
Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-1

Chapter 12: Synthesis

Prof. Soo-Ik Chae

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-2

Objectives

After completing this chapter, you will be able to:
 Describe ASIC/VLSI design flow
 Understand the RTL and physical synthesis flow
 Understand the principle of logic synthesis tools
 Understand issues of language translation
 Describe the considerations of clock signals
 Describe the considerations of reset signals
 Describe the partition issues for synthesis

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-3

An ASIC/VLSI Design Flow

Product
requirement

 RTL synthesis

Front end

Physical
Synthesis

Tape out

Back end

Behavioral/
 RTL description

Gate-level netlist

Physical
DescriptionCompare

Compare

Compare

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-4

An RTL Synthesis Flow
Specification

RTL functional
verification

OK

Yes

No

RTL Synthesis
(Logic synthesis)

Scan insertion and
RTL synthesis

Library Data

Gate-level netlist

Simulation or
Formal Verification

OK

Pre-layout STA and
power analysis

OK

Yes

No

No

Yes

Physical
Synthesis

RTL behavioral
description

Simulation or
Formal verification

Gate-level netlist

OK
No Yes

Debug

Results

Block A

Block B

Design environment
and constraints

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-5

A Physical Synthesis Flow

Global routing

Library
Description

Detailed routing

OK

Post-layout timing
analysis

OK

Yes

Yes

No

Tape out

Gate-level netlist

Placement

Post-global routing
timing analysis

Technology
Constraints

Technology
Parameters

Library SDF

No

Back to logic
synthesis

Clock tree insertion

Formal verification
(Scan vs. CT inserted)

Back to logic
synthesis

(Not in FPGA-
based design flow)

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-6

Logic Synthesis Environment

 The following must be provided to synthesis tools:
 design environment
 design constraints
 RTL code
 technology library

Technology library Synthesizer

RTL code

Design environment

Design constraints

Gate-level netlist

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-7

Design Environment
 Specify those directly influence

design synthesis and optimization results
 The external operating conditions (PVT)

include
 manufacturing process

• worst case: setup-time violations
• best case: hold-time violations

 operating conditions: voltage and temperature
 I/O port attributes contain
 drive strength of input port
 capacitive loading of output port
 design rule constraints: fanin, fanout

 Statistical wire-load model provides a wire-load model for
processing the pre-layout static timing analysis.

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-8

Design Environment

Clock divide
logic

Block A Block B

Top level

clk Block C

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-9

Design Constraints
 Clock signal specification
 period, duty cycle
 transition time, skew

 Delay specifications
 input delay, output delay
 maximum, minimum delay for combinational circuits

 Timing exception
 false path : instruct the synthesis to ignore a particular

path for timing optimization
 multicycle path: inform the synthesis tool regarding the

number of clock cycles that a particular path requires to
reach its endpoint

 Path grouping: bundle together critical paths in calculating a
cost function

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-10

Input Delay and Output Delay

Offset-inInput delay

clk

data Valid

(a) The definition of input and offset-in delays

(b) The definition of offset-out and output delays

Output delay

clk

data

Offset-out

Valid

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-11

The Architecture of Logic Synthesis Tools

Parsing

Elaboration

Analysis/Translation

Logic synthesis
(logic optimization)







Front
end

Back
end

RTL source

Technology-independent
synthesis

Technology-dependent
synthesis Technology library

Optimized gate-level
netlist










Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-12

Logic Synthesis Tools: Front end

 Parsing phase
 checks the syntax of the source code
 creates internal components

 Elaboration phase (to construct a complete description of the
input circuit)
 connects the internal components
 unrolls loops
 expands generate-loops
 sets up parameters passing for tasks and functions
 and so on

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-13

Logic Synthesis Tools: Back end

 analysis/translation prepares for technology-independent
logic synthesis.
 managing the design hierarchy
 extracting finite-state machine (FSM)
 exploring resource sharing
 and so on.

 logic synthesis (logic optimization) creates a new gate
network which computes the functions specified by a set of
Boolean functions, one per primary output.

 netlist generation generates a gate-level netlsit.

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-14

Logic Synthesis (Logic Optimization)

Major concerns when synthesizing a logic gate network:
 functional metric: such as fanin, fanout, and others.
 non-functional metric: such as area, power, and delay.

 Two phases of logic synthesis:
 technology-independent logic optimization
 technology-dependent logic optimization

 The process of translating from technology-independent to
the technology-dependent gate network is called library
binding.

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-15

Technology-Independent Logic Optimization

 Technology-independent logic synthesis
 Simplification rewrites a single function in the network to

the literals of that network.
 Restructuring network creates new function nodes that

can be used as common factors and collapses sections of
the network into a single node.

