
CPUCPUs

aInput and output.
aS i d ti taSupervisor mode, exceptions, traps.
aCo-processors.
aCaches.
aMemory management.aMemory management. 
aCPU performance
aCPU tiaCPU power consumption.
aExample: data compressor
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I/O d iI/O devices

aUsually includes some non-digital 
tcomponent.

aTypical digital interface to CPU:yp g

status

CPU

status
reg

ha
ni

sm

data
reg m

ec
h
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A li ti  8251 UARTApplication: 8251 UART

aUniversal asynchronous receiver 
t itt (UART) id i ltransmitter (UART) : provides serial 
communication.
a8251 functions are integrated into 

standard PC interface chipstandard PC interface chip.
aAllows many communication parameters 

to be programmed.
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S i l i tiSerial communication

aCharacters are transmitted separately:

no
char

bit 0 bit 1 bit n-1

char

start stop...

time
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Serial communication 
tparameters

aBaud (bit) rate.
aNumber of bits per character.
aParity/no parityaParity/no parity.
aEven/odd parity.
aLength of stop bit (1, 1.5, 2 bits).
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S l  i tSample points

a Example: 10 bits/ character (1 stop bit, 8 bits, no parity bit, 1 stop bit)

no
char

bit 0 bit 1 bit 7

char

start stop...

time
Synch 1.5 BT 1.5 BT 8.5 BT 9.5 BTSynch
point

framing error if not 1
0.5 BT
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8251 CPU i t f8251 CPU interface

CPU

status
(8 bit)

xmit/CPU 8251
data

(8 bit)
serial
port

xmit/
rcv

(8 bit) port

8251 interrupts CPU
1. when receiving a character is done
2 h di h t i fi i h d
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P i  I/OProgramming I/O

aTwo types of instructions can support I/O:
`special-purpose I/O instructions;
`memory-mapped load/store instructions.y pp

aIntel x86 provides in, out instructions. 
Most other CPUs use memory-mappedMost other CPUs use memory-mapped 
I/O.
aI/O instructions do not preclude memory-

mapped I/O.
Computers as Components 8
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ARM d I/OARM memory-mapped I/O

aDefine location for device:
DEV1 EQU 0x1000

aRead/write code:aRead/write code:

LDR r1 #DEV1 ; set up device adrsLDR r1,#DEV1 ; set up device adrs
LDR r0,[r1] ; read DEV1
LDR r0 #8 ; set up value to writeLDR r0,#8 ; set up value to write
STR r0,[r1] ; write value to device

Computers as Components 9



P k d kPeek and poke

aTraditional HLL interfaces:

int peek(char *location) {p ( ) {
return *location; }

void poke(char *location, char newval) {
(*location) = newval; }( ) ; }

Computers as Components 10



B / it t tBusy/wait output

aSimplest way to program device.
`Use instructions to test when device is ready.

current_char = mystring;
while (*current_char != ‘\0’) {

poke(OUT_CHAR,*current_char);
while (peek(OUT_STATUS) != 0); polling ,busy-wait
current_char++;

}
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Simultaneous busy/wait 
i t d t tinput and output

while (TRUE) {
/* read *//* read */
while (peek(IN_STATUS) == 0); busy-wait
achar = (char) peek(IN DATA);achar = (char) peek(IN_DATA);
poke(IN_STATUS,0);
/* write *//  write /
poke(OUT_DATA, achar);
poke(OUT STATUS,1);p ( _ , );
while (peek(OUT_STATUS) != 0); busy-wait

}
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I t t I/OInterrupt I/O

aBusy/wait is very inefficient.
`CPU can’t do other work while testing device.
`Hard to do simultaneous I/O.

aInterrupts allow a device to change the 
flow of control in the CPUflow of control in the CPU.
`Causes a subroutine call to handle device.
`Interrupt handler, device driver
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I t t b h iInterrupt behavior

aBased on subroutine call mechanism.
aInterrupt forces next instruction to be a 

subroutine call to a predetermined p
location.
`Return address is saved to later resume`Return address is saved to later resume 

executing foreground program.
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I t t i t fInterrupt interface

intr request

CPU

status
reg ni

sm

PC
intr request

intr ackR CPU

data
reg m

ec
ha

nP

data/address

IR

reg
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I t t h i l i t fInterrupt physical interface

aCPU and device are connected by CPU bus.
aCPU d d i h d h k ith i t taCPU and device handshake with interrupt 

request and acknowledgement:
`device asserts interrupt request;
`CPU asserts interrupt acknowledge when it can 

h dl th i t thandle the interrupt.

