
I t d tiIntroduction

Example: model train controller.

Computers as Components 1



P  f lPurposes of example

Follow a design through several levels of 
b t tiabstraction.

Gain experience with UML.p

Computers as Components 2



M d l t i  tModel train setup

rcvr motor

power
supply

console

ECC address headercommand

Computers as Components 3



R i tRequirements

Console can control 8 trains on 1 track.
Throttle has at least 63 levels.
Inertia control adjusts responsivenessInertia control adjusts responsiveness 
with at least 8 levels.
E bEmergency stop button.
Error detection scheme on messages.Error detection scheme on messages.

Computers as Components 4



R i t  fRequirements form

name model train controller 
purpose control speed of <= 8 model trains 
i t th ttl i ti tinputs throttle, inertia, emergency stop, 

train # 
outputs train control signals 
functions set engine speed w inertia;functions set engine speed w. inertia; 

emergency stop 
performance can update train speed at least 10 

times/sectimes/sec
manufacturing cost $50 
power 10 W (wall powered) 
physical console comfortable for 2 hands;physical 
size/weight 

console comfortable for 2 hands; 
< 2 lbs. 

 

Computers as Components 5



Di it l C d C t lDigital Command Control

DCC created by model railroad hobbyists, 
i k d b i d tpicked up by industry.

Defines way in which model trains, y ,
controllers communicate.

Leaves many system design aspects openLeaves many system design aspects open, 
allowing competition.

Thi i i l l f bi t dThis is a simple example of a big trend:
Cell phones, digital TV rely on standards.

Computers as Components 6

p , g y



DCC d tDCC documents

Standard S-9.1, DCC Electrical Standard.
Defines how bits are encoded on the rails.

Standard S-9.2, DCC CommunicationStandard S 9.2, DCC Communication 
Standard.

Defines packet format and semanticsDefines packet format and semantics.

Computers as Components 7



DCC l t i l t d dDCC electrical standard

Voltage moves 
around the power logic 1 logic 0around the power 
supply voltage; adds 
no DC component.no DC component.
1 is 58 μs, 0 is at 
least 100 μs timeleast 100 μs.

58 μs >= 100 μs

Computers as Components 8



DCC communication 
t d dstandard

Basic packet format: PSA(sD)+E.
P: preamble = 1111111111.P: preamble  1111111111.
S: packet start bit = 0.
A: address data byteA: address data byte.
s: data byte start bit.
D: data byte (data payload).
E: packet end bit = 1.E: packet end bit  1.
A packet include one or more data byte start 
bit/ data byte combination

Computers as Components 9

bit/ data byte combination.



DCC k t tDCC packet types

A baseline packet: minimum packet that 
t b t d b ll DCCmust be accepted by all DCC 

implementations, which has three data 
bytes.

a address data byte gives receiver address.a address data byte gives receiver address.
an instruction data byte gives basic 
instructioninstruction.
an error correction data byte gives ECC.

Computers as Components 10



C t l ifi tiConceptual specification

Before we create a detailed specification, 
we will make an initial simplifiedwe will make an initial, simplified 
specification.

Gi ti i ifi ti d UMLGives us practice in specification and UML.
Good idea in general to identify potential 

bl b f i ti t h ff t iproblems before investing too much effort in 
detail.

C d d k t t bCommands and packets may not be 
generated in a 1-to-1 ratio.

Computers as Components 11



B i  t  dBasic system commands

command name parameters

set-speed speed
(positive/negative)

set-inertia inertia-value (non-(
negative)

estop noneestop none

Computers as Components 12



T i l t l Typical control sequence

:console :train_rcvrset-inertia
dset-speed

set-speed

estop

set-speed

estop

set-speed

Computers as Components 13



M  lMessage classes

command

i id set-inertia

value: unsigned-

set-speed

value: integer

estop

integervalue: integer

Computers as Components 14



R l  f  lRoles of message classes

Implemented message classes derived 
f lfrom message class.

Attributes and operations will be filled in for 
detailed specification.

Implemented message classes specifyImplemented message classes specify 
message type by their class.

M h t dd t t t d tMay have to add type as parameter to data 
structure in implementation.

Computers as Components 15© 2008 Wayne Wolf
Overheads for Computers as 

Components



C ll b ti  diCollaboration diagram

Interaction diagram
Shows relationship between console and 
receiver (ignores role of track):( g )

l i
1..n: command

:console :receiver

Computers as Components 16© 2008 Wayne Wolf
Overheads for Computers as 

Components 2nd ed.



S t  t t  d liSystem structure modeling

Some classes define non-computer 
tcomponents.

Denote by name*.

Choose important systems at this point to 
show basic relationshipsshow basic relationships.

Computers as Components 17



M j  b t  lMajor subsystem roles

Console:
read state of front panel;
format messages;g ;
transmit messages.

Train:Train:
receive message;
interpret message;
control the train.

Computers as Components 18

control the train.



C l  t  lConsole system classes

console1 1

panel formatter transmitter

1 11 1
panel formatter transmitter

1 1 1 1
knob* sender*

1 1 1 1

Computers as Components 19



C l  l  lConsole class roles

panel: describes analog knobs and 
i t f h dinterface hardware.
formatter: turns knob settings into bit g
streams.
transmitter: sends data on tracktransmitter: sends data on track.