 Restructuring delay changes the factorization of a
subnetwork to reduce the number of function nodes
through which delay-critical signal must pass.

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-16

Technology Mapping

 A two-step approach
 The network is decomposed into nodes with no nodes

more than k inputs, where k is determined by the fan-in
of each LUT.

 The number of nodes is reduced by combining some of
them taking into account the special features of LUTs.

t
u

w

x
u

v

z'

y'

g

f1

f3

f2

t
u

w

x
u

v

z'

y'

g

f1

f3

f2

• 4 LUTs are required. • only 3 LUTs are needed.

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-17

Technology Mapping

 FlowMap method
 Using a k-feasible cut algorithm breaks the network into

LUT-sized blocks.
 Using heuristics to maximize the amount of logic fit into

each cut to reduce the number of logic elements or LUTs
required.

f

s
t

w
y'
z

v'
u

x'

k = 2k = 3k = 5k = 8

Three LUTs are required.

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-18

Synthesis-Tool Tasks

 Synthesis tools at least perform the following critical tasks:
 Detect and eliminate redundant logic
 Detect combinational feedback loops
 Exploit don’t-care conditions
 Detect unused states
 Detect and collapse equivalent states
 Make state assignments
 Synthesize optimal, multilevel logic subject to constraints.

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-19

The Key Point for Successful Logic Synthesis

Think hardware.

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-20

Language Structure Translations

 Language structure translation
 Synthesizable operators
 Synthesizable constructs

• assignment statement
• if .. else statement
• case statement
• loop structures
• always statement

 Memory synthesis approaches

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-21

Synthesizable Operators

LogicalShift

Arithmetic

+: add
- : subtract
* : multiply
/ : divide
% : modulus

Bitwise

~ ：N OT

Reduction

&：A N D

| ：OR

^：X OR

~^, ^~：X N OR

&：A N D

 |：OR

~&：N A N D

~|：N OR

 ^：X OR

<< : left shift
>> : right shift

Relational

>= : greater than or equal
<=: less than or equal

>: greater than
<: less than

==: equality
!=: inequality

&&: AND
|| : OR
! : NOT

case equality

===: equality

!==: inequality

Miscellaneous

{ , }: concatenation
{const_expr{ }}: replication
? : : conditional

<<< : arithmetic left shift
>>>: arithmetic right shift

**: exponent ~^, ^~：X N OR
Equality

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-22

Synthesizing if-else Statements

 Features of if-else statement:
 The if-else statement infers a priority-encoded, cascaded

combination of multiplexers.
 For combinational logic, we need to specify a complete

if…else structure, otherwise, a latch will be inferred.
 For sequential logic, we need not specify a complete

if …else structure, otherwise, we will get as a notice
removing redundant expression from synthesis tools.

always @(enable or data)
if (enable) y = data; //infer a latch

always @(posedge clk)
if (enable) y <= data;
else y <= y; // a redundant expression

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-23

Synthesizing case Statements

 Features of case statement:
 A case statement infers a multiplexer.
 The consideration of using a complete or incomplete

specified statement is the same as that of if…else
statement.

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-24

Latch Inference --- Incomplete if-else Statements

// creating a latch example.
module latch_infer_if(enable, data, y);
input enable, data;
output y;
reg y;
// the body of testing program.
always @(enable or data)

if (enable) y = data; //due to lack of else part, synthesizer infer a latch for y.
endmodule

lat

 y

D QC ydata
enable

Coding style:
• Avoid using any latches in your design.
• Assign outputs for all input conditions to avoid inferred latches.
For example:

always @(enable or data)
y = 1’b0; // initialize y to its initial value.
if (enable) y = data;

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-25

Latch Inference --- Incomplete case Statements

// Creating a latch example
module latch_infer_case(select, data, y);
input [1:0] select;
input [2:0] data;
output reg y;
// The body of 3-to-1 MUX
always @(select or data)

case (select)
2'b00: y = data[select];
2'b01: y = data[select];
2'b10: y = data[select];

// The following statement is used to avoid inferring a latch
// default: y = 2'b11;

endcase
endmodule

 un1_select_3

 un1_select_4

 y_1

e
d
e
d
e
d

lat

 y

[0]
[1]

[0]
[1]

[0]

[0]
[1]

[1]
[2]

D QC y

data[2:0] [2:0]

select[1:0] [1:0]