aAn PIC (programmable interrupt controller) 
l l l fconnects multiple external interrupts to one of 

the two ARM interrupt requests
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Ch t  I/O h dlCharacter I/O handlers

void input_handler() {
achar = peek(IN DATA);achar = peek(IN_DATA);
gotchar = TRUE;
poke(IN STATUS 0);poke(IN_STATUS,0);

}
void output handler() {void output_handler() {
}

Computers as Components 17



I t t d i  i  Interrupt-driven main program

main() {
while (TRUE) {while (TRUE) {

if (gotchar) {
poke(OUT DATA achar);poke(OUT_DATA,achar);
poke(OUT_STATUS,1);
gotchar = FALSE;gotchar = FALSE;
}

}}
}
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I t t I/O ith b ffInterrupt I/O with buffers

aQueue for characters:

aa

head tailhead tail
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I t t I/O ith b ffInterrupt I/O with buffers

aQueue for characters:

b c d e f ga b c d e f ga

head tail
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I t t I/O ith b ffInterrupt I/O with buffers

aQueue for characters:

b c d e f g hb c d e f g h

headtail
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B ff b d i t h dlBuffer-based input handler

void input_handler() {
char achar;char achar;
if (full_buffer()) error = 1;
else { achar = peek(IN DATA); add char(achar); }else { achar = peek(IN_DATA); add_char(achar); }
poke(IN_STATUS,0);
if (nchars == 1)if (nchars == 1) 

{ poke(OUT_DATA,remove_char(); 
poke(OUT STATUS 1); }poke(OUT_STATUS,1); }
}
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I/O  diI/O sequence diagram

:foreground :input :output :queue

empty

a

empty

b

bcbc

c
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D b i  i t t dDebugging interrupt code

aWhat if you forget to change registers?
`Foreground program can exhibit mysterious 

bugs.
`Bugs will be hard to repeat---depend on 

interrupt timing.p g
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P i iti  d tPriorities and vectors

aTwo mechanisms allow us to make 
i t t ifiinterrupts more specific:
`Priorities determine what interrupt gets CPU 

first.
`Vectors determine what code is called for ecto s dete e at code s ca ed o

each type of interrupt.

aMechanisms are orthogonal: most CPUsaMechanisms are orthogonal: most CPUs 
provide both.
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P i iti d i t tPrioritized interrupts
interrupt acknowledge log2n bits

device 1 device 2 device n

L1 L2 Ln Prioritized interrupt lines
CPU

L1 L2 .. Ln Prioritized interrupt lines
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I t t i iti tiInterrupt prioritization

aMasking: interrupt with priority lower than 
t i it i t i d tilcurrent priority is not recognized until 

pending interrupt is complete.
aNon-maskable interrupt (NMI): highest-

priority never maskedpriority, never masked.
`Often used for power-down.
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E l  P i iti d I/OExample: Prioritized I/O

:interrupts :foreground :A :B :C

B

C

A

A,B
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I t t tInterrupt vectors

aAllow different devices to be handled by 
diff t ddifferent code.
aInterrupt vector table:p

handler 0Interrupt handler 0
handler 1
handler 2

p
vector

table head
handler 2
handler 3
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I t t t  i itiInterrupt vector acquisition

:CPU :device

receive
request krequest

receive
ack

ack

ack
receive
vector

vector
vector
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G i  i t t h iGeneric interrupt mechanism
intr?

N
Y

Assume priority selection is 
handled before this 
point

continue
execution

point.
N

ignore intr priority > current priority?

Y

ackack

vector?

Y

N
timeout?

Y
bus error

N

vector?
Y

timeout?bus error

call table[vector]
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I t t Interrupt sequence

aCPU acknowledges request.
aDevice sends vector.
aCPU calls handleraCPU calls handler.
aHandler processes request.
aCPU restores state to foreground 

program.program.
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S  f i t t h dSources of interrupt overhead

aHandler execution time.
aInterrupt mechanism overhead.
aRegister save/restoreaRegister save/restore.
aPipeline-related penalties.
aCache-related penalties.
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ARM i t tARM interrupts

aARM7 supports two types of interrupts:
`Fast interrupt requests (FIQs).
`Interrupt requests (IRQs).p q ( Q )

aInterrupt table starts at location 0.
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ARM i t t dARM interrupt procedure

aCPU actions:
`Save PC`Save PC
`Copy CPSR to SPSR.
`Ch th d i CPSR`Change the processor mode in new CPSR
`Interrupts (FIQ or IRQ) are disabled
`Force PC to vector.
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ARM i t t dARM interrupt procedure
aHandler :aHandler :
`Save context
`Identifies the external interrupt source and 

executes the appropriate ISR
`Reset the interrupt
`Restore context

aReturn form handler
`Restore CPSR from SPSR`Restore CPSR from SPSR
`interrupt disable flags.
`pc=lr 4
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IRQ i t t dIRQ interrupt procedure
a an IRQ interrupt is raised when the processor is in 

