Introduction

Example: model train controller.

Computers as Components

Purposes of example

Follow a design through several levels of
abstraction.

Gain experience with UML.

Computers as Components

Model train setup

H
|||||||

7’

1 power -

1 / supply m

console _

command address header

Computers as Components

Reqguirements

Console can control 8 trains on 1 track.
Throttle has at least 63 levels.

Inertia control adjusts responsiveness
with at least 8 levels.

Emergency stop button.
Error detection scheme on messages.

Computers as Components

Requirements form

name
purpose
iInputs

outputs
functions

performance

manufacturing cost
power

physical
size/weight

model train controller

control speed of <= 8 model trains
throttle, inertia, emergency stop,
train #

train control signals

set engine speed w. inertia;
emergency stop

can update train speed at least 10
times/sec

$50

10 W (wall powered)

console comfortable for 2 hands;
< 2 Ibs.

Computers as Components

Digital Command Control

DCC created by model railroad hobbyists,
nicked up by industry.

Defines way in which model trains,
controllers communicate.

| 22 ¥Xal aA\W4 f\f\lﬂlﬂ Aenrmnnnte ArnAn

LCQVCS |||a||y D)IDLCIII ucolyll aspcils Upcll,
allowing competition.

This is a simple example of a big trend:
Cell phones, digital TV rely on standards.

Computers as Components

DCC documents

Standard S-9.1, DCC Electrical Standard.
Defines how bits are encoded on the ralls.

Standard S-9.2, DCC Communication
Standard.

Defines packet format and semantics.

Computers as Components

DCC electrical standard

Voltage moves
around the power logic1 logic O
supply voltage; adds
no DC component.

1i1s58 us, O Is at fime
least 100 ps.

58 us >=100 us

Computers as Components

DCC communication
standard

Basic packet format: PSA(sD)+E.
P: preamble = 1111111111.

S: packet start bit = 0.

A: address data byte.

s: data byte start bit.

D: data byte (data payload).

E: packet end bit = 1.

A packet include one or more data byte start
bit/ data byte combination.

Computers as Components

DCC packet types

A baseline packet: minimum packet that
must be accepted by all DCC
Implementations, which has three data
bytes.

a address data byte gives receiver address.

an instruction data byte gives basic
Instruction.

an error correction data byte gives ECC.

Computers as Components 10

Conceptual specification

Before we create a detailed specification,
we will make an initial, simplified
specification.

Glves us practice in specification and UML.

Good idea In general to identify potential
problems before investing too much effort in
detall.

Commands and packets may not be
generated in a 1-to-1 ratio.

Computers as Components

11

Basic system commands

command name parameters

set-speed speed
(positive/negative)

set-inertia Inertia-value (non-
negative)

estop none

Computers as Components

12

Typical control sequence

:console

set-inertia

train_rcvr

set-speed

set-speed

estop

set-speed

Computers as Components

13

Message classes

command

set-speed

/\

value: integer

set-Inertia

value: unsigned-
Integer

Computers as Components

estop

14

Roles of message classes

Implemented message classes derived
from message class.

Attributes and operations will be filled in for
detailed specification.

Imblemented message classes spec cifv

message type by thelr class.

May have to add type as parameter to data
structure in iImplementation.

Overheads for Computers as
© 2008 Wayne Wolf Computeosrgm QEmgponents 15

Collaboration diagram

Interaction diagram

Shows relationship between console and
receiver (ignores role of track):

1..n: command

:console " ;recelver

Overheads for Computers as
© 2008 Wayne Wolf CongmutgrsreenGaithedents

System structure modeling

Some classes define non-computer
components.
Denote by name*.

Choose important systems at this point to
show basic relationships.

Computers as Components 17

Major subsystem roles

Console:
read state of front panel,;
format messages;
transmit messages.

Train:
receive message,
Interpret message,;
control the train.

Computers as Components

18

Console system classes

panel

knob*

console

1

1
formatter

Computers as Components

1

transmitter

1

1

sender*

19

Console class roles

panel: describes analog knobs and
Interface hardware.

formatter: turns knob settings into bit
streams.

transmitter: sends data on track.

Computers as Components

20

Train system classes

train set
T
. _ 1.t 1
- /traln \motor
receiver , Interface
11
11 controller 1
detector* pulser*

Computers as Components

21

Train class roles

recelver: digitizes signal from track.

controller: interprets received commands
and makes control decisions.

motor interface: generates signals
required by motor.

