7.4 DISCRETE-TIME PROCESSING OF CONTINUOUS-TIME SIGNALS

In many applications, there is a significant advantage offered in processing a continuous-
time signal by first converting it to a discrete-time signal and, after discrete-time process-
ing, converting back to a continuous-time signal. The discrete-time signal processing can
be implemented with a general- or special-purpose computer, with microprocessors, or
with any of the variety of devices that are specifically oriented toward discrete-time signal
processing.

In broad terms, this approach to continuous-time signal processing can be viewed
as the cascade of three operations, as indicated in Figure 7.19, where x.(¢) and y.(¢) are
continuous-time signals and x,[n] and y,[n] are the discrete-time signals corresponding to
x(t) and y.(¢). The overall system is, of course, a continuous-time system in the sense that
its input and output are both continuous-time signals. The theoretical basis for converting
a continuous-time signal to a discrete-time signal and reconstructing a continuous-time
signal from its discrete-time representation lies in the sampling theorem, as discussed
in Section 7.1. Through the process of periodic sampling with the sampling frequency
consistent with the conditions of the sampling theorem, the continuous-time signal x.(t)
is exactly represented by a sequence of instantaneous sample values x.(nT); that is, the
discrete-time sequence x,[n] is related to x.(7) by

xqln] = x.(nT). (7.16)
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Figure 7.19  Discrete-time processing of continuous-time signals.

The transformation of x.(f) to x,[n] corresponding to the first system in Figure 7.19 will
be referred to as continuous-to-discrete-time conversion and will be abbreviated C/D. The
reverse operation corresponding to the third system in Figure 7.19 will be abbreviated D/C,
representing discrete-time to continuous-time conversion. The D/C operation performs an
interpolation between the sample values provided to it as input. That is, the D/C operation
produces a continuous-time signal y.(r) which is related to the discrete-time signal y;[n]
by

Yaln] = ye(nT).

This notation is made explicit in Figure 7.20. In systems such as digital computers and
digital systems for which the discrete-time si gnal is represented in digital form, the device
commonly used to implement the C/D conversion is referred to as an analog-to-digital (A-
to-D) converter, and the device used to implement the D/C conversion is referred to as a
digital-to-analog (D-to-A) converter.
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Figure 7.20 Notation for continuous-to-discrete-time conversion and
discrete-to-continuous-time conversion. T represents the sampling period.
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Figure 7.21 Sampling with a periodic impulse train followed by conversion
to a discrete-time sequence: (a) overall system; (b) x,(f) for two sampling
rates. The dashed envelope represents x.(f); (c) the output sequence for the

two different sampling raies
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To begin let us express X,(jw), the continuous-time Founer transform of x,(1), V 23 )
in terms of the sample values of x.(f) by applying the Fourier transform to eq. (7.3). 7
Since ~

(/’}Ob > -
Ll TSI = i, (7.17)

n=-—x

and since the transform of 8(t — nT) is e /“"T | it follows that

+x

Xp(jw) = Z R it (7.18)

n=-x
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Now consider the discrete-time Fourier transform of x;[n], that is,

+ oo
Xae®y = > xylnle 0, (7.19)
or, using eq. (7.16),
+oo
Xi(e'?) = > x.(nT)e /n, (7.20)

Comparing egs. (7.18) and (7.20), we see that X, (e’?) and X p(jw) are related through

X4’y = X,(jQUT). (7.21)
Also, recall that, as developed in eq. (7.6) and illustrated in Figure 7.3,
1 <
Xp(jw) = 7 > Xe(j(w = kay)). (722)
k=—o0
Consequently,
. e
s o -
X (e’ = Tk:ZmXC(J(Q 2k)IT). (7.23)

