxide from silicon before the growth of epitaxial silicon and other processed such as the XeF₂ etching of silicon.
- The nonuniform etching can be reduced by etching in "pulses," removing the wafer from the vapor before droplets form and allowing it to evaporate.
- HF vapor may also be suitable for vapor phase removal of a sacrificial oxide layer for micromechanical fabrication.
- Overall reaction

 $SiO_2 + 4HF \rightarrow SiF_4 + H_2O$

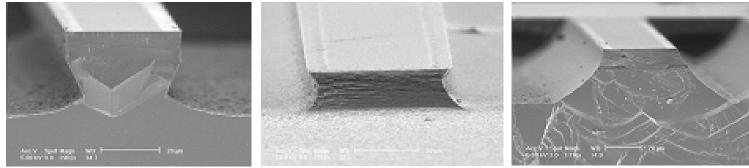


GaAs Dry Etches (1)

- Unique Advantages of GaAs over Si
 - High resistivity
 - High electron mobility
 - High saturated drift velocity
 - Wide direct bandgap
 - Operability over a wide temperature range

GaAs dry etch conditions

	1	2	3
Pressure (mTorr)	40	70	100
RF power (W)	200	250	300
Ar flow (sccm)	5	10	15
Cl ₂ flow (sccm)	5	10	15

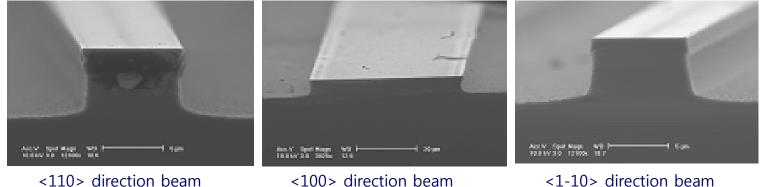

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

GaAs Dry Etches (2)

• Dry etch results

Pressure 100 mTorr, RF 250 W, Ar 5 sccm, Cl₂ 15 sccm



<110> direction beam

<100> direction beam

<1-10> direction beam

Pressure 70 mTorr, RF 250 W, Ar 15 sccm, Cl₂ 5 sccm

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

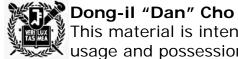
This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

Etch Rate Table (1)