user mode.
` CPSR=nzcvqjift_usr : both IRQ and FIQ are 

enabled
a U d CPSR i d i t SPSR S t CPSRa User mode CPSR is saved into SPSR. Set new CPSR
` new CPSR = nzcvqjIft_irq

f` SPSR_irq = nzcvqjift_usr
` r14_irq=pc
` pc= 0x18
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Li k i t  ff tLink register offsets

a Reset: lr is not defined on a reset
a Data abort : (lr – 8) points to the instructiona Data abort : (lr 8) points to the instruction 

that caused the abort
a FIQ IRQ: (lr – 4) points to address from thea FIQ, IRQ: (lr 4) points to address from the 

handler
a Prefetch abort: (lr 4) points to thea Prefetch abort: (lr – 4) points to the 

instruction that caused the abort
S d f d l ha SWI, Undefined Instruction: lr points to the 
next instruction after the SWI or undefined 
i i
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Return form IRQ or FIQ handler
handlerhandler

<handler codes>
. . .

a Because there S at the end of the instruction and pc is

SUBS pc, r14, #4 ; pc=r14 -4 

a Because there S at the end of the instruction and pc is 
the destination register, cpsr is automatically resotred 
form spsr.

handler
SUB r14, r14, #4 ; r14 -= 4
. . .
<handler codes>
. . .
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Return form IRQ or FIQ handler

handler
SUB r14, r14, #4 ; r14 -= 4, , ;
STMFD r13!, {r0-r3, r14} ; store context
. . .
<handler codes>
. . .
LDMFD r13! {r0 r3 pc} ; restore context and return

>

LDMFD r13!, {r0-r3, pc} ; restore context and return

>

a symbol in the instruction forces cpsr to be restored 
from spsr.

>
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ARM i t t l tARM interrupt latency

aWorst-case latency to respond to interrupt 
i 27 lis 27 cycles:
`Two cycles to synchronize external request.
`Up to 20 cycles to complete current 

instruction.st uct o
`Three cycles for data abort.
`Two cycles to enter interrupt handling state`Two cycles to enter interrupt handling state.
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A three-level nested interrupt
Normal execution

Interrupt handler

Interrupt enabledinterrupt (1) pp ( )
interrupt (2)

interrupt (3)
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ARM-Thumb  procedure call 
standard (ATPCS)
aTh fi t f i t t d I thaThe first four integer arguments are passed I the 

four ARM register: r0, r1, r2, r3
aSubsequent integer arguments are placed in theaSubsequent integer arguments are placed in the 

FD stack, ascending in memory. 
aFunction return value is passed in r0aFunction return value is passed in r0

argument 6
…

sp+8argument 2r2
argument  3r3

argument 4
argument 5

sp
sp+4

argument 0
argument 1

r0
r1

return value
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ARM procedure call standard
aF f ti ith 4 t b th thaFor functions with 4 or more arguments, both the 

caller and the callee must access the stack for 
some arguments.some arguments.

aNote that for C++ the first argument to an object 
is the this pointer. This argument is implicit and p g p
additional to the explicit  arguments.

aIf a C function needs more than four arguments, 
or a C++ function more than three explicitor a C++ function more than three explicit 
arguments, then it is more efficient to use a 
structure as a grouped arguments and pass astructure as a grouped arguments and pass  a 
structure pointer.
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<LDM|STM>{<cond>}{addressing_mode}{S} Rn{!},<registers>{^}

Load-store multiple instructions

aAddressing mode
`IA: increment after: Rn, Rn+4N-4, Rn+4N
`IB: increment before: Rn+4, Rn+4N, Rn+4N
`DA: decrement after: Rn, Rn-4N+4, Rn-4N 
`DB dec ement befo e Rn 4 Rn 4N Rn 4N`DB: decrement before: Rn-4, Rn-4N, Rn-4N

aLoad-store multiple pairs when base update is 
usedused
`STMIA – LDMDB
`STMIB – LDMDA
`STMDA – LDMIB
`STMDB – LDMIA

Computers as Components 45



STM LDM iSTM--LDM pair
a Nesting/recursion requires coding convention:

; pre; pre
STMIB r0!, {r1-r3}
MOV r1, #1
MOV r2 #2MOV r2, #2
MOV r3, #3
;mid

{ }LDMDA r0!, {r1-r3}
;post

pre r0=0x00009000 post r0=0x00009000mid r0=0x0000900cpre r0 0x00009000
r1=0x00000009
r2=0x00000008
r3=0x00000007

p
r1=0x00000009
r2=0x00000008
r3=0x00000007

mid r0 0x0000900c
r1=0x00000001
r2=0x00000002
r3=0x00000003
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St k tiStack operations

a(pop,push) for each addressing mode

`Full ascending:      (LDMFA, STMFA)=(LMDDA, STMIB)
`Full descending:    (LDMFD, STMFD)=(LMDIA, STMDB)

d ( ) ( )`Empty ascending:  (LDMEA, STMEA)=(LMDDB, STMIA)
`Empty descending:(LDMED, STMED)=(LMDIB, STMDA)
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Nested subroutine calls

BL SUB1
. .