The relationship among X.(jw), X ,( jog), and X, (e/?) is illustrated in Figure 7.22
for two different sampling rates. Here, X,;(e/) is a frequency-scaled version of X p(jw)
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Figure 7.22 Relationship between X(jw), X,(jw), and Xs(e/*) for two dif-
ferent sampling rates.
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and, in particular, is periodic in () with period 27r. This periodicity is, of course, charac-
teristic of any discrete-time Fourier transform. The spectrum of x,[n] is related to that of
x(t) through periodic replication, represented by eq. (7.22), followed by linear frequency
scaling, represented by eq. (7.21). The periodic replication is a consequence of the first
step in the conversion process in Figure 7.21, namely, the impulse-train sampling. The
linear frequency scaling in eq. (7.21) can be thought of informally as a consequence of
the normalization in time introduced by converting from the impulse train x,(7) to the
discrete-time sequence x4[n]. From the time-scaling property of the Fourier transform in
Section 4.3.5, scaling of the time axis by 1/T will introduce a scaling of the frequency
axis by T. Thus, the relationship {} = wT is consistent with the notion that, in converting
from x,(?) to x4[n], the time axis is scaled by 1/T.

In the overall system of Figure 7.19, after processing with a discrete-time system,
the resulting sequence is converted back to a continuous-time signal. This process is the
reverse of the steps in Figure 7.21. Specifically, from the sequence y,[n], a continuous-
time impulse train y,(f) can be generated. Recovery of the continuous-time signal y.(r)
from this impulse train is then accomplished by means of lowpass filtering, as illustrated
in Figure 7.23.

D/C conversion
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——————————————————————————————— ' time signal.

Now let us consider the overall system of Figure 7.19, represented as shown in Fig-
ure 7.24. Clearly, if the discrete-time system is an identity system (i.e., xz[n] = yq[n]),
then, assuming that the conditions of the sampling theorem are met, the overall system
will be an identity system. The characteristics of the overall system with a more general
frequency response Hy(e/) are perhaps best understood by examining the representative
example depicted in Figure 7.25. On the left-hand side of the figure are the representative

- : - T
x, (t) |Conversion of] x4 [n] A yq [N] |Conversion of Yo ]
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Figure 7.24 Qverall system for filtering a continuous-time signal using a discrete-
time filter.
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spectra X.(jw), X,(jw), and X(e/Y), where we assume that wy < w,/2, so that there is
no aliasing. The spectrum Y,(e/?) corresponding to the output of the discrete-time filter is
the product of X, (e/?) and Hy(e/), and this is depicted in Figure 7.25(d) by overlaying
Hy(e/) and X;(e/?). The transformation to Y.(jw) then corresponds to applying a fre-
quency scaling and lowpass filtering, resulting in the spectra indicated in Figure 7.25(e)
and (f). Since Y;(e/) is the product of the two overlaid spectra in Figure 7.25(d), the
frequency scaling and lowpass filtering are applied to both. In comparing Figures 7.25(a)
and (f), we see that

Ye(jo) = Xc(jw)Ha(e’T). (7.24)

Consequently, for inputs that are sufficiently band limited, so that the sampling theorem is
satisfied, the overall system of Figure 7.24 is, in fact, equivalent to a continuous-time LTI
system with frequency response H.(jw) which is related to the discrete-time frequency
response Hy(e/") through

JGeeT), ]w| < w,/2

: 2
0, lw| > w2 e2)

Hc(jw) = {

The equivalent frequency response for this continuous-time filter is one period of the
frequency response of the discrete-time filter with a linear scale change applied to the
frequency axis. This relationship between the discrete-time frequency response and
the equivalent continuous-time frequency response is illustrated in Figure 7.26.

The equivalence of the overall system of Figure 7.24 to an LTI system is somewhat
surprising in view of the fact that multiplication by an impulse train is not a time-invariant
operation. In fact, the overall system of Figure 7.24 is not time invariant for arbitrary in-
puts. For example, if x.(f) was a narrow rectangular pulse of duration less than 7, then a
time shift of x.(f) could generate a sequence x[n] that either had all zero values or had
one nonzero value, depending on the alignment of the rectangular pulse relative to the
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T T for the system of Figure 7.24.
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sampling impulse train. However, as suggested by the spectra of Figure 7.25, for band-
limited input signals with a sampling rate sufficiently high so as to avoid aliasing, the
system of Figure 7.24 is equivalent to a continuous-time LTI system. For such inputs,
Figure 7.24 and eq. (7.25) provide the conceptual basis for continuous-time processing
using discrete-time filters. This is now explored further in the context of some examples.