	Etch Rates for								29 July								
	U.C. Berkeley M																
-	The top etc	h rate was	measure	d by the a	athor with	h fresh se	olutions, c	lean chan	nbers, etc								
The center and bottom values are the	-			-		-		-				1 and "dir	-			-	
CF ₄ +CHF ₃ +He (90:30:120 sccm)	Silicon	W	1900	2100	4700	w	4500	7300	6200	1800	1900	-	W	W	w	2200	200
Lam 590 Plasma	oxides		1400 1900	1500 2100	2400 4800			3000 7300	2500 7200								
450W, 2.8T, gap=0.38cm, 13.56MHz CF,+CHF,+He (90:30:120 sccm)	Silicon	w	2200	1700	4800	w	6400	7300	6700	4200	3800		W	W	w	2600	29
Lam 590 Plasma	oxides	w	2200	1700	2500	w	6000	5500	5000	4000	3800	-	w	w	w	2600	29
850W, 2.8T, gap=0.38cm, 13.56MHz	oxides		2700	2100	7600		6400	7400	6700	6800						6700	72
SF_+He (13:21 sccm)	Silicon	300	730	670	310	350	370	610	480	820	620	-	W	W	W	690	6
Technics PE II-A Plasma	nitrides	300	730	670					230		550				122.00	690	
100W, 250mT, gap≈2.6cm, 50kHz sq. wave		1000	800	760					480		800					830	
CF ₄ +CHF ₃ +He (10:5:10 sccm)	Silicon	1100	1900	W	730	710	730	W	900	1300	1100	-	W	W	W	690	6
Technics PE II-A Plasma 200W, 250mT, gap≈2.6cm, 50kHz sq. wave	nitrides																
SF ₆ +He (175:50 sccm)	Thin	W	6400	7000	300	W	280	530	540	1300	870	-	W	W	W	1500	14
Lam 480 Plasma	silicon			2000	220					830						1300	
150W, 375mT, gap=1.35cm, 13.56MHz	nitrides			7000	400					2300						1500	
SF ₆ +He (175:50 sccm)	Thick	W	8400	9200	800	W	770	1500	1200	2800	2100	-	W	W	W	3400	31
Lam 480 Plasma 250W, 375mT, gap=1.35cm, 13.56MHz	silicon nitrides									2100 4200						3100 3400	
SF ₆ (25 scem)	Thin	W	1700	2800	1100	W	1100	1400	1400	2800	2300	-	W	W	W	3400	31
Tegal Inline Plasma 701 125W, 200mT, 40°C	silicon nitrides				1100 1600					2800 2800						2900 3400	
CF ₄ +CHF ₃ +He (45:15:60 sccm)	Si-rich	W	350	360	320	W	320	530	450	760	600	-	W	W	W	400	3
Tegal Inline Plasma 701 100W, 300mT, 13.56MHz	silicon nitrides																
Cl ₂ +He (180:400 sccm)	Silicon	W	5700	3200	8	-	60	230	140	560	530	W	W	-	-	3000	27
Lam Rainbow 4420 Plasma 275W, 425mT, 40°C, gap=0.80cm, 13.56MHz		5000 5000	3400 6300	3200 3700	8 380											2400 3000	
HBr+Cl ₂ (70:70 sccm)	Silicon	W	450	460	4		0	0	0	870	26	W	W	-	~	350	3
Lam Rainbow 4420 Plasma 200W, 300mT, 40°C, gap=0.80cm, 13.56MHz			450 740		4 10											350 500	
Cl ₂ +BCl ₃ +CHCl ₃ +N ₂ (30:50:20:50 scem)	Aluminum	W	4500	W	680	670	750	W	740	930	860	6000	W	-		6300	63
Lam 690 RIE 250W, 250mT, 60°C, 13.56MHz												1900 6400				3700 6300	33 61
SF ₆ (80 sccm)	Tungsten	W	5800	5400	1200	W	1200	1800	1500	2600	2300	-	2800	W	W	2400	24
Tegal Inline Plasma 701 200W, 150mT, 40°C, 13.56MHz					2000 2000						1900 2300		2800 4000			2400 4000	
0 ₂ (51 seem)	Descumming	-	0	0	0	0	0	0	0	0	0	0	0	0	-	350	3
Technics PE II-A Plasma 50W, 300mT, gap≈2.6cm, 50kHz sq. wave	photoresist					_											
D ₂ (51 sccm)	Ashing	-	0	0	0	0	0	0	0	0	0	0	0	0	-	3400	36
Technics PE II-A Plasma 400W, 300mT, gap≈2.6cm, 50kHz sq. wave	Photoresist																
HF Vapor	Silicon	-	0	0	660	W	780	2100	1500	10	19	А	0	A	-	P 0	P
1 cm over plastic dish Room temperature and pressure	oxides																

Ref.) K. R. Williams, and R. S. Muller, JMEMS, Vol. 5, No. 4, pp. 256-269, 1996

Dong-il "Dan" Cho


Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

Etch Rate Table (2)

