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5.1 REPRESENTATION OF APERIODIC SIGNALS:
THE DISCRETE-TIME FOURIER TRANSFORM

5.1.1 Development of the Discrete-Time Fourier Transform

In Section 4.1 [eq. (4.2) and Figure 4.2], we saw that the Fourier series coefficients for a
continuous-time periodic square wave can be viewed as samples of an envelope function
and that, as the period of the square wave increases, these samples become more and
more finely spaced. This property suggested representing an aperiodic signal x(z) by first
constructing a periodic signal %() that equaled x(7) over one period. Then, as this period
approached infinity, %(r) was equal to x(7) over larger and larger intervals of time, and the
Fourier series representation for %(r) converged to the Fourier transform representation for
x(7). In this section, we apply an analogous procedure to discrete-time signals in order to
develop the Fourier transform representation for discrete-time aperiodic sequences.

Consider a general sequence x[n] that is of finite duration. That is, for some integers
Ny and N, x[n] = 0 outside the range I S>/n = N,. Assignal of this type is illustrated
in Figure 5.1(a). From this aperiodic signal>e can construct a periodic sequence ¥[n] for
which x[n] is one period, as illustrated jf Figur 1(b). As we choose the period N to be
larger, ¥[n] is identical to x[n] over a onger interval, and as N — oo, ¥[n] = x[n] for any
finite value of n.

Let us now examine the Fourier series representation of %[n]. Specifically, from eqs.
(3.94) and (3.95), we have
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Figure 5.1 () Finite-duration signal x[n]; (b) periodic signal x[n] con-
structed to be equal to x[n] over one period.
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1 3
Bl s Z f[n]e—jk(Z‘?T/N)n‘ (52)
N n=(N)

Qﬁ‘) Since x[n] = X[n] over a period that includes the interval —N; = n = = N, it is

convenient to choose the interval of summation in €q. (5.2) to IncTude this i interval, so that
X[n] can be replaced by x[n] in the summation. Therefore,

Ny

|
a, = N Z x[nle” JkQmINm _ Z J’?Je JA(Z'JT/N}H (53)

n=-—N, n=—-w

where in the second equality in eq. (5.3) we have used the fact that x[n] is zero outside
the interval —N; = n = N,. Defining the function

—jeln o

K,“ ) Z_X,,[n]?- | Xy 2 Z Alnle ", = ﬂm X,,(CJ D s 1)

n=

we see that the coefficients a; are proportional to samples of X(e/), i.e.,
B ay = iX eﬂ«d(l) (5.5)
N

where wg = 27r/N is the spacing of the samples in the frequency domain. Combining eqs.
(5.1) and (5.5) yields

%M== 3n = > %X(E”“”")ei"‘”“”. (5.6)

k=(N)

Since wy = 2@/N, or equivalently, /N = w(/2m, eq. (5.6) can be rewritten as
1 . ” :

)l =x = X Jkwoy , jkopn 4 59

XAn) = (n] > kz(N) Je )e! gy (5.7)

As with eq. (4.7), as N increases w decreases, and as N — = eq. (5.7) passes to
an integral. To see this more clearly, consider X(e/®)e/®" as sketched in Fi gure 5.2. From

i O?)% xMmI= Lim %03 -
N Hroe ke, Skan
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1 ' ' Figure 5.2 Graphical interpretation
-7 0 kmO/ ™ 2m of%q. (57) P P
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eq. (5.4), X(¢/“) is seen to be periodic in w with period 27, and so is ¢/“". Thus, the product
X(e/*)e/" will also be periodic. As depicted in the figure, each term in the summation
in eq. (5.7) represents the area of a rectangle of height X(e/M)eiwnn and width wy. As
wy — (0, the summation becomes an integral. Furthermore, since the summation is cauried
out over N consecutive intervals of width w, = 2#/N, the total interval of integrawﬂ-l—"
always have a width of 2. Therefore, as N — =, ¥[n] = x[n],.and eq. (5.7)

o "
x[n] = - X(e/)e!" dw,

where, since X(e/“)e/“" is periodic with period 277, the interval of infegration can
as any interval of Ienfirth 27. Thus, we have the following pair of equations:

i
x{n] = —l X(e! e’ " Hw, ‘ (5.8)
277'.27.'
Xy = > xlnle™/om. (5.9)
n=-—-= ]

