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Objectives

After completing this chapter, you will be able to:
 Describe ASIC/VLSI design flow
 Understand the RTL and physical synthesis flow
 Understand the principle of logic synthesis tools
 Understand issues of language translation
 Describe the considerations of clock signals
 Describe the considerations of reset signals
 Describe the partition issues for synthesis
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An ASIC/VLSI Design Flow
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A Physical Synthesis Flow
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Logic Synthesis Environment

 The following must be provided to synthesis tools:
 design environment
 design constraints 
 RTL code 
 technology library

Technology library Synthesizer

RTL code

Design environment

Design constraints

Gate-level netlist



Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-7

Design Environment
 Specify those directly influence 

design synthesis and optimization results  
 The external operating conditions (PVT) 

include
 manufacturing process 

• worst case: setup-time violations
• best case: hold-time violations

 operating conditions: voltage and temperature
 I/O port attributes contain
 drive strength of input port
 capacitive loading of output port
 design rule constraints: fanin, fanout

 Statistical wire-load model provides a wire-load model for 
processing the pre-layout static timing analysis.
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Design Environment
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Design Constraints
 Clock signal specification
 period, duty cycle
 transition time, skew

 Delay specifications
 input delay, output delay
 maximum, minimum delay for combinational circuits

 Timing exception
 false path : instruct the synthesis to ignore a particular 

path for timing optimization
 multicycle path: inform the synthesis tool regarding the 

number of clock cycles that a particular path requires to 
reach its endpoint

 Path grouping: bundle together critical paths in calculating a 
cost function
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Input Delay and Output Delay
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The Architecture of Logic Synthesis Tools
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Logic Synthesis Tools: Front end

 Parsing phase 
 checks the syntax of the source code
 creates internal components

 Elaboration phase (to construct a complete description of the 
input circuit)
 connects the internal components
 unrolls loops
 expands generate-loops
 sets up parameters passing for tasks and functions
 and so on
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Logic Synthesis Tools: Back end

 analysis/translation prepares for technology-independent 
logic synthesis. 
 managing the design hierarchy
 extracting finite-state machine (FSM)
 exploring resource sharing
 and so on. 

 logic synthesis (logic optimization) creates a new gate 
network which computes the functions specified by a set of 
Boolean functions, one per primary output.

 netlist generation generates a gate-level netlsit. 
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Logic Synthesis (Logic Optimization)

Major concerns when synthesizing a logic gate network: 
 functional metric:  such as fanin, fanout, and others.
 non-functional metric: such as area, power, and delay.

 Two phases of logic synthesis:
 technology-independent logic optimization
 technology-dependent logic optimization 

 The process of translating from technology-independent to 
the technology-dependent gate network is called library 
binding.
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Technology-Independent Logic Optimization

 Technology-independent logic synthesis
 Simplification rewrites a single function in the network to 

the literals of that network.
 Restructuring network creates new function nodes that 

can be used as common factors and collapses sections of 
the network into a single node.

 Restructuring delay changes the factorization of a 
subnetwork to reduce the number of function nodes
through which delay-critical signal must pass.
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Technology Mapping

 A two-step approach
 The network is decomposed into nodes with no nodes 

more than k inputs, where k is determined by the fan-in  
of each LUT.

 The number of nodes is reduced by combining some of 
them taking into account the special features of LUTs.
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• 4 LUTs are required. • only 3 LUTs are needed.
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Technology Mapping

 FlowMap method
 Using a k-feasible cut algorithm breaks the network into 

LUT-sized blocks.
 Using heuristics to maximize the amount of logic fit into 

each cut to reduce the number of logic elements or LUTs 
required.
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Synthesis-Tool Tasks

 Synthesis tools at least perform the following critical tasks:
 Detect and eliminate redundant logic
 Detect combinational feedback loops
 Exploit don’t-care conditions
 Detect unused states
 Detect and collapse equivalent states
 Make state assignments
 Synthesize optimal, multilevel logic subject to constraints.
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The Key Point for Successful Logic Synthesis

Think hardware.
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Language Structure Translations

 Language structure translation
 Synthesizable operators
 Synthesizable constructs

• assignment statement
• if .. else statement
• case statement
• loop structures
• always statement

 Memory synthesis approaches
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Synthesizable Operators

LogicalShift

Arithmetic

+: add
- : subtract
* : multiply
/ : divide
% : modulus

Bitwise

~ ：N OT

Reduction

&：A N D

|  ：OR

^：X OR

~^, ^~：X N OR

&：A N D

   |：OR

~&：N A N D

~|：N OR

 ^：X OR

<< : left shift
>> : right shift

Relational

>= : greater than or equal
<=: less than or equal

>: greater than
<: less than

==: equality
!=: inequality

&&: AND
|| : OR
! : NOT

case equality

===: equality

!==: inequality

Miscellaneous

{ , }: concatenation
{const_expr{  }}: replication
? :    : conditional

<<< : arithmetic left shift
>>>: arithmetic right shift

**: exponent ~^, ^~：X N OR
Equality
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Synthesizing if-else Statements

 Features of if-else statement:
 The if-else statement infers a priority-encoded, cascaded 

combination of multiplexers.
 For combinational logic, we need to specify a complete 

if…else structure, otherwise, a latch will be inferred.
 For sequential logic, we need not specify a complete 

if …else structure, otherwise, we will get as a notice 
removing redundant expression from synthesis tools.

