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Heat-Exchange Equipment



Heat Exchangers

In this chapter we shall consider the application of heat 
transfer theory to the design and operation of certain types 
of heat exchange equipment. 

We have covered a number of such applications in previous 
chapters, but the following topics are best discussed after all 
the principal mechanisms of heat transfer have been studied.
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Shell-and-Tube Heat Exchangers
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The heat exchangers found most commonly in industry contain a 
number of parallel tubes enclosed in a single shell and for that
reason are called shell-and tube exchangers.



Baffles

Supercritical Fluid Process Lab

The main purpose of the baffles is to minimize channeling by which 
some of the fluid flows preferentially in certain paths that have little 
contact with the heat transfer surface. Each baffle may extend to half of 
the shell cross section; they are spaced at distances as close as one-
fifth of the shell diameter. 

In addition to providing more uniform flow and heat transfer 
characteristics, the baffles also help to support the tubes. In heat 
exchangers in which condensation or boiling is taking place on the shell  
side, baffles are not necessary; hence tube supports are installed.



Heat Exchangers
parallel-flow counterflow

cross flow
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Compact heat exchanger
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Heat transfer area 
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Shell-and-Tube Heat Exchangers

One shell pass & 
two tube passes

Two shell passes & 
four tube passes



Multipass and cross-flow heat exchangers
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Bowman, Mueller, and Nagle

Introducing the correction factor Y 
for cross flow passes of the shell-side fluid

Δt1 and Δt2 are the terminal temperature differences taken 
as if the fluids in the cross-flow heat exchanger were in 
countercurrent flow.



Multipass and cross-flow heat exchangers
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Multipass and cross-flow heat exchangers
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Multipass and cross-flow heat exchangers
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Multipass and cross-flow heat exchangers
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Example 27-1
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Example 27-1
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from Fig 27-4, Y=0.89
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Δt1 and Δt2 are the terminal temperature 
differences taken as if the fluids in the cross-flow 
heat exchanger were in countercurrent flow.

0.89



Extended Surfaces
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Example 27-2
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Example 27-2

(a) steam  inside;  air  outside

tube = copper with no fins

( )( ) ( )( ) ( )

( )W
R
tq

WK
AU

R

196
281.0
55

/281.01
060.060

1
052.06000

1

00

==
Σ
Δ

=∴

==+=Σ



Supercritical Fluid Process Lab

Example 27-2

(b) steam  inside;  air  outside

tube = copper with fins
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Example 27-2

(b) steam  outside;  air  inside

tube = copper with fins
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Example 27-2

(a) steam  inside;  air  outside; tube without fins, q=196W
(b) steam  inside;  air  outside; tube with fins, q=514W
(c) steam  outside;  air  inside; tube with fins, q=171W

In system (b), the effect of the fins in reducing the major 
resistance is cause a significant increase in the heat-transfer 
rate over the rate in system (a).

In system (c), however, the effect of the fins is merely to reduce 
further the resistance, which was negligible even on an unfinned
surface.

The major resistance, which is that of the air, is at inside surface 
of the tube, which is smaller in area than the outside of the 
smooth tube. Thus the total resistance in system (c) with the 
finned tubes is greater than in system (a), when smooth tubes 
were used.
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Fin efficiencies
Although the resistance to heat transfer of the metal wall was 
neglected in Example 27-2, this procedure is not always justifiable. 
Fins as high as 1 in and only a few hundreds of an inch in thickness 
are not uncommon, and even when made of copper, such fins may 
offer a significant resistance to heat transfer. This resistance is, of 
course, more likely to be significant when the fluid resistances are 
small.