7.4.1 Digital Differentiator

Consider the discrete-time implementation of a continuous-time band-limited differenti-
ating filter. As discussed in Section 3.9.1, the frequency response of a continuous-time
differentiating filter is

H.(jw) = jo, (7.26)

and that f’a band-limited differentiator with cutoff frequency w. is

1w = § it D, 1l

. w, |wl <w,
o sAhsraise HoGw) = { 2 ol = e, 727)
/AN
\ll/ as sketched in Figure 7.27. Using eq. (7.25) with a sampling frequency w; = 2w, we see
that the corresponding discrete-time transfer function is -

Hy (C;Jz}= fL(j-{T"-) = Hd<ef“>=j<¥), Q] <, (7.28)
j(o), [-QI < T7C

as sketched in Figure 7.28. With this discrete-time transfer function, y.(¢) in Figure 7.24
will be the derivative of x.(r), assuming that there is no aliasing in sampling x.(f).
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Figure 7.28 Frequency response
Q  of discrete-time filter used to imple-
—32{. ment a continuous-time band-limited
differentiator.

Example 7.2

By considering the output of the digital differentiator for a continuous-time sinc input,
we may conveniently determine the impulse response A,4[n] of the discrete-time filter in
the implementation of the digital differentiator. With reference to Figure 7.24, let

gy ST (7.29)

™
where T is the sampling period. Then

I, |o|<a/T
0, otherwise ’

Xc(jo) = [

ConfArm +hat
which is sufficiently band limited to ensure that sampling x.(7) at frequency w, = 27/T
A (8 "/ ,f xt) ("’.r/a_ does not give rise to any aliasing. It follows that the output of the digital differentiator is
C

cos(mt/T)  sin(mt/T)
Tt w2

d
ye(t) = E;Xc(f) = (7.30)

For x.(t) as given by eq. (7.29), the corresponding signal x,[»] in Figure 7.24 may

be expressed as ‘
San KN plys the
~ > xaln] = x(nT) = 5[] = pode o of (31
nT dhfuﬂ,rl. ,..»/ut

That is, for n # 0, x.(nT) = 0, while

X4 (M1 = x_Car) =

xq[0] = x(0) = —

which can be verified by I"Hépital’s rule. We can similarly evaluate y,[n] in Figure 7.24
“}k) corresponding to y.(f) in eq. (7.30). Specifically
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which can be verified for n # 0 by direct substitution into eq. (7.30) and for n = 0 by
application of I’Hépital’s rule.

Thus when the input to the discrete-time filter given by eq. (7.28) is the scaled
unit impulse in eq. (7.31), the resulting output is given by eq. (7.32). We then conclude
that the impulse response of this filter is given by

| B e . D67 causa S

7.4.2 Half-Sample Delay

In this section, we consider the implementation of a time shift (delay) of a continuous-time
signal through the use of a system in the form of Figure 7.19. Thus, we require that the
input and output of the overall system be related by

Ye(®) = x.(t — A) (7.33)

when the input x.(7) is band limited and the sampling rate is high enough to avoid alias-
ing and where A represents the delay time. From the time-shifting property derived in
Section 4.3.2

Yc(jw) = e_ijXc(jw)'

From eq. (7.25), the equivalent continuous-time system to be implemented must be band
limited. Therefore, we take

- -, L
Hae = &
fo (2] <E Q3L)

where w. is the cutoff frequency of the continuous-time filter. That is, H.( jw) corresponds
to a time shift as in eq. (7.33) for band-limited signals and rejects all frequencies greater
than w.. The magnitude and phase of the frequency response are shown in Figure 7.29(a).
With the sampling frequency w; taken as w; = 2w., the corresponding discrete-time

e_j“’A, |w[ < w, (7.34)

‘.— HC ] = . ’
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Figure 7.29 (a) Magnitude and phase of the frequency response for a
continuous-time delay; (b) magnitude and phase of the frequency response
for the corresponding discrete-time delay.
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