Material	Gas	Reactor Type	Pressure (torr)	Etch Rate (μm/min)	Etch Selectivity		Comments
	SiF ₄ /O ₂	Barrel	.3	.1	Si_3N_4 : Si : Poly Si : SiO ₂	25:5:2.5:1	Anisotropic
Si_3N_4	SiF ₄ /O ₂ (2%)	Barrel	.75	.08 ~ 1	Si ₃ N ₄ : Poly Si	7.5:1	-
	CF ₄ /O ₂	Barrel	1.1	.02	Si ₃ N ₄ : SiO ₂ 5:1		Isotropic
	C ₂ F ₄	Planar	.4	.043	SiO ₂ : Si	15:1	Anisotropic
	CF ₄ (70%)/H ₂ (30%)	Planar	.03	.004	SiO ₂ : Si	5:1	-
SiO ₂	$GiO_2 \qquad \begin{array}{c c} CHF_3(90\%)/\\ CO_2(10\%) \\ GO_2(10\%) \\ $		Thermal SiO ₂ : Si 4 wt% Phos. doped CVD S 8 wt% Phos. doped CVD S (densified) 8 wt% Phos. doped CVD S	5iO ₂ : Si 33:1	Reactive Ion Etch Anisotropic		
	C ₂ F ₄ (12%)/ CHF ₃ (12%)/ He(76%)	Planar	4.0	.5 .7 1.1 .6	Thermal SiO ₂ : Si CVD SiO ₂ : Si 8 wt% Phos. doped CVD Si Plasma SiO ₂ : Si	CVD SiO ₂ : Si 19:1 8 wt% Phos. doped CVD SiO ₂ : Si 30:1	
	CCI₄He	Planar	.3	.18	AI : SiO ₂ : Poly Si : Si	100:1:1:1	-
Aluminum	CCI ₄	Planar	.1	.06~.36	Al : Si	100:1	Sensitivity to any H ₂ O Present Etches alloys containing Si, but must be heated to 200°C to each copper
	BCI ₂	Planar	.1	.06	Al : Si	100:1	Not sensitive H_2O . Etches alloys Containing Si, but must be heated to 200°C to each copper.

Ref: J. D. Lee, "Silicon Integrated Circuit microfabrication technology," 2nd edition

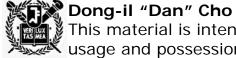
Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

Etch Rate Table (3)

Material	Common etch gases	Dominant reactive species	Product	Comment
Aluminum	Chlorine-based	CI, CI ₂	AICI ₃	Toxic gas and corrosive gases
Copper	Chlorine forms low pressure compounds	CI, CI ₂	CuCl ₂	Toxic gas and corrosive gases
Molybdenum	Fluorine based	F	MoF ₆	
Photoresists	Oxygen	0	H ₂ O, CO ₂ , CO	Explosive hazard
SiO ₂	CF ₄ , CHF ₃ , C ₂ F ₆ , C ₃ F ₆	CF _x	SiF ₄ , CO, CO ₂	
Tantalum	Fluorine based	F	TaF ₃	
Titanium	Fluorine or chlorine based	F, CI, CI ₂	TiF ₄ , TiF ₃ , TiCl ₄	
Tungsten	Fluorine containing	F	WF ₆	

Ref.) Marc J. Madou, "Fundamentals of MICROFABICATION," 2nd edition

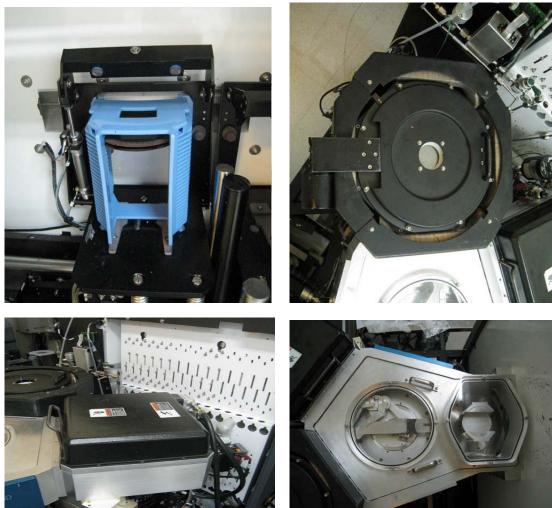

ISRC Non Si Etcher (1)

P-5000 (MEMS) •

	Oxide	Nitride	
Etch rate	>2000 Å/min	>2500 Å/min	
Within wafer uniformity	±3 %	±3 %	
Wafer to wafer uniformity	±5 %	±5 %	
Selectivity to resist	4 : 1	3 : 1	
Etch profile	90°±1°	87°±2°	