Equations (5.8) and (5.9) are the discrete-time counterparts of egs. (4.8) and (4.9).
The function X(e/?) is referred to as the discrete-time Fourier transform and the pair of
equations as the discrere-time Fourier transjorm pair. Equation (3.8) 15 the synthesis equa-
tion, eq. (5.9) the analysis equarion. Our derivation mutions indicates how an
aperiodic seqummf as a linear combination of complex exponentials.
In particular, the synthesis equation is in effect a representation of x[x] as a linear com-
~bination of complex exponentials infinitesimally close in frequency and with amplitudes
Xse""“ Hdw/Zﬂ'). For this reason, as in continuous time, the Fourier transform X (e/¢) will
often be referred to as the specrrum of x[n], because it provides us with the information
on how x[n] is composeﬁmmials at different frequencies.
Note also that, as in continuous time, our derivation of the discrete-time Fourier
transform provides us with an important relationship between discrete-time Fourier series
. and transforms. In particular, the Fourier coefficients ay of a periodic signal t[n] can be
M * expressed in terms of equall m fimte-duration,

ap Stenal 1|7 that is equal to x[n] over one period and is zero otherwise. 11Is fact

15 of considerable importance in practical signal processing and Fourter analysis, and we
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riodicity of e/“" as a function of w: @ = 0 and @ = 247 yield the same signal. Signals
at frequencies near these values or any other even multiple of 7 are slowly varying and
therefore are all appropriately thought of as low-frequency signals. Similarly, the high
frequencies in discrete time are the values of w near odd multiples of 77. Thus, the signal
X1[n] shown in Figure 5.3(a) with Fourier transform depicted in Figure 5.3(b) varies more
slowly than the signal x,[n] in Figure 5.3(c) whose transform is shown in Figure 5.3(d).

= 2N :
)9, o7 w X, (")
1n) = J_{iJX(Q Qi el ‘
a7
i | | | | | | |
0 n =27 —-w 0 ™ 2 w
(@) (b)
X,(e')
5[N]
I I I | 1 | 1 |
0 n 27 -m 0 =« 27 )
{c) (d)

Figure 5.3  (a) Discrete-time signal x;[n]. (b) Fourier transform of X [n).
Note that X;(e’) is concentrated near w = 0, +2+, +44, .... (c) Discrete-
time signal x;[n]. (d) Fourier transform of x;[n]. Note that X;(e") is concen-
trated near w = *+7, +37, .. ..

5.1.2 Examples of Discrete-Time Fourier Transforms

To illustrate the discrete-time Fourier transform, let us consider several examples.

Example 5.1

Consider the signal

x[n] = a"uln), la] < 1.
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Bawmlad )i xtn) = QM utn1, R
In this case,

- e
--—? X(ejm) P Z an“[n]e*jam C:"_ E xch t )
S Wy _ 1
) "ZT[,)(QB o= 1 —ae Jo’

The magnitude and phase of X(e/®) are shown in Figure 5.4(a) for @ > 0 and in Fig-
ure 5.4(b) for a < 0. Note that all of these functions are periodic in @ with period 2.
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Figure 5.4 Magnitude and phase of the Fourier transform of Example 5.1
for (a) a>0and (b) a < 0.
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Making the substitution of variables m = —n in the second summation, we obtain

X(e/?) = i(ae'j‘”)” + i(aeﬂ“)’".

n=0 m=1

Both of these summations are infinite geometric series that we can evaluate in closed
form, yielding

1 ael®

joy —
A 1 —ae j® 11— aelv

1 —a?
1 —2acosw + a?’

In this case, X(e/*) is real and is illustrated in Figure 5.5(b), again for 0 < a < 1.

