0wy o=y no..uv\ .w\ . H.GL Caay o"ﬁ?&h
Goy L= Cy-uay X =0 DRy Z = Tu At gl i s/

=2 (0) 'g/LF = ¢ (@)

‘W/LF = B (e) :wa)shs sapio-jsuy e jo [ufn g =

T P) ﬂ ©)
?lrowruhﬂb——i=—= onuuﬂvooou« coﬂuonuooounuunncboalbﬂﬂ———ﬁooaouooouunﬁ
,\mrum ¥ _e
\ ¢ al € 4l
[uly [uly
u YT B o u - o R
2090000 0ey .qq&hhhhg 1111111111 200 eeeeseeetey b&hg — 1111111111
fa, . ::: LN d
(i 7 1, ¢ I
(uly [uly
(q) (e)
C“““D'“""”nﬂ "0““”0000““:.lﬂbgﬁu“”““"”“““n“l m;,,”’;;’;;';;,’.l-'o*‘:’,;;
4 . L A
b L b $y
[uly (uly
. oo olo.o.o.?o.o.t.o.?-l B 0 seoe—
0999000000000 00000 QﬁetEY i:%%???o&dli
g, . _
Te=e 1, Tt=¢ :
[uly [uly
2V -/ / >|v ¥
v "2 oo Iv]
O - -
..—n_:lndll“ll Cu)n ¥H¢u<u9u% ¥ CNn B = [(wy TH!U.X lﬁ?cb\d NRU\.
L

Tap s wwrg=vprerrg tpeprd [y 95
?\5&1 “ﬂ“ng t\'}l?l.v_ﬂw-\ P AQ\-‘OI*M&Q w.v&.



- Tha basponsas am clocer fa (@] nean Fo |
— Tha shap banpensas Bckibitop openshost am o binging
@ ey ace

Al
- upm |
S]] = —— ) i 463
: (=, ’
s[n] 1 sin]
Z a=+z a a=+4=
1 f
n 0 n

..... .1'THTT”HTTHTI!TTmen A-IUTTTTTITTHTHTTTHTIHHTn
@ (b)

w
e,

|~

s(n]
| a=+

B )

5
4

AAAAAAA .l

- N W s OO~ ®

)
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LH(g®) = —fpg=! | 28BY | (6.56)
1 =acosw

In Figure 6.28(a), we have plotted the log magnitude and the phase of the frequency
respenie in eq. (6.52) for several values of @ > 0. The case of ¢ < 0 is illustrated in
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Figure 6.28(b). From these figures, we see that for @ > 0, the system attenuates hie

fres_ uencies Ii.e., H(e/?)| is smaller for @ near =7 than it 1s for w near 0], while when
a < 0, the system ampli h ] ow frequencies. Note also

(a)

Figure 6.28 Magnitude and phase of the frequency response of eq. (6.52)
for a first-order system: (a) piots for several values of 2 > 0; (b) plots for

several values of a < Q.
-

|
|
i
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Figure 6.28 Continued V"’ "'

6.6.2 Second-Order Discrete-Time Systems

Consider next the second-order causal LTI system described by

y[n] = 2rcos@y[n = 1] + 1‘2)’[11 =2] = x[n]

witl" 0<r< l*and 0= 0 = 7. The frequency response for this system is
1

H(el?) = : —
1 = 2rcosfe /o + ple~jlw

The denominator of H(e/“) can be factored to obtain
: 1
H(el®) = ‘ _ . -
() [1 = (re/®e~/@][1 — (re=/?)e=Jv]
i

Ramenf (shown i Oﬂ?!«. /e)
oL h s =D brpo sAula




PR

Time and Frequency Characterization of Signals and Systems Chap. 6

raction expansion yields

z"'(}. A B

H(e!®) = _ + S— (6.60)

[ =(kei)g=ik T=(re~P)g~i’