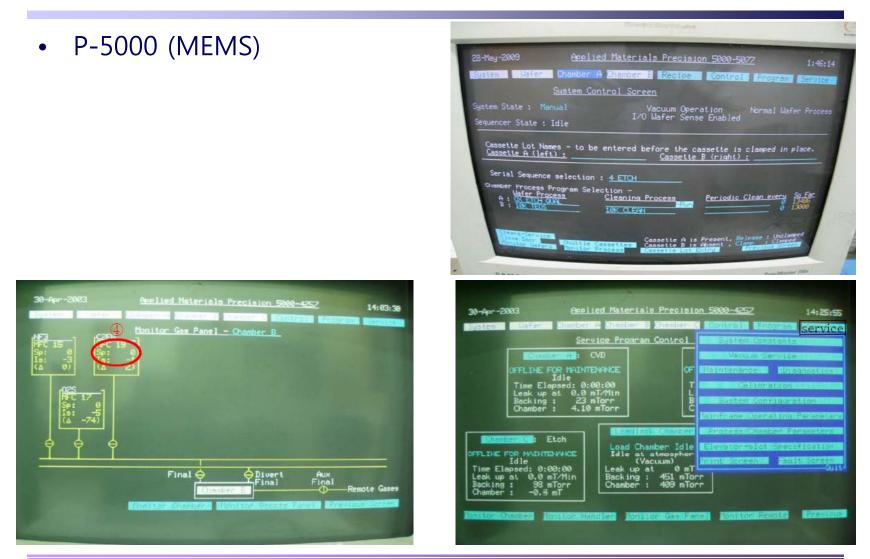
	Main-step (oxide etch)													
CHF ₃	CHF ₃ CF ₄ Ar O ₂ RF Power Pressure Gauss He													
25 sccm														

	Main-step (nitride etch)													
CHF ₃	CHF ₃ CF ₄ Ar O ₂ RF Power Pressure Gauss He													
15 sccm	10 sccm	10 sccm	8 sccm	600 W	100 mTorr	30	20 sccm							

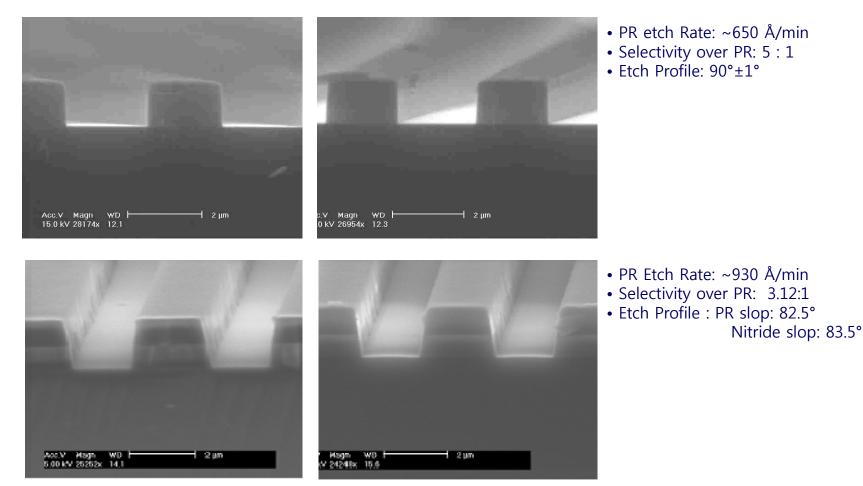

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

ISRC Non Si Etcher (2)


• P-5000 (MEMS)

ISRC Non Si Etcher (2)

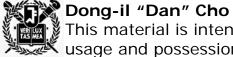

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

ISRC Non Si Etcher (3)

MEMS P-5000 etch results •


ISRC Non Si Etcher (4)

• P-5000 (CMOS)