Example 5.3

Consider the rectangular pulse

_[L Inl =N
x{n’] - { 0. In‘ > NI 3 (510)

which is illustrated in Figure 5.6(a) for Ny = 2. In this case,

Ny
Xy = > e (5.11)
n=-N,
X[n]
1

(l

Wi

—21:\/\/0\/\/21;(”

(b)

Figure 5.6 (a) Rectangular pulse signal of Example 5.3 for &y = 2 and
(b) its Fourier transform.
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Using calculations similar to those employed in obtaining eq. (3.104) in Example 3.12,
we can write

iy AN QT inw (N, + 1
(/(J)- @ /f) X(ei) = fljii(l—z) (5.12)

w/ 2 sin(w/2)

This Fourier transform is sketched in Figure 5.6(b) for N, = 2. The function in eq. (5.12)
is the discrete-time counterpart of the sinc function, which appears in the Fourier trans-
form of the continuous-time rectangular pulse (see Example 4.4). An important differ-
ence between these two functions is that the function in eq. (5.12) is periodic with period
27, whereas the sinc function is aperiodic.

5.1.3 Convergence Issues Associated
with the Discrete-Time Fourier Transform

Although the argument we used to derive the discrete-time Fourier transform in Sec-
tion 5.1.1 was constructed assuming that x[n] was of arbitrary but finite duration, egs.
(5.8) and (5.9) remain valid for an extremely broad class of signals with infinite duration
(such as the signals in Examples 5.1 and 5.2). In this case, however, we again must con-
sider the question of convergence of the infinite summation in the analysis equation (5.9).
The conditions on x[r] that guarantee the convergence of this sum are direct counterparts
of the convergence conditions for the continuous-time Fourier transform.' Specifically,
eq. (5.9) will converge either if x[n] is absolutely summable, that is,

S hanll <=, (e XE€ Q,C-‘O)W) (5.13)

n=-—w

or if the sequence has finite energy, that is,

> nP < A2 xEf, T, 00) (5.14)

n=-—w

In contrast to the situation for the analysis equation (5.9), there are generally no
convergence issues associated with the synthesis equation (5.8), since the integral in this
equation is over a finite interval of integration. This is very much the same situation as
for the discrete-time Fourier series synthesis equation (3.94), which involves a finite sum
and consequently has no issues of convergence associated with it either. In particular,
if we approximate an aperiodic signal x[n] by an integral of complex exponentials with
frequencies taken over the interval || = W, i.e.,

| .
3 Gibds { i[n] = G X(e/)el" dw, (5.15)
Phraomenon Then, KCnl= x0n] For W=T

"For discussions of the convergence Issues associated with the discrete-time Fourier transform, see A. V.
Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1989), and L. R. Rabiner and B. Gold. Theory and Application of Digital Signal Processing (Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1975).
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then £[n] = x[n] for W = 7. Thus, much as in Figure 3.18, we would expect not to see
any behavior like the Gibbs phenomenon in evaluating the discrete-time Fourier transform
synthesis equation. This is illustrated in the following example.

Example 5.4

Let x[n] be the unit impulse; that is,
x[n] = 8]n].
In this case the analysis equation (5.9) is easily evaluated, yielding
X(e) = 1.
In other words, just as in continuous time, the unit impulse has a Fourier transform repre-

sentation consisting of equal contributions at all frequencies. If we then apply eq. (5.15)
to this example, we obtain

fn) = =— e dy = . (5.16)

T W TN

1 JW sin Wn

This is plotted in Figure 5.7 for several values of W. As can be seen, the frequency of the
oscillations in the approximation increases as W is increased, which is similar to what we
observed in the continuous-time case. On the other hand, in contrast to the continuous-

(C]C- ) EJ . % / / 5 f z?{ time case, the amplitude of these oscillations decreases relative to the magnitude of £[0]
as W is increased, and the oscillations disappear entirely for W = 7.