Computers as Components

22

Detalled specification

We can now fill in the details of the
conceptual specification:
more classes;

behaviors.
ClAatAlhin~a A1+ +tlhAa crnAan ~t lhAal~
OI\CLLIIIIIH Uul LUICT DIJCb IIIDL IICIIJ

understand the basic relatlonshlps In the
system.

Computers as Components

23

Train speed control

Motor controlled by pulse width

modulation:

duty
cycle

v S

)

Computers as Components

24

Console physical object

classes

knobs*

pulser*

train-knob: integer

speed-knob: integer

Inertia-knob: unsigned-
Integer

emergency-stop: boolean

pulse-width: unsigned-

direction: boolean

Integer

sender*

detector*

send-bit()

read-bit() : integer

Computers as Components

25

Panel and motor interface
classes

panel motor-interface

. . speed: integer
train-number() : integer P :

speed() : Integer
Inertia() : integer
estop() : boolean
new-settings()

new-settings(): use the set-knobs behavior of the Knobs* class
to read the knobs settings whenever the train number setting is changed

Computers as Components

Class descriptions

panel class defines the controls.
new-settings() behavior reads the controls.

motor-interface class defines the motor
speed held as state.

Computers as Components

27

Transmitter and receilver

classes

transmitter

receiver

send-speed(adrs: integer,
speed: integer)

send-inertia(adrs: integer,
val: integer)

set-estop(adrs: integer)

current: command
new: boolean

read-cmd()

now/,._cmadfl) - hnnlaan
[HAYA'A') U|||U\} « NUUILVUILI

rcv-type(msg-type:
command)

rcv-speed(val: integer)

rcv-inertia(val:integer)

Computers as Components

28

Class descriptions

transmitter class has one behavior for
each type of message sent.

receiver function provides methods to:

detect a new message,;
determine Its type;

read its parameters (estop has no
parameters).

Computers as Components

29

Formatter class

formatter

current-train: integer
current-speed[ntrains]: integer
current-inertia[ntrainsj:
unsigned-integer
current-estop[ntrains]: boolean

send-command()
panel-active() : boolean
operate()

Computers as Components

30

Formatter class description

Formatter class holds state for each train,
setting for current train.

The operate() operation performs the
basic formatting task.

Computers as Components 31

Control input cases

Use a soft panel to show current panel
settings for each train.

Changing train number:

must change soft panel settings to reflect
current train’s speed, etc.

Controlling throttle/inertia/estop:

read panel, check for changes, perform
command.

Computers as Components 32

Control input sequence
diagram

:knobs :panel -formatter .transmitter
changein ! read panel B

. control | | panel-active

. settings anel settings | nd-comman

: 9 . p A\t pane? send-command
| : send-speed,
. panel settings send-inertia.

L ___,i_read panel send-estop

|| changein ~ .

" train panel settings

_number | " ew-settings

Ll set-knobs | _loperate

1
v v

Computers as Components 33

Formatter operate behavior

[Idle

W

/[update-panel()}
n

J

panel-active() ew train number
n =
%se d command()}

Computers as Components 34

Panel-active behavior

/ ;
[panel*:read-train() }—O—

{panel*:read-speed()

T

-

current-train = train-knob

update-screen
changed = true

-

current-speed = throttle
changed = true

~

/

/

Computers as Components

35

Controller class

controller

current-train: integer
current-speed[ntrains]: integer
current-direction[ntrains]: boolean
current-inertia[ntrainsj:
unsigned-integer

operate()
Issue-command()

Computers as Components

36

Setting the speed

Don’t want to change speed
Instantaneously.

Controller should change speed gradually
by sending several commands.

Computers as Components

37

Sequence diagram

for a set-speed command

Computers as Components

1
v

‘recelver :controller| |:motor-interface .pulser*

new-cmd |

cmd-type

rcv-speed set-speed | Set-pulse
set-pulse
set-pulse
set-pulse
set-pulse

read _cmd operate

38

receive-command()

(

o

L Issue-command()

Computers as Components

39

Refined command classes

command

type: 3-bits
address: 3-bits
parity: 1-bit

A D\
set-speed / set-inertia estop

type=010 type=001

value: 7-bits value: 3-bits type=000

Computers as Components

Summary

Separate specification and programming.
Small mistakes are easier to fix in the spec.

Big mistakes in programming cost a lot of
time.

You can’t completely separate
specification and architecture.

Make a few tasteful assumptions.

Computers as Components 41