Computers as Components 20



T i  t  lTrain system classes

train set

train t

1 1..t 1
1

1

receiver
motor
interface

1

1 1

1

controller

detector* pulser*

1 11 1
detector pulser

Computers as Components 21



T i  l  lTrain class roles

receiver: digitizes signal from track.
controller: interprets received commands 
and makes control decisions.
motor interface: generates signals 
required by motorrequired by motor.

Computers as Components 22



D t il d ifi tiDetailed specification

We can now fill in the details of the 
t l ifi ticonceptual specification:

more classes;
behaviors.

Sketching out the spec first helps usSketching out the spec first helps us 
understand the basic relationships in the 

tsystem.

Computers as Components 23



T i  d t lTrain speed control

Motor controlled by pulse width 
d l timodulation:

+
duty
cycle

V
-

Computers as Components 24



Console physical object 
lclasses

knobs*
train knob: integer

pulser*

l id h i dtrain-knob: integer
speed-knob: integer
inertia-knob: unsigned-

pulse-width: unsigned-
integer

direction: booleang
integer

emergency-stop: boolean

direction: boolean

sender* detector*sender*

d bit()

detector*

d bit() i tsend-bit() read-bit() : integer

Computers as Components 25



Panel and motor interface 
lclasses

panel motor-interfacep

train-number() : integer
speed: integer

() g
speed() : integer
inertia() : integer

() b lestop() : boolean
new-settings()

new-settings(): use the set-knobs behavior of the Knobs* class 
to read the knobs settings whenever the train number setting is changed

Computers as Components 26

g g g



Cl  d i tiClass descriptions

panel class defines the controls.
new-settings() behavior reads the controls.

motor-interface class defines the motormotor interface class defines the motor 
speed held as state.

Computers as Components 27



Transmitter and receiver 
lclasses

transmitter receiver

send-speed(adrs: integer,
current: command
new: booleanp ( g ,

speed: integer)
send-inertia(adrs: integer,

l i )
read-cmd()
new-cmd() : booleanval: integer)

set-estop(adrs: integer)
new-cmd() : boolean
rcv-type(msg-type:

command))
rcv-speed(val: integer)
rcv-inertia(val:integer)

Computers as Components 28



Cl  d i tiClass descriptions

transmitter class has one behavior for 
h t f teach type of message sent.

receiver function provides methods to:p
detect a new message;
determine its type;determine its type;
read its parameters (estop has no 

t )parameters).

Computers as Components 29



F tt  lFormatter class

formatter

current-train: integer
current-speed[ntrains]: integer
current-inertia[ntrains]:

unsigned-integer
c rrent estop[ntrains]: booleancurrent-estop[ntrains]: boolean

send-command()
panel-active() : boolean
operate()

Computers as Components 30



F tt  l  d i tiFormatter class description

Formatter class holds state for each train, 
tti f t t isetting for current train.

The operate() operation performs the p () p p
basic formatting task.

Computers as Components 31



C t l i t Control input cases

Use a soft panel to show current panel 
tti f h t isettings for each train.

Changing train number:g g
must change soft panel settings to reflect 
current train’s speed etccurrent train s speed, etc.

Controlling throttle/inertia/estop:
read panel, check for changes, perform 
command.

Computers as Components 32



Control input sequence 
didiagram

:knobs :panel :formatter :transmitter

d/ change in read panel

n 
sp

ee
d

a/
es

to
p

g
control
settings

p

panel settings
panel-active
send-commandread panel

ha
ng

e 
i

in
er

tia send-speed,
send-inertia.

d t

read panel

panel settings

ch
e 

in m
be

r send-estopread panel

panel settings
change in
train

ch
an

ge
ra

in
 n

um p e se gstrain
number

t k b
new-settings

operate

Computers as Components 33

tr set-knobs operate



F tt  t b h iFormatter operate behavior

update-panel()update panel()

panel-active() new train number
idle

send-command()th ()other

Computers as Components 34



P l ti  b h iPanel-active behavior

T
panel*:read-train()

current-train = train-knob
update-screen
changed = true

T

changed = true
F

panel*:read-speed() current-speed = throttle
changed = true

T

changed  true
F

Computers as Components 35

... ...



C t ll  lController class

controller

current-train: integer
current-speed[ntrains]: integer
current-direction[ntrains]: boolean
current-inertia[ntrains]:

nsigned integerunsigned-integer

operate()operate()
issue-command()

Computers as Components 36



S tti  th  dSetting the speed

Don’t want to change speed 
i t t linstantaneously.
Controller should change speed gradually g p g y
by sending several commands.

Computers as Components 37



Sequence diagram 
f   t d dfor a set-speed command

:receiver :controller :motor-interface :pulser*
new-cmd
cmd-type
rcv-speed set speed set-pulsercv speed set-speed set-pulse

set-pulse

lset-pulse

set-pulsep

set-pulse
operateread cmd

Computers as Components 38

operateread_cmd



C t ll  t b h iController operate behavior

wait for a
d

receive-command()

command
from receiver

issue-command()

Computers as Components 39



R fi d d lRefined command classes
command

type: 3-bitsyp
address: 3-bits
parity: 1-bit

i id set-inertia

type=001

set-speed

type=010

estop

type=000value: 3-bitsvalue: 7-bits type 000

Computers as Components 40



SSummary

Separate specification and programming.
Small mistakes are easier to fix in the spec.
Big mistakes in programming cost a lot of g p g g
time.

You can’t completely separateYou can t completely separate 
specification and architecture.

M k f t t f l tiMake a few tasteful assumptions.

Computers as Components 41


