2> aln)=

YJ(C}“) =
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frequency response is

Hy(e/®) = ¢ 4T 0| < o, (7.35)

and is shown in Figure 7.29(b).

For appropriately band-limited inputs, the output of the system of Figure 7.24 with
H,(e/?) asin eq. (7.35) is a delayed replica of the input. For A/T an integer, the sequence
vq[n] is a delayed replica of x;[n]; that is,

-2 &/T
c

YR
X(€) = yd[n]zxd{n—ﬂ. = hlnl= S[r-F]

For A/T not an integer, eq. (7.36), as written, has no meaning, since sequences are defined
only at integer values of the index. However, we can interpret the relationship between
x4[n] and yy4[n] in these cases in terms of band-limited interpolation. The signals x.(f)
and x4[n] are related through sampling and band-limited interpolation, as are y.(f) and
yqln]. With Hy(e/®?) in eq. (7.35), yq[n] is equal to samples of a shifted version of the
band-limited interpolation of the sequence x;[n]. This is illustrated in Figure 7.30 with
A/T = 1/2, which is sometimes referred to as a half-sample delay.

)/ X4 [n] = X (NT)

ya[nl = yo (0T) = X [(N—$)T]

YCC*)= X<(7’f “'S_T) =
S M= J o) =

T Figure 7.30 (a) Sequence of sam-
t ples of a continuous-time signal x;(t);
(b) sequence in (a) with a half-sample

(b) delay.

Example 7.3 A= 3’1 T

The approach in Example 7.2 is also applicable to determining the impulse response
hg[n] of the discrete-time filter in the half-sample delay system. With reference to Fig-

ure 7.24, let
)~ BT (7.37)
t

It follows from Example 7.2 that

san(re A=Y Y7 1
‘([ ] = -z‘( T) = _8[ ]

T A-74) I gtﬂ,&gpc—* .

L CTCn- L)) P * Jy .

T7CT C'»_}{)

Gom (P-4 ) ™ (En-2) ) . P
7ln-4) <=>Arm3— Tn-4) ‘{ T)
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) N=
x[n] ;f)-(\ > X[ = EX(") «# k”
o, ohheraise

(-~}
= > x[kN] £[7-kN]

k=-ca

+ oo
p[n] = X5 [n — kN]
k=—o

At

x[n]

1] ] [
PN I oo |l oo ool oo PR oo ° Figure 7.31 Discrete-time
n  sampling.

n €N>  Asin Example 5.6, tife Fourier transform of the sampling sequence p[n] is

xtm= Y a, & K97

Ke < <K> (= P(el) = = Z 8(w — kwy), (7.41)

X&) = Z.zm\hkere(‘v kd ) o

- wy, the sampling frequency, equals 277/N. Combining eqs. (7.40) and (7.41), we
. have

Xfw]:f('n‘] = “k""'—NL )
ZJJ.: JJ.‘/N

I =]
X, () = % > Mafgiesion) (7.42)
k=0

Equation (7.42) is the counterpart for discrete-time sampling of eq. (7.6) for
continuous-time sampling and is illustrated in Figure 7.32. In Figure 7.32(c), with
w; —wpy > wy, or equivalently, w, > 2wy, there is no aliasing [i.e., the nonzero portions
of the replicas of X(e/“) do not overlap], whereas with w, < 2wy, as in Figure 7.32(d),
frequency-domain aliasing results. In the absence of aliasing, X(e/“) is faithfully repro-
duced around @ = 0 and integer multiples of 27r. Consequently, x[n] can be recovered
from x,[n] by means of a lowpass filter with gain N and a cutoff frequency greater than

<P)'~uf 0} 7 !4-2.) o
%Dn] = xCn) pCal => XfCe )<=
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X(e)
]
2N /\
B, —wy 0 oy, 2T
(@)
P(el)
2m
I W WL A NN S
o 2m W
(b)
@, < Q= ol
2 Bl NN
> 2y AVAVANY , A
i oy w, 21 o
)[oL %o ,J‘Ju,i;; (©) \(ws—wM)
X (")
..
N

) 21w

Figure 7.32 Effect in the frequency domain of impulse-train sampling of a
discrete-time signal: (a) spectrum of original signal; (b) spectrum of sampling
sequence; (c) spectrum of sampled signal with ws > 2wy; (d) spectrum of
sampled signal with ws < 2wy. Note that aliasing occurs.

wy and less than w; — wyy, as illustrated in Figure 7.33, where we have specified the
cutoff frequency of the lowpass filter as w,/2. If the overall system of Figure 7.33(a) is ap-
plied to a sequence for which w; < 2wy, so that aliasing results, x,[n] will no longer
be equal to x[n]. However, as with continuous-time sampling, the two sequences will
be equal at multiples of the sampling period; that is, corresponding to eq. (7.13), we
have

x[kN] = x[kN], k=0 =*1,%2,..., (7.43)

independently of whether aliasing occurs. (See Problem 7.46.)
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pln]
g
x[n] :é Xl > ff,i) )—>x,[n]