A quantitative method of describing the effect of the fin resistance 
is by the use of fin efficiency. This quantity is defined as the actual 
heat-transfer rate from a fin divided by the rate that would be 
obtained if the entire fin were at the temperature of the base of the 
fin, i.e., the outer cylindrical surface of the tube.
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Fin efficiencies

The heat flow from a tube surface to a fluid can be written as 

thAthAq tff Δ+Δη=
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(27-3)

where Af = fin area
At = area of tube surface between fins
ηf = fin efficiency
h = heat-transfer coefficient, 

assumed constant at all points on fin and tube surface
Δt = temperature difference between base of fin and bulk-fluid phase
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Fin efficiencies

When written in Ohm’s law form, Eq. (27-3) becomes

thAthAq tff Δ+Δη= (27-3)
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Fin efficiencies have been calculated for a number of configurations. A 
simple system is examined in Example 27-3, and a chart for determining 
the efficiency of a circular fin is given in Fig. 27-5.
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Example 27-3: Fin efficiencies

A longitudinal steel fin 1 in high and 1/8 in thick is exposed to an air 
stream at 70oF. The air moving past the fin has a uniform convection 
coefficient h=15 Btu/(h)(ft2)(oF). The fin has a thermal conductivity of 25 
Btu/(h)(ft)(oF) and a base temperature of 250oF. 

Calculate the fin efficiency and the heat flow per linear foot assuming that 
all temperature gradients in planes parallel to the base of the fin are 
negligible.  A section of the fin is shown in Fig. 27-6.
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Example 27-3: Fin efficiencies
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Fin efficiencies
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Fin efficiencies
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Fin efficiencies
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Fin efficiencies
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Wilson’s Methods of Analysis
A useful method of determining the individual convective heat-transfer 
coefficients in a heat exchanger is that of Wilson. 

If a single-phase fluid is flowing in developed turbulent flow inside the 
tubes of an exchanger, the convective coefficient hi can be estimated by 
the Dittus-Boelter equation.
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This equation shows that hi is proportional to ub
0.8 if everything else is 

held constant. However, we shall find it desirable to change the average 
temperature of the fluid as ub changes; the effect of the temperature if 
the fluid is water is represented by the term (1 + 0.011t) in the equation.

)011.01(8.0 tauh bi +=

(24-4)

(27-5)
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Wilson’s Methods of Analysis
The constant a could be calculated by equating (24-4) and (27-5), but it is 
usually determining from the results of the Wilson-line experiment 
described below. The temperature t is the average water temperature in 
degrees Fahrenheit.

If a series of runs is conducted in which the velocity of the water in tubes 
is varied, the overall coefficient can be represented by the equation.
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The first two terms on the right-hand side are the resistances of the 
outside fluid and the tube wall, respectively. If they are held constant for 
all runs, a linear relation exist between 1/U0A0 and 1/ub

0.8(1+0.011t).

(27-6)
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Fig. 27-7: Wilson plot for boiling methanol on 1½” tube
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Wilson’s Methods of Analysis

It is essential that all resistances other than the inside resistance be held 
as nearly constant as possible during runs at different velocities. This 
means that the outside coefficient h0 must be held constant. Because h0 is 
a function of temperature drop for such system as boiling, condensation, 
and natural convection, care must be taken that the temperature drop over 
the fluid outside the tube is held constant for successive runs.

This is achieved by altering the temperature level of the fluid inside the 
tube each time its velocity is changed, so that the inclusion of the factor 
(1+0.011t) is essential for accurate results. Conditions are usually chosen 
so that the temperature change of the water is small from inlet to outlet.
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Wilson’s Methods of Analysis

Fouling coefficients can be estimated by the Wilson method if the outside 
fluid coefficient h0 can be predicted or is negligible. The fouling resistance 
1/hd0A0 is a part of the intercept value.

In some pieces of equipment the value of the exponent on ub in Eq. (27-5) 
may not be known. Upstream disturbances may cause it to differ from the 
value of 0.8 and for developed turbulent flow in circular pipes. If an 
incorrect exponent is used in the plot (for example, 0.8 when it should still 
extrapolate to the proper value of the ordinate representing all the other 
resistances. However, the line will no longer be quite straight, and 
extrapolation is more difficult. Nevertheless, the curvature is often not 
great enough to cause serious errors, and the method remains, in spite of 
this deficiency, a useful technique.
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