always @(enable or data) 
if (enable) y = data;  //infer a latch

always @(posedge clk) 
if (enable) y <= data;
else y <= y; // a redundant expression
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Synthesizing case Statements

 Features of case statement:
 A case statement infers a multiplexer.
 The consideration of using a complete or incomplete 

specified statement is the same as that of if…else 
statement.
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Latch Inference --- Incomplete if-else Statements

// creating a latch example.
module latch_infer_if(enable, data, y);
input  enable, data;
output y;  
reg    y;
// the body of testing program.
always @(enable or data) 

if (enable) y = data;  //due to lack of else part, synthesizer infer a latch for y.
endmodule 

lat

 y 

D QC ydata
enable

Coding style:
• Avoid using any latches in your design.
• Assign outputs for all input conditions to avoid inferred latches. 
For example:

always @(enable or data) 
y = 1’b0;    // initialize y to its initial value.
if (enable) y = data; 
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Latch Inference --- Incomplete case Statements

// Creating a latch example
module latch_infer_case(select, data, y);
input  [1:0] select;
input  [2:0] data;
output reg y; 
// The body of 3-to-1 MUX
always @(select or data) 

case (select)
2'b00: y = data[select];
2'b01: y = data[select];
2'b10: y = data[select];

// The following statement is used to avoid inferring a latch
//       default: y = 2'b11;

endcase
endmodule 

 un1_select_3 

 un1_select_4 

 y_1 

e
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e
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 y 
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data[2:0] [2:0]

select[1:0] [1:0]
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Igncored Delay Values --- An Incorrect Version

// a four phase clock example --- Generated incorrect hardware
module four_phase_clock_wrong(clk, phase_out);
input  clk;
output reg [3:0] phase_out;  // phase output
// the body of the four phase clock
always @(posedge clk) begin

phase_out <=        4'b0000;
phase_out <= #5   4'b0001;
phase_out <= #10 4'b0010;
phase_out <= #15 4'b0100;
phase_out <= #20 4'b1000;

end
endmodule

phase_out[3:0]1000

clk
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Ignored Delay Values --- A Correct Version

// a four phase clock example --- synthesizable version
module four_phase_clock_correct(clk, phase_out);
input  clk;
output reg [3:0] phase_out;  // phase output
// the body of the four phase clock
always @(posedge clk) 

case (phase_out)
4'b0000: phase_out <=  #5 4'b0001;
4'b0001: phase_out <=  #5 4'b0010;
4'b0010: phase_out <=  #5 4'b0100;
4'b0100: phase_out <=  #5 4'b1000;
default:   phase_out <=  #5 4'b0000;

endcase
endmodule

[2:0]

 phase_out22 
 phase_out[3:0] 

[0]
[1]
[2]
[3]

[3:0]Q[3:0]D[3:0] phase_out[3:0][3:0]

clk
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Mixed Use of posedge/level Signals

// an example to illustrating the mixed usage of posedge/negedge signal.
// The result cannot be synthesized. Try it in your system !!
module DFF_bad (clk, reset, d, q);
input  clk, reset, d;
output reg q; 
// the body of DFF
always @(posedge clk or reset)
begin

if (reset) q <= 1'b0;
else         q <= d;

end
endmodule

Error: Can't mix posedge/negedge use with plain signal references.
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Mixed Use of posedge/negedge Signals

// an example to illustrate the mixed usage of posedge/negedge signal. 
// try it in your system !!
module DFF_good (clk, reset_n, d, q);
input   clk, reset_n, d;
output reg q; 
// the body of DFF
always @(posedge clk or negedge reset_n)
begin

if (!reset_n)  q <= 1'b0;
else               q <= d;

end
endmodule  q 

R
QD qd

reset_n

clk
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Loop Structures

[0]
[0]
[0]
[0]

 sum_1[1:0] 

+
 un19_sum[1:0] 

+
 un40_sum[1:0] 

+
 un61_sum[1:0] 

+

[0]

[1:0][0]

[1]

[1:0][1]

[1]

[2]

[1:0][2]

[1]

[3]

[1:0][3]

[1]

c_out[1]

sum[3:0]

c_in

y[3:0] [3:0]

x[3:0] [3:0]

// an N-bit adder using for loop.
module nbit_adder_for( x, y, c_in, sum, c_out);  
parameter N = 4;        // define default size
input    [N-1:0] x, y;    
input    c_in;
output reg [N-1:0] sum;  
output reg c_out;
reg      co;
integer i;
// specify the function of an n-bit adder using for loop.
always @(x or y or c_in) begin

co = c_in;
for (i = 0; i < N; i = i + 1)