W, <0 -0, ;

$ J-QN < “i( —2m —py (’)M\_(”s 2T
for a1 «’Z'MZ// 50 H (&%

——————— N e————

% EX‘\C* —é’n’ Wg 2flrr (O
k&um#mﬁ*’dcw , ° o
)./a.r.r,{[/g IR X (&™)

f e Fmta, SN 1 /N

—-2m — Wy Wy 2m

(b)

Figure 7.33 Exact recovery of a discrete-time signal from its samples us-
ing an ideal lowpass filter: (a) block diagram for sampling and reconstruction
of a band-limited signal from its samples; (b) spectrum of the signal x[n];

(c) spectrum of x,[n]; (d) frequency response of an ideal lowpass filter with
cutoff frequency ws/2; (e) spectrum of the reconstructed signal x.[n]. For the
example depicted here ws > 2wy S0 that no aliasing occurs and consequently
x.[n] = x[n].

Example 7.4
Consider a sequence x[n] whose Fourier transform X(e/) has the property that

X)) =0 for 279 = |w| = 7.
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To determine the lowest rate at which x[n] may be sampled without the possibility of
aliasing, we must find the largest N such that

2 2
~ _2(9):>N§9/2.

We conclude that Nynax = 4, and the corresponding sampling frequency is 27/4 = /2.

H (e) - ) The reconstruction of x[n] through the use of a lowpass filter applied to x,[n] can be
interpreted in the time domain as an interpolation formula similar to eq. (7.11). With h[n]
“1 denoting the impulse response of the lowpass filter, we have
No,sinw,
—— e 4 (7.44)
> L X
o
-We we The reconstructed sequence is then
X/[n] = xpln] * h[n], = Z ’%E”J hn- /525)
or equivalently, k=-o z;g LKN] A, [»- 17, J
L No.sinw.(n — kN) = -0
W = Y/ = & ulnl = N]—<=—¢ : :
Vgc /L W 4 *olnl Z L3N o — %) )

=—0o

Ahen For a.'oy chosce of N,

Equation (7.46) represents ideal band-limited interpolation and requires the implemen-
tation of an ideal lowpass filter. In typical applications a suitable approximation for the
7&[{” 1= XTkpN] lowpass filter in Figure 7.33 is used, in which case the equivalent interpolation formula is

k=g 2/, <o @ PHS O
n 4 W > sz x[nl = > x[kNlh.[n— kN], (7.47)

k=—oc

JAA’/‘J‘

M e * ’Chere h,[n] is the impulse response of the interpolating filter. Some specific examples, in-
cluding the discrete-time counterparts of the zero-order hold and first-order hold discussed
in Section 7.2 for continuous-time interpolation, are considered in Problem 7.50.

7.5.2 Discrete-Time Decimation and Interpolation

There are a variety of important applications of the principles of discrete-time sampling,
such as in filter design and implementation or in communication applications. In many
of these applications it is inefficient to represent, transmit, or store the sampled sequence
Xp[n] directly in the form depicted in Figure 7.31, since, in between the sampling instants,
xp[n] is known to be zero. Thus, the sampled sequence is typically replaced by a new
sequence xp[n], which is simply every Nth value of x,[n]; that is,

dplnli= )CI,[HN]. (7.48)
Also, equivalently,

xp[n] = x[nN], (7.49)
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since x,[n] and x[n] are equal at integer multiples of N. The operation of extracting every
Nth sample is commonly referred to as decimation.? The relationship between x[n], x,[n],
and xp[n] is illustrated in Figure 7.34.

To determine the effect in the frequency domain of decimation, we wish to determine
the relationship between X,(e/®)—the Fourier transform of x,[n]—and X(e/). To this
end, we note that

+o0
Xp(e™) = > xylkle 7ok, (7.50)
k=—o
or, using eq. (7.48),
Matell=c> Ik ok, (1.51)
k=—oo

If we let n = kN, or equivalently k = n/N, we can write

Xyel®y = > xp[nle e,
n=integer
multiple of N

and since x,[n] = 0 when n is not an integer multiple of N, we can also write

+oo

e e I L (1.52)

n=-—o

ey il

% D&&MAﬁon "

7 Xpln]
The Zinse \Xis

4o scaled by ° "
o Xpln] = 7}(”'”3': XInpN ]

N ,
T I I I I i Figure 7.34 Relationship between
: , X,[n)] corresponding to sampling and
0 n Xp[ 1] corresponding to decimation.