5.2 THE FOURIER TRANSFORM FOR PERIODIC SIGNALS

As in the continuous-time case, discrete-time periodic signals can be incorporated within
k&@qﬂ " the framework of the discrete-time Fourier transform by interpreting the transform of a
periodic signal as an impulse train in the frequency domain. To derive the form of this

L epresentation, consider the signal
PG 1S

= s ‘ x[n] = efoon. %(/Z; ) (5.17)
'? ﬁ A ]C)F?n«JL ;I.ftw,ye.k ﬁ’ﬂ"ﬂ-‘)é}‘?ﬂ ? ﬁ e ﬁ)«m«k Fro st e 7}1@,_,74},),,
In continuous time, we saw that the Fourier transform of e/“' can be interpreted as an
X (/‘ﬂd) = % (Q‘—‘Jo)impulse at = w. Therefore, we might expect the same type of transform to result for
the discrete-time signal of eq. (5.17). However, the discrete-time Fourier transform must
be periodic in @ with period 277. This then suggests that the Fourier transform of x[#] in
eq. (5.17) should have impulses at w, wg + 27, wy * 4, and so on. In fact, the Fourier
transform of x[n] is the impulse train

+oo

X(()-j"') - Z 27 6(w — wy — 27), (5.18)
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X(t ) = Choosing the interval of summation as 0 = 4 = N — |, we have
Eﬂ
l
214* S (e - k%) ay = N (5.26)
k= -0 : . - e : g
+eo Using egs. (3.26) and (5.20). we can then represent the Fourier transform of the siunal
akx as
- S(W-kw ) |
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which is illustrated in Figure 5.11(b).
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(a) Discrete-time periodic impulse train; (b) its Fourier
transtorm.

5.3 PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM
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and

: F ;
e;wgnx[n] - X(ej(w*wu)). (531)

Equation (5.30) can be obtained by direct substitution of x[n — ng] into the analysis equa-
tion (5.9), while eq. (5.31) is derived by substituting X(e/~“) into the synthesis equa-
tion (5.8).

As a consequence of the periodicity and frequency-shifting properties of the discrete-
time Fourier transform, there exists a special relationship between ideal lowpass and ideal
highpass discrete-time filters. This is illustrated in the next example.

Example 5.7

In Figure 5.12(a) we have depicted the frequency response Hi,(e/) of a lowpass filter
with cutoff frequency w., while in Figure 5.12(b) we have displayed Hp(e/@~™)—that
is, the frequency response Hy,(e/“) shifted by one-half period, i.e., by 7. Since high
frequencies in discrete time are concentrated near 7 (and other odd multiples of ), the
filter in Figure 5.12(b) is an ideal highpass filter with cutoff frequency 7 — w,. That is,

Hip(e/*) £ Hyp(el ™), (5.32)

As we can see from eq. (3.122), and as we will discuss again in Section 5.4, the
frequency response of an LTI system is the Fourier transform of the impulse response
of the system. Thus, if fuy[n] and hyyln] respectively denote the impulse responses of

Hip(e")
1
o I = = M
—2n - e w, o 27 w
(a)
Hlp(ei(m—n))

Figure 5.12 (a) Frequency response of a lowpass filter; (b) frequency re-
sponse of a highpass filter obtained by shifting the frequency response in (a)
by w = = corresponding to one-half period.

=1 “w o | > (&-TC)
Mude @ gy nd = 7ty = F i f/z,»(e’” )}
= IR fHp () = €D AZ[M
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5.3.4 Conjugation and Conjugate Symmetry
If

ij .
x[n] «— X(e’?),

then

el o) (5.35)

Also, if x[n] is real valued, its transform X(e/) is conjugate symmetric. That is,

X(e'®) = X*(e /) [x[n]real]. (5.36)

From this, it follows that Re{X(e/®)} is an even function of w and Im{X(e/*)} is an odd
function of . Similarly, the magnitude of X(e/) is an even function and the phase angle
is an odd function. Furthermore,

