Formalisms for system design

System design performs many design
tasks at different levels of abstraction

Requirements, Specifications, Architecture,
Coding, Testing

It Is helpful to conceptualize these tasks
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Unified Modeling Language (UML), a visual
language Is useful because It encourages
design by successive refinement to the design
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System modeling

Need languages to describe systems:
useful across several levels of abstraction;

understandable within and between
organizations.

Block diagrams are a start, but don’t
cover everything.
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Object-oriented design

Object-oriented (OO) design: A
generalization of object-oriented
programming.
Object = state + methods.
State provides each object with its own
identity.
Methods provide an abstract interface to the
object.
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Objects and classes

Class: object type.

Class defines the object’s state elements
but state values may change over time.

Class defines the methods used to
Interact with all objects of that type.

Each object has its own state.
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OO design principles

Some objects will closely correspond to
real-world objects.

Some objects may be useful only for
description or implementation.

Environment (the outside world): people or
other machine

Objects provide interfaces to read/write
state, hiding the object’s implementation
from the rest of the system.
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UML

Developed by Booch et al.
Goals:
object-oriented,;
visual;
useful at many levels of abstraction;
usable for all aspects of design.
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UML object

object name
% class name

di: Displﬁy

pixels: array[] of pixels

elements
menu_items\
comment \

attributes
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UML class

Display

pixels
elements
menu_items

mouse_click()
draw_box
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The class Interface

The operations provide the abstract
Interface between the class’s
Implementation and other classes.
Operations may have arguments, return
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An operation can examine and/or modify
the object’s state.
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Choose your interface
properly

If the interface Is too small/specialized:
object is hard to use for even one application;
even harder to reuse.

If the Interface Is too large:

class becomes too cumbersome for designers to
understand;

Implementation may be too slow;
spec and implementation are probably buggy.
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Relationships between
objects and classes

Association: objects communicate but one
does not own the other.

Aggregation: a complex object is made of
several smaller objects.

Composition: aggregation in which owner
does not allow access to its components.

Generalization: define one class In terms
of another.
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Class derivation

May want to define one class in terms of
another.

Derived class inherits attributes, operations
of base class.

Derived_class

\/

Base_class
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Class derivation example

Display

pixels
menu_items

pixel()
set_pixel()
mouse_click()

draw_box

3 e

BW _display

N\

Color_map_display
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Multiple inheritance

Speaker

/\

Display

/\

Multimedia_display
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LiInks and associlations

Link: describes relationships between
objects.

Association: describes relationship
between classes.
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Link example

Link defines the contains relationship:

message

msg = msg1l
length = 1102

\ message set

message

msg = msg2
length = 2114
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Associlation example

# contained messages # containing message sets
\\ /
message 0. * 1 ] message set

msg: ADPCM _stream DO

_ contains .
length : Integer count - Integer
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Stereotypes

Stereotype: recurring combination of
elements in an object or class.

Example:
<<signal>>in Fig 1.11
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Behavioral description

Several ways to describe behavior:
Internal view;
external view.
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State machines

transition
./ |
b
{ N X
state state name
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Event-driven state
machines

Behavioral descriptions are written as
event-driven state machines.

Machine changes state when receiving an
Input.
An event may com

of the system.
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Types of events

Three types of event defined by UML
Signal: asynchronous event.

Call: synchronized communication.
Timer: activated by time.
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Sighal event

<<signal>>
mouse click

leftorright: button
X, Y: position

Signal event declaration

mouse_w,button)
b }
-

event description
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Call event

draw_box(10,5,3,2,blue)

K

0

Computers as Components

24



Timer event

tm(time-value)

)

"
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Example state machine

start Input/output
mouse_click(x,y,button)/ ~ region = menu/
find reglon(reglon) which_menu(i) call_menu(l)

. reglon got menu called
found item menu item

region = drawmg/
find_object(objid) highlight(objid)

|
found object
{ oclg)ljjgct | ;‘ highlighted} {/“D

finish
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Seguence diagram

Shows sequence of operations over time.
Relates behaviors of multiple objects.

Designed to show a particular scenario or
choice of events
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Sequence diagram

‘ m: Mouse d1: Display

mouse_click(x,y,button)
»— Which_menu(x,y,I)

‘

call_menu(i)

A 4
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Summary

Object-oriented design helps us organize
a design.

UML Is a transportable system design
language.
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