	Oxide	Nitride
Etch rate	3519 Å /min	3620 Å /min
Within wafer uniformity	1.23 %	< 4.1 %
Selectivity to resist	3 : 1	2.5 : 1
Etch profile	$85^{\circ} \pm 1^{\circ}$	$85^{\circ} \pm 2^{\circ}$

	Main-step (oxide etch)												
CHF ₃	CHF ₃ CF ₄ Ar O ₂ RF Power Pressure Gauss He												
25 sccm	5 sccm	70 sccm	0 sccm	600 W	130 mTorr	60	20 sccm						

	Main-step (nitride etch)												
CHF ₃	CHF ₃ CF ₄ Ar O ₂ RF Power Pressure Gauss He												
15 sccm	10 sccm	10 sccm	8 sccm	600 W	100 mTorr	30	20 sccm						

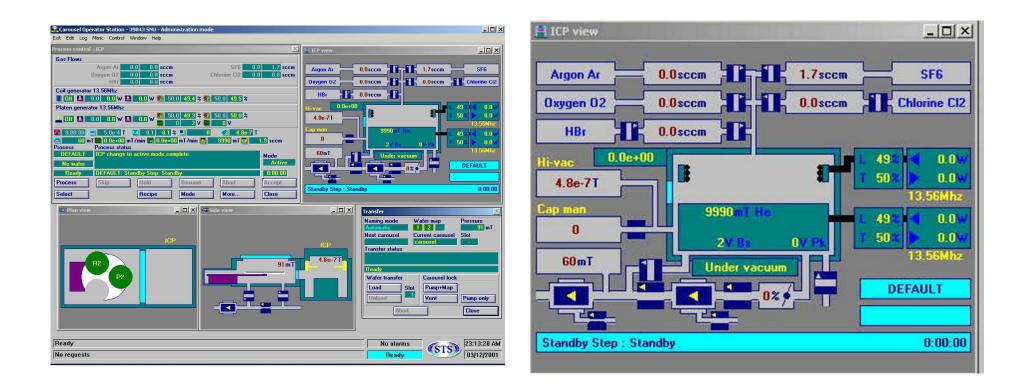
Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

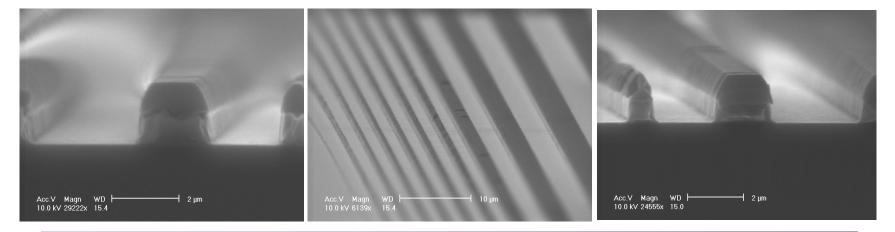
Non Si Etcher in ISRC (5)

- STS poly/metal etcher (MEMS)
- Plasma source type : ICP
- Main feed gas: HBr, Cl₂, Ar, SF₆, O₂, He
- Main power: 13.56 MHz 1000 W
- Operating pressure: tens mTorr
- Bias power: 13.56 MHz 30/300 W

Non Si Etcher in ISRC (6)


• STS poly/metal etcher (MEMS)

Non Si Etcher in ISRC (6)


• STS poly/metal etcher (MEMS)

ISRC Non Si Etcher (7)

- Al etch process •
 - Main step
 - Gas: Cl₂ 33 sccm
 - RF Power: 125/1000 W
 - Pressure: 2 mTorr
 - Over etch step
 - Gas: HBr 20 sccm
 - RF Power: 125/600 W
 - Pressure: 5 mTorr

- Etch properties
 - Oxide : Poly 1 : 10
 - PR : AI 1 : 3
 - Etch rate: 3000 Å/min

ISRC Non Si Etcher (8)