ITechnically, decimation would correspond to extracting every tenth sample. However, it has become
common terminology to refer to the operation as decimation even when N is not equal to 10.
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Furthermore, we recognize the right-hand side of eq. (7.52) as the Fourier transform of
xp[n]; that is,

+ o0
Suplleiios o= Xyeie'), (7.53)
- hus, ’17!' gs. (7.52) and (7.53), we conclude that
QW (‘I f ; (- ""k)ﬂl
)5, e )=-ﬁ Z:X( ) = Xy(e) = X (M) = ——ZX (€ )

@ - u) illustrated in Figure 7.35, and from w=N
'LZ.X,( e )) .ce and the decimated sequence diff = """S_~___- X( 6" /( %)/N)

N K=o normalization. If the original spectrum X(e’) is appropriately baffd‘hmlted so that there
is no aliasing present in X ,(¢/®), then, as shown in the figure, the effect of decimation is to
spread the spectrum of the original sequence over a larger portion of the frequency band.

Choose. N o ibat @ >0 (& T >n,)

X(e) .
Xo(e') g "»"J (K‘;/ ﬂ_:‘}
1
ﬁ ]
ANDADZAN ANVANVAN
7he f%. X s “u O(w) ) T 4w
P _fql;{l/ ' N/ N ‘VN
‘ Xp(€1) n -
£ 4
N '
= o Rl G

Figure 7.35 Frequency-domain illustration of the relationship between A /V&jr
sampling and decimation.

G J‘«..Y/,e;y of confinweus—Aime Siynals in fuy, 7.32

If the original sequence x[n] is obtained by sampling a continuous-time signal, the
process of decimation can be viewed as reducing the sampling rate on the signal by a factor
of N. To avoid aliasing, X(e/*) cannot occupy the full frequency band. In other words, if
the signal can be decimated without introducing aliasing, then the original continuous-
time signal was oversampled, and thus, the sampling rate can be reduced without aliasing.
With the interpretation of the sequence x[n] as samples of a continuous-time signal, the
process of decimation is often referred to as downsampling.
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C/D xgn] Discrete time
conversion > lowpass filter F———-y,[n]
Hy(el®)
Xc(jw)

Figure 7.36 Continuous-time sig-
nal that was originally sampled at the
Nyquist rate. After discrete-time fil-

tering, the resulting sequence can be
—2m2 W W@ em @ further downsampled. Here X,(jw)
is the continuous-time Fourier trans-

jow

V(o) form of x.(t), X,(e") and Y,(e/*) are
the discrete-time Fourier transforms
of xy4[n] and y4[n] respectively, and
Hq(e™) is the frequency response of

L + . N the discrete-time lowpass filter de-
e 0 Raanl)- 2w picted in the block diagram.
Sowe oam

In some applications in which a sequence is obtained by sampling a continuous-
time signal, the original sampling rate may be as low as possible without introducing
aliasing, but after additional processing and filtering, the bandwidth of the sequence
may be reduced. An example of such a situation is shown in Figure 7.36. Since the
output of the discrete-time filter is band limited, downsampling or decimation can be
applied.

Just as in some applications it is useful to downsample, there are situations in which
it is useful to convert a sequence to a higher equivalent sampling rate, a process referred
to as upsampling or interpolation. Upsampling is basically the reverse of decimation or
downsampling. As illustrated in Figures 7.34 and 7.35, in decimation we first sample and
then retain only the sequence values at the sampling instants. To upsample, we reverse
the process. For example, referring to Figure 7.34, we consider upsampling the sequence
xp[n] to obtain x[n]. From x,[n], we form the sequence x,[n] by inserting N — 1 points
with zero amplitude between each of the values in x,[n]. The interpolated sequence x[n]
is then obtained from x,[n] by lowpass filtering. The overall procedure is summarized in
Figure 7.37.
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Example 7.5

2
{ “'3' - 7 > 2—% In this example, we illustrate how a combination of interpolation and decimation may be
used to further downsample a sequence without incurring aliasing. It should be noted that
ﬁE maximum possible downsampling is achieved once the non-zero portion of one period
7 of the discrete-time spectrum has expanded to fill the entire band from —r to 7.
Consider the sequence x[n] whose Fourier transform X(e/*) is illustrated in Figure

7.38(a). As discussed in Example 7.4, the lowest rate at which impulse-train sampling
@ may be used on this sequence without incurring aliasing is 277/4. This corresponds to
choose N=¥ X(e™)

M= )5
(Gpsampling)

i scafad ¢
M =

( Doom .m,?/‘.y)

# N=WMMy= K5

? & = w,., Figure 7.38 Spectra associated with Example 7.5. (a) Spectrum of x[n];

(b) spectrum after downsampling by 4; (c) spectrum after upsampling x[n] by
a factor of 2; (d) spectrum after upsampling x[n] by 2 and then downsampling
by 9.

Hw# 7
% & 19,36,3/, 37, 3, 43, Lo, >
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