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-26

Igncored Delay Values --- An Incorrect Version

// a four phase clock example --- Generated incorrect hardware
module four_phase_clock_wrong(clk, phase_out);
input clk;
output reg [3:0] phase_out; // phase output
// the body of the four phase clock
always @(posedge clk) begin

phase_out <= 4'b0000;
phase_out <= #5 4'b0001;
phase_out <= #10 4'b0010;
phase_out <= #15 4'b0100;
phase_out <= #20 4'b1000;

end
endmodule

phase_out[3:0]1000

clk

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-27

Ignored Delay Values --- A Correct Version

// a four phase clock example --- synthesizable version
module four_phase_clock_correct(clk, phase_out);
input clk;
output reg [3:0] phase_out; // phase output
// the body of the four phase clock
always @(posedge clk)

case (phase_out)
4'b0000: phase_out <= #5 4'b0001;
4'b0001: phase_out <= #5 4'b0010;
4'b0010: phase_out <= #5 4'b0100;
4'b0100: phase_out <= #5 4'b1000;
default: phase_out <= #5 4'b0000;

endcase
endmodule

[2:0]

 phase_out22
 phase_out[3:0]

[0]
[1]
[2]
[3]

[3:0]Q[3:0]D[3:0] phase_out[3:0][3:0]

clk

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-28

Mixed Use of posedge/level Signals

// an example to illustrating the mixed usage of posedge/negedge signal.
// The result cannot be synthesized. Try it in your system !!
module DFF_bad (clk, reset, d, q);
input clk, reset, d;
output reg q;
// the body of DFF
always @(posedge clk or reset)
begin

if (reset) q <= 1'b0;
else q <= d;

end
endmodule

Error: Can't mix posedge/negedge use with plain signal references.

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-29

Mixed Use of posedge/negedge Signals

// an example to illustrate the mixed usage of posedge/negedge signal.
// try it in your system !!
module DFF_good (clk, reset_n, d, q);
input clk, reset_n, d;
output reg q;
// the body of DFF
always @(posedge clk or negedge reset_n)
begin

if (!reset_n) q <= 1'b0;
else q <= d;

end
endmodule q

R
QD qd

reset_n

clk

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-30

Loop Structures

[0]
[0]
[0]
[0]

 sum_1[1:0]

+
 un19_sum[1:0]

+
 un40_sum[1:0]

+
 un61_sum[1:0]

+

[0]

[1:0][0]

[1]

[1:0][1]

[1]

[2]

[1:0][2]

[1]

[3]

[1:0][3]

[1]

c_out[1]

sum[3:0]

c_in

y[3:0] [3:0]

x[3:0] [3:0]

// an N-bit adder using for loop.
module nbit_adder_for(x, y, c_in, sum, c_out);
parameter N = 4; // define default size
input [N-1:0] x, y;
input c_in;
output reg [N-1:0] sum;
output reg c_out;
reg co;
integer i;
// specify the function of an n-bit adder using for loop.
always @(x or y or c_in) begin

co = c_in;
for (i = 0; i < N; i = i + 1)

{co, sum[i]} = x[i] + y[i] + co;
c_out = co; end

endmodule

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-31

Loop Structures --- An Incorrectly Synthesizable Example

 un1_data_a_1

 un3_total[7:0]
+

 total[7:0]

R

[3]
[2]
[1]
[0]

[7:0]
[7:0]

[7:0]

[7:0]Q[7:0][7:0] D[7:0]
E

total[7:0][7:0]

data_b[7:0] [7:0]

data_a[3:0] [3:0]

reset_n

clk

// a multiple cycle example --- This is an incorrect version.
// Please try to correct it!
module multiple_cycle_example_a(clk, reset_n, data_a, data_b, total);
parameter N = 8;
parameter M = 4;
input clk, reset_n;
input [M-1:0] data_a;
input [N-1:0] data_b;
output [N-1:0] total;
reg [N-1:0] total;
integer i;
// what does the following statement do?
always @(posedge clk or negedge reset_n)begin

if (!reset_n) total <= 0;
else for (i = 0; i < M; i = i + 1)

if (data_a[i] == 1) total <= total + data_b;
end
endmodule

Why the synthesized
result is like this?
Try to explain it!

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-32

Memory Synthesis Approaches

 Random logic using flip-flops or latches
 is independent of any software and type of ASIC.
 is independent of easy to use but inefficient in terms of

area.
 Register files in datapaths
 use a synthesis directive or hand instantiation.

 RAM standard components
 are supplied by an ASIC vendor.
 depend on the technology.

 RAM compilers
 are the most area-efficient approach.

A flip-flop may take up 10 to 20
times the area of a 6-transistor
static RAM cell.

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-33

Coding Guidelines for Synthesis

 Goals of coding guidelines:
 Testability
 Performance
 Simplification of static timing analysis
 Gate-level behavior that matches that of the original RTL

codes.