Ev{x[n]} <—$—> Re{X(e/?)}

and

Od{xlnl} < jIm{X(e™)},

where &v and Od denote the even and odd parts, respectively, of x[n]. For example, if x[n]
is real and even, its Fourier transform is also real and even. Example 5.2 illustrates this
symmetry for x[n] = all,

5.3.5 Differencing and Accumulation

In this subsection, we consider the discrete-time counterpart of integration—that is,
accumulation—and its inverse, first differencing. Let x[n] be a signal with Fourier trans-
form X(e/®). Then, from the linearity and time-shifting properties, the Fourier transform
pair for the first-difference signal x[n] — x[n — 1] is given by

x[n] = x[n — 1] ks, (1 — e 19)X(e/?). (5.37)
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That is,

O LA T 1) (5.42)

5.3.7 Time Expansion

Because of the discrete nature of the time index for discrete-time signals, the relation be-
tween time and frequency scaling in discrete time takes on a somewhat different form from
its continuous-time counterpart. Specifically, in Section 4.3.5 we derived the continuous-
time property

L ix(ﬂ). (5.43)
lal "\ a

However, if we try to define the signal x[an], we run into difficulties if a is not an integer.
Therefore, we cannot slow down the signal by choosing @ < 1. On the other hand, if we
let a be an integer other than * 1—for example, if we consider x[2n]—we do not merely
speed up the original signal. That is, since n can take on only integer values, the signal
x[2n] consists of the even samples of x[n] alone.

There is a result that does closely parallel eq. (5.43), however. Let k be a positive
integer, and define the signal

A { x[n/k], if nis a multiple of k (5.44)

Xoln] = 0, if  is not a multiple of k.

As illustrated in Figure 5.13 for k = 3, x(;[n] 1s obtained from x[n] by placing k — 1 zeros
between successive values of the original signal. Intuitively, we can think of x[n] as a
slowed-down version of x[n]. Since x(;)[n] equals O unless n is a multiple of &, i.e., unless
n = rk, we see that the Fourier transform of x[n] is given by

X(k)(e’jw) = Z x(k)[n]efjmn - Z x(k)[rk}e—fjmrk'
[ x[n]
—2totz2 -

=1 '

Figure 5.13  The signal x3[n] ob-
tained from x[n] by inserting two zeros
between successive values of the
original signal.



378 The Discrete-Time Fourier Transform Chap. 5

Furthermore, since x(y)[rk] = x[r], we find that

+ o0

Xw(e®) = > xlrle /*r = x(e/kw),

r=—w

(cf )Lamfﬁ.? G—E-? «k/m)

That 1s,

(5.45)

F "
Mgl X(&"™).

Note that as the signal is spread out and slowed down in time by taking k > 1,
its Fourier transform is compressed. For example, since X(e/“) is periodic with period
2, X(e/*®) is periodic with period 27/k. This property is illustrated in Figure 5.14 for a

rectangular pulse.

x[n] X(e")
n —21': \/ \/ \/ \/ 211' w
Xz)n] Xp)(€) = X(€2°)
¢
0 n
X(3[n]

A AHA ’\,}’:‘:ﬂ‘}
: S A AL L AT A A

1 _IL i m
3 3

Figure 5.14 Inverse relationship between the time and frequency domains: As k in-
Creases, X [n) spreads out while its transform is compressed.
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response and frequency response of an LTI system are a Fourier transform pair, we can
determine the impulse response of the ideal lowpass filter from the frequency response
using the Fourier transform synthesis equation (5.8). In particular, using -7 = @ = 7
as the interval of integration in that equation, we see from Figure 5.17(a) that

1

o - ) ] W, ‘
Bln) = 5— f H(e™)e™ dw = — f e dw
2 - 2ar R
‘ (5.50)
_ Sinw.n
R
which is shown in Figure 5.17(b).
H(e™)
1 y——
| | | |
=2 = —we 0 wg ™ 21w
(@)
h(n]
0 n
(b)

Figure 5.17 (a) Frequency response of a discrete-time ideal lowpass filter;
{(b) impulse response of the ideal lowpass filter.