{co, sum[i]} = x[i] + y[i] + co;
c_out = co;  end

endmodule 
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Loop Structures --- An Incorrectly Synthesizable Example

 un1_data_a_1 

 un3_total[7:0] 
+

 total[7:0] 

R

[3]
[2]
[1]
[0]

[7:0]
[7:0]

[7:0]

[7:0]Q[7:0][7:0] D[7:0]
E

total[7:0][7:0]

data_b[7:0] [7:0]

data_a[3:0] [3:0]

reset_n

clk

// a multiple cycle example --- This is an incorrect version.
// Please try to correct it!
module multiple_cycle_example_a(clk, reset_n, data_a, data_b, total);
parameter N = 8;
parameter M = 4;
input   clk, reset_n;
input   [M-1:0] data_a;
input   [N-1:0] data_b;
output  [N-1:0] total;
reg     [N-1:0] total;
integer i;
// what does the following statement do?
always @(posedge clk or negedge reset_n)begin

if (!reset_n) total <= 0; 
else  for (i = 0; i < M; i = i + 1)

if (data_a[i] == 1) total <= total + data_b;
end
endmodule 

Why the synthesized 
result is like this?
Try to explain it!
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Memory Synthesis Approaches

 Random logic using flip-flops or latches
 is independent of any software and type of ASIC.
 is independent of easy to use but inefficient in terms of 

area.
 Register files in datapaths
 use a synthesis directive or hand instantiation.

 RAM standard components
 are supplied by an ASIC vendor.
 depend on the technology.

 RAM compilers
 are the most area-efficient approach.

A flip-flop may take up 10 to 20 
times the area of a 6-transistor 
static RAM cell.
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Coding Guidelines for Synthesis

 Goals of coding guidelines:
 Testability
 Performance
 Simplification of static timing analysis
 Gate-level behavior that matches that of the original RTL 

codes.
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Guidelines for Clocks

 Using single global clock
 Avoiding using gated clocks
 Avoiding mixed use of both positive and negative edge-

triggered flip-flops
 Avoiding using internally generated clock signals

Clock
generator Module B

Module A
clk_A

clk_B

Top module

(b) An example of using both positive and negative edge-
triggered flip-flops

(c) Using a separate clock module
at the top level.

clk
clk_n clk

D Q

CK

D Q

CKModule A Module B

(a) An ideal clock scheme

D Q

CK

D Q

CK

clk

Module A Module B
: Combinational logic
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Guidelines for Resets

 The basic design issues of resets are: 
 Asynchronous or synchronous?
 An internal or external power-on reset?
 More than one reset, hard vs. soft reset?

 The basic writing styles for both asynchronous and synchronous reset are 
as follows:

 The only logic function for the reset signal should be a direct clear of all 
flip-flops.

always  @(posedge clk or posedge reset)
if  (reset) …..
else …..

always  @(posedge clk)
if  (reset) …..
else …..

Asynchronous reset Synchronous reset
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Guidelines for Resets

 Asynchronous reset
 is harder to implement.

• since reset is a special signal like clock, it requires a tree of buffers to be 
inserted at place and route.

 does not require a free-running clock.
 does not affect flip flop data timing.
 makes static timing analysis (or cycle-based simulation) more 

difficult.
 makes the automatic insertion of test structure more difficult.

 Synchronous reset
 is easy to implement. 

• It is just another synchronous signal to the input.
 requires a free-running clock

• in particular, at power-up, for reset to occur.
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Guidelines for Resets

 Avoid internally generated conditional resets.

When a conditional reset is required:
 to create a separate signal for the reset signal.
 to isolate the conditional reset logic in a separate logic 

block.

always @(posedge gate or negedge reset_n or posedge timer_load_clear)
if (!reset_n || timer_load_clear) timer_load <= 1’b0;
else timer_load <= 1’b1;

assign timer_load_reset = !reset_n || timer_load_clear;
always @(posedge gate or posedge timer_load_reset)

if (timer_load_reset) timer_load <= 1’b0;
else timer_load <= 1’b1;
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Partitioning for Synthesis

 Keep related logic within the same module.

(a) Bad style

(b) Good style
clk

A+B

D Q

CK

D Q

CK
Module A Module B

Comb. logic Comb. logic

clk

A B

D Q

CK

D Q

CK
Module BModule A

Comb. logic Comb. logic Comb. logic
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Partitioning for Synthesis

 Register all outputs.

 Separating structural logic from random logic.

clk

D Q

CK

D Q

CK
Module A Module B

Comb. logicComb. logic
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Partitioning for Synthesis

 Synthesis tools tend to maintain the original hierarchy.

(a) Resources in different
     modules cannot be shared.

(b) Resources in the same  module can be shared.

clk

w
x

y
z

D Q

CK

clk

w
x

y
z

D Q

CK

clk

w

x

y

z

D Q

CK
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