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-34

Guidelines for Clocks

 Using single global clock
 Avoiding using gated clocks
 Avoiding mixed use of both positive and negative edge-

triggered flip-flops
 Avoiding using internally generated clock signals

Clock
generator Module B

Module A
clk_A

clk_B

Top module

(b) An example of using both positive and negative edge-
triggered flip-flops

(c) Using a separate clock module
at the top level.

clk
clk_n clk

D Q

CK

D Q

CKModule A Module B

(a) An ideal clock scheme

D Q

CK

D Q

CK

clk

Module A Module B
: Combinational logic

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-35

Guidelines for Resets

 The basic design issues of resets are:
 Asynchronous or synchronous?
 An internal or external power-on reset?
 More than one reset, hard vs. soft reset?

 The basic writing styles for both asynchronous and synchronous reset are
as follows:

 The only logic function for the reset signal should be a direct clear of all
flip-flops.

always @(posedge clk or posedge reset)
if (reset) …..
else …..

always @(posedge clk)
if (reset) …..
else …..

Asynchronous reset Synchronous reset

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-36

Guidelines for Resets

 Asynchronous reset
 is harder to implement.

• since reset is a special signal like clock, it requires a tree of buffers to be
inserted at place and route.

 does not require a free-running clock.
 does not affect flip flop data timing.
 makes static timing analysis (or cycle-based simulation) more

difficult.
 makes the automatic insertion of test structure more difficult.

 Synchronous reset
 is easy to implement.

• It is just another synchronous signal to the input.
 requires a free-running clock

• in particular, at power-up, for reset to occur.

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-37

Guidelines for Resets

 Avoid internally generated conditional resets.

When a conditional reset is required:
 to create a separate signal for the reset signal.
 to isolate the conditional reset logic in a separate logic

block.

always @(posedge gate or negedge reset_n or posedge timer_load_clear)
if (!reset_n || timer_load_clear) timer_load <= 1’b0;
else timer_load <= 1’b1;

assign timer_load_reset = !reset_n || timer_load_clear;
always @(posedge gate or posedge timer_load_reset)

if (timer_load_reset) timer_load <= 1’b0;
else timer_load <= 1’b1;

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-38

Partitioning for Synthesis

 Keep related logic within the same module.

(a) Bad style

(b) Good style
clk

A+B

D Q

CK

D Q

CK
Module A Module B

Comb. logic Comb. logic

clk

A B

D Q

CK

D Q

CK
Module BModule A

Comb. logic Comb. logic Comb. logic

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-39

Partitioning for Synthesis

 Register all outputs.

 Separating structural logic from random logic.

clk

D Q

CK

D Q

CK
Module A Module B

Comb. logicComb. logic

Chapter 12: Synthesis

Digital System Designs and Practices Using Verilog HDL and FPGAs @ 2008, John Wiley 12-40

Partitioning for Synthesis

 Synthesis tools tend to maintain the original hierarchy.

(a) Resources in different
 modules cannot be shared.

(b) Resources in the same module can be shared.

clk

w
x

y
z

D Q

CK

clk

w
x

y
z

D Q

CK

clk

w

x

y

z

D Q

CK

	Chapter 12: Synthesis
	Objectives
	An ASIC/VLSI Design Flow
	An RTL Synthesis Flow
	A Physical Synthesis Flow
	Logic Synthesis Environment
	Design Environment
	Design Environment
	Design Constraints
	Input Delay and Output Delay
	The Architecture of Logic Synthesis Tools
	Logic Synthesis Tools: Front end
	Logic Synthesis Tools: Back end
	Logic Synthesis (Logic Optimization)
	Technology-Independent Logic Optimization
	Technology Mapping
	Technology Mapping
	Synthesis-Tool Tasks
	The Key Point for Successful Logic Synthesis
	Language Structure Translations
	Synthesizable Operators
	Synthesizing if-else Statements
	Synthesizing case Statements
	Latch Inference --- Incomplete if-else Statements
	Latch Inference --- Incomplete case Statements
	Igncored Delay Values --- An Incorrect Version
	Ignored Delay Values --- A Correct Version
	Mixed Use of posedge/level Signals
	Mixed Use of posedge/negedge Signals
	Loop Structures
	Loop Structures --- An Incorrectly Synthesizable Example
	Memory Synthesis Approaches
	Coding Guidelines for Synthesis
	Guidelines for Clocks
	Guidelines for Resets
	Guidelines for Resets
	Guidelines for Resets
	Partitioning for Synthesis
	Partitioning for Synthesis
	Partitioning for Synthesis