—_—— e ——————,

(&ﬂ) i (6.61)
é

2jsind 2jsind
In this case, thg\mpulse response of the system is
hin) = [A(re’®)" + B(r&")" uln)
M R‘b _ usinf(n + 1)6] 1)9]
¢—_’
the two factors in the denominator of eq. (6.58) are the same. When 6 = 0,
E—

il .
H(é’j ) = (1 — ]'e‘_f“")l (66..‘))
’ and (r w g
mx ‘x“. ) hin]l = (n + Dr'"u[n]. (6.64)
k’ j ——————" When 6 = 7, B ———————
“ "Aw = —1_

J Q ”) KH({,J ) (l T re“ﬂu‘)2 (665)
;r.t'nﬁ‘) o fnd o e @ ‘
h") 6 ‘ XC{ i[n] = (n+ 1)(=r)"uln]. ) f

The impulse responses for second-order systems are plotted in Figure 6.29 for arange

of values of » and 6. From this figure and from eq. (6.62), we see that the rate of decay of
h[n] is controlled by r—i.e., the closer r is to 1, the slower is the decay in A[#]. Similarly,
the value of @ determines the frequency of oscillation. For example, with 8 = 0 there is

no oscillation in i[n], while for @ = 7 the oscillations are rapid. The effect of diffgrent
values of r and @ can also be seen by examining the step response of eq. (6.57) m

or T,

-
St‘hJ - z f\U'-J s S sln] = h{n] # uln] =

i (},ejﬂ)!l+|
1=rel®

k=
Also, using the result o ve find th

|
(Fere-shede pponse) . [(’ TSN eyt P €T

] = (re—jﬁ)nﬂ‘-l

] uln].

vhile f

1 | o N ¥ i u-
k s[n] = {(’__F e - T i}z(ﬂ) + ET(H + 1)(--r)

The step response is plotted in Figure 6.30, again for a range of values of r and 6

uln].
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iqure 6.29 | g response of the second-order system of eq. (6.57) for a range

of values of r and 6.

The second-order system given by eq. (6.57) is the counterpart of the underdamped
second-order system in continuous time, while the special case of 6 = 0 is the critically
damped case. That i3, for any value of @ other than zero, the impulse response has a damped
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Figure 6.30 Step response of the seconc-order system of eq. (6.57) for a range of

valugs of r and 0

camrm



Sec. 6.6 First-Order and Second-Order Discrete-Time Systems 469

oscillatory behavior, and the step response xhlbltsrmvmc and overshoot. The frequency 2! 5
response of this system is depicted in F ire 6.31 for a number of values of r and 6. Fxoni_,,
Figure 6.31, we see that a band of frequéncies is amphﬁed and r determines Bow shar

peaked the frequency responsc 1S
m‘l described in eq. (6.59) has factors
with complex coefficients (unless 8 = 0 or 7). It is also possible to consider second-ord
systems having factors with real coefficients. Specifically, consider y

«J‘f) g‘ H(e/v) = _1 : 2‘"" (670)

(1 =—dje @)1 = dae™I®)
whele dl and > are both real numbels with |d,|, |d>] < 1. Equation (6.70) is the frequency
response 1or the difference equation

OIOQm}H(ein

24 dB

>
!
|
=N
-
[pe]
AT
€

\e* ' € H(eh)
q

w

Figure 6.31
second-order §

= G4,
r=1/4, 112, and 3/4.
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20 logyg |H(e™)]

1 24dB
r=3 +20

% +16

2 =12

Chap. 6

A :{“a‘“ﬁ of () ©

Figure 6.31 Confinued

ﬁ ; , 9 ylnl = (dy + d2)yln = 11 + dydayln = 2] = x[n].