In Figure 5.17, we come across many of the same issues that surfaced with the
continuous-time ideal lowpass filter in Example 4.18. First, since A[n] is not zero for
n < 0, the ideal lowpass filter is not causal. Second, even if causality is not an important is-
sue, there are other reasons, including ease of implementation and preferable time domain
characteristics, that nonideal filters are generally used to perform frequency-selective fil-
tering. In particular, the impulse response of the ideal lowpass filter in Figure 5.17(b) is
oscillatory, a characteristic that is undesirable in some applications. In such cases, a trade-
off between frequency-domain objectives such as frequency selectivity and time-domain
properties such as nonoscillatory behavior must be made. In Chapter 6, we will discuss
these and related ideas in more detail.

As the following example illustrates, the convolution property can also be of value
in facilitating the calculation of convolution sums.

A
Moreover, fom 'S (ALl | = fom 5:. A e

KyPeo = -4 K> o> n=-Nr
A/ -0 A/.-*“‘

fhat s, tha adeal LPE i it kb J‘*“"Q-
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Example 5.13 C Ure 2 —hxarforw iv Co{&/il‘m_ /o)

A Pjﬂ(/ﬁc;-e LPF Consider an LTI system with impulse response
y hln] = a"uln],
Ses- Frg S £ ()

with |a| < 1, and suppose that the input to this system is
’Y)
o
P+ He?Y) S

with |8| < 1. Evaluating the Fourier transforms of 4[n] and x[n], we have

— o} OJ‘O'/AJo
— Calusaf 7

1

H(e!) = e (5.51)
and
X(el?) = ;., (5.52)
I —Be v
so that
V(&™) = H(e)X(e) = ! (5.53)

(1 — ae io)l — Be i)

As with Example 4.19 , determining the inverse transform of Y (e/*) is most easily
done by expanding ¥(e/“) by the method of partial fractions. Specifically, Y(e/®) is a
ratio of polynomials in powers of ¢™/“, and we would like to express this as a sum of
simpler terms of this type so that we can find the inverse transform of each term by
inspection (together, perhaps, with the use of the frequency differentiation property of
Section 5.3.8). The general algebraic procedure for rational transforms is described in
the appendix. For this example, if @ # f3, the partial fraction expansion of ¥(e/) is of
the form

A - B
l-—ae /o 1-Beio

Y(e/¥) = (5.54)

Equating the right-hand sides of egs (5.53) and (5.54), we find that

a— B’ a— B

Therefore, from Example 5.1 and the linearity property, we can obtain the inverse trans-
form of eq. (5.54) by inspection:

Tt B B

Winl = —%—aufn] — —P—gruln)

a=p @—B (5.55)

v i 5 [a" ' uln) — B" 'uln]).

For @ = f3, the partial-fraction expansion in eq. (5.54) is not valid. However, in this
case,

5

[ 2
Y(e/”) = (l qe- i ) .
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which can be expressed as

do \1 —ae i

Y(e/®) = éef'w i (—lu) (5.56)

As in Example 4.19, we can use the frequency differentiation property, eq. (5.46),
together with the Fourier transform pair

to conclude that

n n [n] J : d I
QU far s B yrman rcameenmmamemorma 1
Jdo \1 = ae 7w
To account for the factor ¢/, we use the time-shifting property to obtain

F ol 1
n+1l s jw
(n+ Da"" uln+ 1] «— je 7 (—————1 s )

and finally, accounting for the factor l/«, in eq. (5.56), we obtain
y[n] = (n + Dau[n + 1]. (5.57)

It is worth noting that, although the right-hand side is multiplied by a step that begins
atn = —1, the sequence (n + 1)a"u[n + 1] is still zero prior to n = 0, since the factor
n+ 1iszero at n = —1. Thus, we can alternatively express y[n] as

yln] = (n + Da"uln]. (5.58)

As illustrated in the next example, the convolution property, along with other Fourier

transform properties, is often useful in analyzing system interconnections.