- STS metal etcher (CMOS)
 - STS Multiplex ICP
 - Plasma source type: ICP (inductively coupled plasma)
 - Main feed gas: O_2 , Cl_2
 - Main power: 13.56 MHz-1250 W
 - Bias power: 13.56 MHz-300 W
 - Operating pressure: tens mTorr
 - Stand Process Parameter (Main etch step)
 - Main etch step: 1 step
 - Main feed gas: Cl₂ (30 sccm)
 - Main power: 13.56 MHz, 1000 W
 - Bias power: 13.56 MHz, 125 W
 - Operating pressure: 2 mTorr

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws

ISRC Non Si Etcher (9)

- Oxford etcher
 - Oxford RIE 80 plus
 - Pump (Alcatel)
 - Rotary: 2033CP+, 575 *l*/m
 - Turbo: ATC400C, 400 {/s
 - MFC
 - O₂ 1000 sccm
 - Cl₂ 100 sccm
 - SF₆ 500 sccm
 - CF₄ 200 sccm
 - CH₄ 200 sccm
 - CHF₃ 200 sccm
 - Ar 50 sccm
 - BCl₃ 200 sccm
 - N₂ 200 sccm
 - H₂ 200 sccm
 - RF Generator: ENI, ACG-10B, 200 W, 13.56 MHz

ISRC Non Si Etcher (10)

- Oxford etcher recipes
 - SiO₂
 - O₂ 5sccm
 - CF₄ 50sccm
 - 55 mTorr
 - 150 W
 - 700 Å/m
 - $-Si_3N_4$
 - O₂ 5 sccm
 - CF₄ 50 sccm
 - 55 mTorr
 - 150 W
 - 700 Å/m

ISRC Non Si Etcher (11)

- Asher I (MEMS) •
 - Plasma finish V15-G
 - Lab master V15-G
 - Plasma: micro wave
 - Frequency: 2.45 GHz
 - Plasma power : 600 W
 - Gas: O₂ 500sccm (2chanel)
 - Substrate: Si, glass, Pyrex
 - AZ1512 ashing recipe
 - Plasma power : 300 W
 - Gas flow: O₂ 200 sccm
 - Time: 10~60 min

ISRC Non Si Etcher (12)

- Asher II (MEMS)
 - Lab master V15-G
 - Plasma: micro wave
 - Frequency: 2.45 GHz
 - Plasma power : 600 W
 - Gas: O₂ 500sccm (2chanel)
 - Substrate: Si, glass, Pyrex
 - AZ1512 ashing recipe
 - Plasma power : 300 W
 - Gas flow: O₂ 200 sccm
 - Time: 10~60 min

ISRC Non Si Etcher (13)

- Asher (CMOS)
 - Tepla AG. 200 semi-auto
 - Pump: Leybold, Rotary, D65BCS
 - MFC: Brooks, O2, 2000 sccm
 - RF Generator: Microwave, 2.45GHz, 1000Wss
 - PR ashing recipe
 - O₂ 700 sccm
 - RF 700 W

Reference

- K. R. Williams, and R. S. Muller, "Etch Rate for Micromachining Processing," Microelectromechanical Systems, Journal of, Vol. 5, No. 4, pp. 256-269, 1996
- S. Paik, J. Kim, S. Park, S. Kim, S, C. Koo, S. Lee, and D. Cho, "A Novel Micromachining Technique to Fabricate Released GaAs Microstructures with a Rectangular Cross Section", JJAP, Vol. 42, No. 1, pp. 326-332, 2003
- Marc J. Madou, "Fundamentals of MICROFABICATION," 2nd edition
- J. D. Lee, "Silicon Integrated Circuit microfabrication technology," 2nd edition
- Gregory T. A. Kovacs, "Micromachined Trensducers Sourcebook," 1st edition
- ISRC home page: <u>http://isrc.snu.ac.kr</u>
- dahn.postech.ac.kr/class/695D/Etch.pdf

Dong-il "Dan" Cho

Nano/Micro Systems & Controls Lab.

This material is intended for students in 4541.844 class in the Spring of 2009. Any other usage and possession is in violation of copyright laws