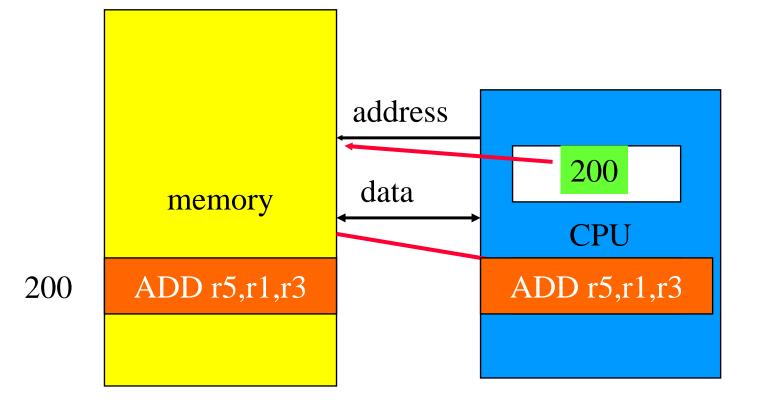
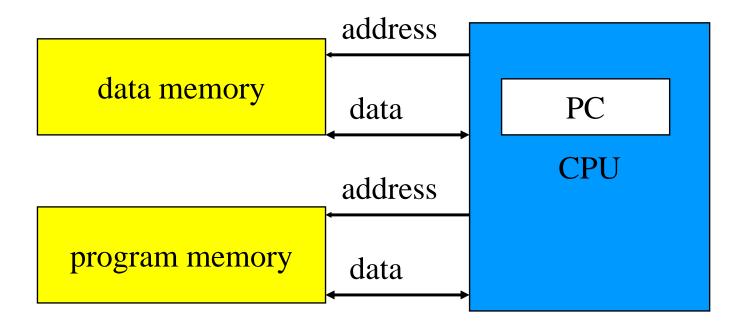
Instruction sets

#Computer architecture taxonomy.
#Assembly language.

von Neumann architecture


#Memory holds data, instructions.

Central processing unit (CPU) fetches instructions from memory.


Separate CPU and memory distinguishes programmable computer.

CPU registers help out: program counter (PC), instruction register (IR), generalpurpose registers, etc.

CPU + memory

Harvard architecture

von Neumann vs. Harvard

Harvard can't use self-modifying code.
Harvard allows two simultaneous memory fetches.

Most DSPs use Harvard architecture for streaming data:

more predictable bandwidth.

RISC vs. CISC

#Complex instruction set computer (CISC):

△many operations.

#Reduced instruction set computer (**RISC**):

⊡load/store;

pipelinable instructions.

Instruction set characteristics

Fixed vs. variable length.
Addressing modes.
Number of operands.
Types of operands.

Programming model

#Programming model: registers visible to the programmer.

Some registers are not visible (IR).

Multiple implementations

Successful architectures have several implementations:

varying clock speeds;

△different bus widths;

△different cache sizes;

⊡etc.

Assembly language

Cone-to-one with instructions (more or less).

Basic features:

△One instruction per line.

△Labels provide names for addresses (usually in first column).

☐ Instructions often start in later columns.

Columns run to end of line.

ARM assembly language example

label1 ADR r4,c LDR r0,[r4] ; a comment ADR r4,d LDR r1,[r4] SUB r0,r0,r1 ; comment

Pseudo-ops

Some assembler directives don't correspond directly to instructions:

☐ Define current address.

☐ Reserve storage.

Constants.