Example 5.14

Consider the system shown in Figure 5.18(a) with input x[n] and output y[n]. The LTI
systems with frequency response H;,(e/*) are ideal lowpass filters with cutoff frequency
/4 and unity gain in the passband.

Let us first consider the top path in Figure 5.18(a). The Fourier transform of the
signal wi[n] can be obtained by noting that (—1)" = /™ so that w;[n] = ¢/™ x[n].
Using the frequency-shifting property, we then obtain

Wie’) = X(e/™™),
The convolution property yields
Wale!) = Hp(e™®)X(e/ ™).
Since wi[n] = e/™"w>|n], we can again apply the frequency-shifting property to obtain

Wa (el YW/ ™m)
( e
— H”‘((,,'Lm Tri)X((,:(n: .,uJ).
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(—[,_fcer’ ) (=1 (-1
iéWd”]! Hy (&) Wo[n] ) alnl

i yin]

\ n x[n]

—>{ H, (")

wyln]

(a)

H(el)
1 ' 8

Figure 5.18 (a) System interconnection for Example 5.14; (b) the overall
frequency response for this system.

Since discrete-time Fourier transforms are always periodic with period 27,
Wi(e/®) = Hjp(e/ ™)X (e®).
Applying the convolution property to the lower path, we get
Wi(e’) = Hip(e')X(e).
From the linearity property of the Fourier transform, we obtain

Y(e/®)

Wi(e!) + Wa(el®)
[ij(ej(w—ﬂ')) i H.’p(ejw)]X(ejw)-

Consequently, the overall system in Figure 5.18(a) has the frequency response
By =[B! =T M2

which is shown in Figure 5.18(b).

As we saw in Example 5.7, H;,(e/ ™) is the frequency response of an ideal
highpass filter. Thus, the overall system passes both low and high frequencies and stops
frequencies between these two passbands. That is, the filter has what is often referred to
as an ideal bandstop characteristic, where the stopband is the region 7/4 < |w| < 37/4.

It is important to note that, as in continuous time, not every discrete-time LTI system
has a frequency response. For example, the LTI system with impulse response h[n] =
2"u[n] does not have a finite response to sinusoidal inputs, which is reflected in the fact
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that the Fourier transform analysis equation for ii[n] diverges. However, if an LTI system
is stable, then, from Section 2.3.7, its impulse response is absolutely summable; that is,

+o

> Jhln]| < o= (5.59)

n—=—o

Therefore, the frequency response always converges for stable systems. In using Fourier
methods, we will be restricting ourselves to systems with impulse responses that have well-
defined Fourier transforms. In Chapter 10, we will introduce an extension of the Fourier
transform referred to as the z-transform that will allow us to use transform techniques for
LTI systems for which the frequency response does not converge.

5.5 THE MULTIPLICATION PROPERTY

In Section 4.5, we introduced the multiplication property for continuous-time signals and
indicated some of its applications through several examples. An analogous property exists
for discrete-time signals and plays a similar role in applications. In this section, we derive
this result directly and give an example of its use. In Chapters 7 and 8, we will use the
multiplication property in the context of our discussions of sampling and communications.

Consider y[n] equal to the product of x;[n] and x[n], with Y(e/), X,(e/*), and
X,(e/) denoting the corresponding Fourier transforms. Then

+o +2c

Y(e/®) = > ylnle ™" = > xi[nlxy[nle /",
or since
1 iy jon
xln] = — | Xi(e)e!""do, (5.60)
21T Y
it follows that
+x 1
e - Pl {_jH '_an 7_[1:)11. :
Y(e*) = > xhln]{zﬂ_ Lﬁxw e dﬁ] e (5.61)

n=-—ox

Interchanging the order of summation and integration, we obtain

: 1
HEy= %J

27

XK@y > xofn)emi@-0n 4g, (5.62)
—

n=-—-x

The bracketed summation is X>(e/*“ ?), and consequently, eq. (5.62) becomes

Y(e/®) = QH Xi(e')Xa(e! M. (5.63)
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