S ———————— it
Ir this case,

; A B
H(e/?) = — =+ o,
(™) ]l =die=w 1 = dre=J¥
where
i dy , = ;f[.%.___
t!["dg (!g—dl
Thus,

Q‘J’) ? ’-J'J' * hinl = [Ad] 4 Bd5]u[n],

(6.71)

(6.72)

(6.73)

(6.74)
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20 log; |H(e™)|

o G-:-E
:"’X 2 LH(e)

Figure 6.31 Continued

which is the sum of two decaying real exponentials. Also,

3 1 _dirﬂ\ 1—d£’+l
S[”] = A (l——dl/+ B (ng— ):| MEH]. (675)

The system wilh frequency response given by eq. (6.70) corresponds to the cascade

of two first-order systems. Therefore, we can deduce most of its properties from our un-
derstanding of the first-order case. For example, the log-magnitude and phase plots for eq.
(6.70) can be obtained by adding together the plots for each of the two first-order terms.
Also, as we saw for first-order systems, the response of the system is fast if |d,| and |d5|
are small, but the system has a long settling time if either of these magnitudes is near 1.
Furthermore, if d, and d> are negative, the response is oscﬂlatm y. The case when both d ,
and d; are positive is the counterpart of the over ontinuous time, wit

out oscillation.




472 Time and Frequency Characterization of Signals and Systems Chap. 6

20 log,q |H(e!)|

1 24dB
+20 r=

(d)

Figure 6.31  Continued

In this section, we have restricted attention to those causal first- and second-order
systems that are stable and for which the frequency response can be defined. In particular,
the causal system described by eq. (6.51) is unstable fox| @ | = 1. Also, the causal system
described by eq. (6.5 is unstable if r = 1, and tha;@scribed by eg. (6.71) is unstable
Mctllﬂr;ctorEW€dsp @=0o or x

a—

6.7 EXAMPLES OF TIME- AND FREQUENCY-DOMAIN ANALYSIS OF SYSTEMS

Throughout this chapter, we have illustrated the importance of viewing systems in both ine
time domain and the frequency domain and the importance of being aware of trade-offs in
the behavior between the two domains. In this section, we iliustrate some of these issues
further. In Section 6.7.1, we discuss these trade-offs for continuous time in the context
of an automobile suspension system. In Section 6.7.2, we discuss an important class of
discrete-time filters referred to as moving-average or nonrecursive systems.

B L
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20 log, [H(e®)]

—+—24dB

(e)

Figure 6.31 Continued

6.7.1 Analysis of an Automobile Suspension System

A number of the points that we have made concerning the characteristics and trade-offs
in continuous-time systems can be illustrated in the inter pretation of an automobile sus-
pension system as a lowpass filter. Figure 6.32 shows a diagrammatic representation of a
simple suspension system comprised of a spring and dashpot (shock absorber). The road
surface can be thought of as a superposition of rapid small-amplitude changes in elevation
(high frequencies), representing the roughness of the road surface, and gradual changes

in elevation (low frequencies) due to the general topography. The automobile suspension
sySLL m is generally intended to filter out rapid variations in (e 1106 Cate file road

us, 1t 18 reasonable to accept and, in a(,t prefer a lowpass filter that has a gradual



'
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Chassis
mass, M

b Road
surface

Reference
elevation

Figure 6.32 Diagrammatic representation of an automotive suspension
system. Here, y, represents the distance between the chassis and the road
surface when the automabile is at rest, y(t) + y, the position of the chassis
above the reference elevation, and x(t) the elevation of the road above the
reference elevation.

transition from Eassbaag EE imgband. Furthermore, the time-domain characteristics of the
systenl dre important. If the impulse response or step response of the suspension system
ém;q,tena arge bump in impulse tnput) or a curb
mode S a step input) will result in an uncomfortable oscillatory respapse. In fact, a
commoeon test for a suspension system is to mtroduce an excitation by depressing and then
releasing the chassis. If the response exhibits ringing, it is an indication that the shock
absorbers need to be replaced.

