Formalisms for system design

System design performs many design
tasks at different levels of abstraction

Requirements, Specifications, Architecture,
Coding, Testing

It Is helpful to conceptualize these tasks

N diaadramec
111 NAILGA J

3ILA.III

Unified Modeling Language (UML), a visual
language Is useful because It encourages
design by successive refinement to the design

Computers as Components 1

System modeling

Need languages to describe systems:
useful across several levels of abstraction;

understandable within and between
organizations.

Block diagrams are a start, but don’t
cover everything.

Computers as Components

Object-oriented design

Object-oriented (OO) design: A
generalization of object-oriented
programming.
Object = state + methods.
State provides each object with its own
identity.
Methods provide an abstract interface to the
object.

Computers as Components

Objects and classes

Class: object type.

Class defines the object’s state elements
but state values may change over time.

Class defines the methods used to
Interact with all objects of that type.

Each object has its own state.

Computers as Components

OO design principles

Some objects will closely correspond to
real-world objects.

Some objects may be useful only for
description or implementation.

Environment (the outside world): people or
other machine

Objects provide interfaces to read/write
state, hiding the object’s implementation
from the rest of the system.

Computers as Components

UML

Developed by Booch et al.
Goals:
object-oriented,;
visual;
useful at many levels of abstraction;
usable for all aspects of design.

Computers as Components

UML object

object name
% class name

di: Displﬁy

pixels: array[] of pixels

elements
menu_items\
comment \

attributes

Computers as Components

UML class

Display

pixels
elements
menu_items

mouse_click()
draw_box

Computers as Components

The class Interface

The operations provide the abstract
Interface between the class’s
Implementation and other classes.
Operations may have arguments, return

valiiac
VOAIUUL U

An operation can examine and/or modify
the object’s state.

Computers as Components

Choose your interface
properly

If the interface Is too small/specialized:
object is hard to use for even one application;
even harder to reuse.

If the Interface Is too large:

class becomes too cumbersome for designers to
understand;

Implementation may be too slow;
spec and implementation are probably buggy.

Computers as Components

10

Relationships between
objects and classes

Association: objects communicate but one
does not own the other.

Aggregation: a complex object is made of
several smaller objects.

Composition: aggregation in which owner
does not allow access to its components.

Generalization: define one class In terms
of another.

Computers as Components 11

Class derivation

May want to define one class in terms of
another.

Derived class inherits attributes, operations
of base class.

Derived_class

\/

Base_class

Computers as Components

12

Class derivation example

Display

pixels
menu_items

pixel()
set_pixel()
mouse_click()

draw_box

3 e

BW _display

N\

Color_map_display
Emn :

Multiple inheritance

Speaker

/\

Display

/\

Multimedia_display

Computers as Components

14

LiInks and associlations

Link: describes relationships between
objects.

Association: describes relationship
between classes.

Computers as Components

15

Link example

Link defines the contains relationship:

message

msg = msg1l
length = 1102

\ message set

message

msg = msg2
length = 2114

Computers as Components

16

Associlation example

contained messages # containing message sets
\\ /
message 0. * 1] message set

msg: ADPCM _stream DO

_ contains .
length : Integer count - Integer

Computers as Components 17

Stereotypes

Stereotype: recurring combination of
elements in an object or class.

Example:
<<signal>>in Fig 1.11

Computers as Components

18

Behavioral description

Several ways to describe behavior:
Internal view;
external view.

Computers as Components

19

State machines

transition
./ |
b
{ N X
state state name

Computers as Components

20

Event-driven state
machines

Behavioral descriptions are written as
event-driven state machines.

Machine changes state when receiving an
Input.
An event may com

of the system.

Computers as Components

from inside or outside

21

Types of events

Three types of event defined by UML
Signal: asynchronous event.

Call: synchronized communication.
Timer: activated by time.

Computers as Components

22

Sighal event

<<signal>>
mouse click

leftorright: button
X, Y: position

Signal event declaration

mouse_w,button)
b }
-

event description

Computers as Components

23

Call event

draw_box(10,5,3,2,blue)

K

0

Computers as Components

24

Timer event

tm(time-value)

)

"

Computers as Components

25

Example state machine

start Input/output
mouse_click(x,y,button)/ ~ region = menu/
find reglon(reglon) which_menu(i) call_menu(l)

. reglon got menu called
found item menu item

region = drawmg/
find_object(objid) highlight(objid)

|
found object
{ oclg)ljjgct | ;‘ highlighted} {/“D

finish

Computers as Components 26

Seguence diagram

Shows sequence of operations over time.
Relates behaviors of multiple objects.

Designed to show a particular scenario or
choice of events

Computers as Components

27

Sequence diagram

‘ m: Mouse d1: Display

mouse_click(x,y,button)
»— Which_menu(x,y,I)

‘

call_menu(i)

A 4

v
Computers as Components

A 4

28

Summary

Object-oriented design helps us organize
a design.

UML Is a transportable system design
language.

| Vot of BN g ™ If\f‘\\l: iF

nlfh\ ':Af\f\ ~ f\l ~ A If‘f\ ™\
Proviaes structurai and nenavio
primitives.

'aYeYal a1l a 1.7\

Al
al ycoulipuull

L
i

Computers as Components 29