Cost and ease of implementation also play an important role in the design of au-
tomobile suspension systems. Many studies have been carried out to determine the most
desirable frequency-response characteristics for suspension systems from the point of view
of passenger comfort. In situations where the cost may be warranted, such as for passenger
raimte and costly suspension systems are used. For the automotive indus-

try, cost is an imngﬁgm Igg;or, and simple, less costly suspension systems are generally
used. A typical automotive suspension system consists simply of the chassis connected to
mgﬁn Figure 6.32. v represents the distance be-
tween the chassis and the road surface when the automobile is at rest, y(t) + ¥ the position
of the chassis above the reference elevation, and x(r) the elevation of the road above the
reference elevation. The differential equation governing the motion of the chassis is then
5

dc';tm + bd—;g—ﬂ + ky(z) = kx(2) + b(hm.
where M is the mass of the chassis and & and b are the spring and shock absorber constants,
respectively. The frequency response of the system is

M (6.76)

sise k+bjw
BUw) = S T T T
or
= +2 ]
) = e+ Zoiul ) (6.77)

(jw)? + 2w,(jw) + vz’

/

Mo “\:‘/wi , "J‘_A':%’

.
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) Figure 6.34 Step response of the automotive suspension system for vari-
“‘ ous values of the damping ratio (¢ = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0,1.2, 1.5, 2.0, 5.0).

A‘”b ;
f W ’ domm%en&mlly the shock absorber damping is chosen to have a rapid rise

r'. “’i““ yet avoid overshoot and ringipe. This choice corresponds 1o iically damped case,
="1.0, considered In Seu:on 6.5.2.
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Figure 6.35 Log-magnitude piots for the moving-average filter of egs.
(6.78) and (6.79) for (a) M+ N +1 =33 and (b) M+ N +1 = 65.
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(a)

(b)

the response of the filter, let us consider a filter of the form of eg. (6.80), withN = M = 16

and the filter coefficients chosen to be

(6.81)
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actual Jota

St -dey hw‘, qrtu\,..._

zg[-‘t/ ‘.n‘.l ‘sw

Figure 6.36 Effect of lowpass fil-
tering on the Dow f’onemgﬂ'rw 2KIV stock
rﬁ!Fkge'{'mdex over a 10-year period
using moving- filters: (a) weekly
Hﬂa: !E(i 51-day moving average ap-
plied to (a); (c) 201-day moving
average applied to (a). The weekly
stock market index and the two moving
averages are discrete-time sequences.
For clarity in the graphical display,

the three sequences are shown here
with their individual values connected
by straight lines to form a continuous
curve,
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ﬂ Q" <he impulse response of the filter is

sinf2#n/33) I | =32
_— .3

’ (6.82)
=32
(6.82) corresponds to
ter with cutoff fre-

Coefficients b, can be adjusted so that the cutoff is at a desired fre-
quency. For the emmple shown in Figure 6.37, the cutoff trequmw was chosen to match
approximately the cutoff frequency of Figure 6.35 for N = = 16. Figure 6.37(a) shows
the impulse response of the filter, and Figure 6. 37(bmmaomtude of the fre-
quency response in dB. Comparing this frequency response to Figure 6.35, we observe
that the passband of the filter has approximately the same width, but that the transitiontp

Abe shoplend ia sharper.

h{n]
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Figure 6.37 (a) Impulse response for the nonrecursive filter of eq. (6.82);
mude of the frequency response of the filter. S——
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Figure 6.38 Comparison, on a
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Figure 6.39 Lowpass nonrecursive filter with 251 coefficients designed to obtain the
sharpest possible cutoff.

Ahe

= 0 for all [n| > N). If we now define the nonrecursive LTI system resulting
L from a simple N-step delay of A[n], i.e.,

an impu/se hy[n] = hin — N), (6.83)
mf,m‘_ Ahak | thenhy[n] = 0forall n < 0 so that this LTI system is causal. Furthermore, from the time-
LR PRt 4 evan shift property for discrete-time Fourier transforms, we see that the frequency response of
| the system is
ca CoX? d

w i a

Z'b"q. cavsed il

A”*‘V‘ =t Since H(e/® ) has zero phase, H| (e/) does indeed have linear phase.
Plosz -f)nzqto/gy vy

H,(e/*) = H(e!®)e 7@V, (6.84)

ons R

Toaale) | a3, @G, W) W T
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