SUB1 STMFD r13!,{r0-r2,r14} ; save work & link 
register

BL SUB2
. .
LDMFD r13!, {ro-r2,pc} ; restore work regs & link, { ,p } ; g

SUB2 . .
MOV pc, r14 ; return
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SWI tiSWI exception

aOnly a branch to the SWI handler is at x08.
SWI_handler

STMFD sp!, {r0-r12,r14} ; save context
LDR r10 [r14 # 4] ; load SWI instructionLDR r10, [r14,#-4] ; load SWI instruction
BIC r10, r10, #0xff000000 ;mask off the MSB 8 bits
MOV r1,r13 ;copy SVC stack to r1, ; py
BL swi_jumptable ;branch to swi_jumptable
LDMFD r13!, {r0-r12, pc} ;restore context and return>

swi_jumptable
MOV r0,r10 ;mov SWI number to r0
B eventSWIhanlder ;branch to SWI handler
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ARM i  dARM supervisor mode

aUse SWI instruction to enter supervisor mode, 
similar to subroutine:
SWI CODE_1

aActions of SWI
`S h dd f h i i 14`Save the address of the next instruction to r14_svc
`Save CPSR in SPSR
`Set CPSR`Set CPSR

⌧Enter supervisor mode: CPSR[4:0]=10011 
⌧disable IRQ: CPSR[7]=1. 

`S t PC 08`Set PC=x08
a24-bit argument to SWI is passed to supervisor 

mode code
Computers as Components 50
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E tiException

aException: internally detected error.
aExceptions are synchronous with 

instructions but unpredictable.p
aBuild exception mechanism on top of 

interrupt mechanisminterrupt mechanism.
aExceptions are usually prioritized and p y p

vectorized.
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TTrap

aTrap (software interrupt): an exception 
t d b i t tigenerated by an instruction.

`Call supervisor mode.

aARM uses SWI instruction for traps.
aSHARC offers three levels of softwareaSHARC offers three levels of software 

interrupts.
`Called by setting bits in IRPTL register.
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St k d iStack design

aDepends on
`OS eq i ement fo stack design`OS requirement for stack design
`Target HW provides a physical limit to the 

size and positioning of the stack memorysize and positioning of the stack memory.
aARM-based system : stack grow 

d d h f h k h hdownward with top of the stack at a high 
memory address
aStack overflow must be avoided
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T i l  l tTypical memory layouts
A BUser stackA B

User stack
traditional

Heap
User stack

Code Heap

Interrupt stack Code

Vector table

p

Vector table
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CCo-processor

aCo-processor: added function unit that is 
ll d b i t ticalled by instruction.
`Floating-point units are often structured as 

co-processors.

aARM allows up to 16 designer-selected co-aARM allows up to 16 designer selected co
processors.
`Fl ti i t it 1 2`Floating-point co-processor uses units 1, 2.
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C h  d CPUCaches and CPUs

dataaddress

he ol
le

r cache
mainCPU

ca
ch

co
nt

ro main
memoryaddress

datadata
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C h  tiCache operation

aMany main memory locations are mapped 
t h tonto one cache entry.

aMay have caches for:y
`instructions;
`data;`data;
`data + instructions (unified).

aMemory access time is no longer 
deterministic.
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TTerms

aCache hit: required location is in cache.
aCache miss: required location is not in 

cache.
aWorking set: set of locations used by 

program in a time intervalprogram in a time interval.
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T  f iTypes of misses

aCompulsory (cold): location has never 
b dbeen accessed.
aCapacity: working set is too large.p y g g
aConflict: multiple locations in working set 

map to same cache entrymap to same cache entry.
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Memory system 
fperformance

ah = cache hit rate.
atcache = cache access time, tmain = main 

memory access time.y
aAverage memory access time:
`t ht (1 h)t`tav = htcache + (1-h)tmain
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M lti l  l l  f hMultiple levels of cache

CPU L1 h L2 hCPU L1 cache L2 cache
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Multi-level cache access 
titime

ah1 = cache hit rate.
ah2 = hit rate on L2 and miss on L1.
aAverage memory access time:aAverage memory access time:
`tav = h1tL1 + (1-h1)h2tL2 + (1- h2)(1-h1)tmain

h h (1 h h )= h1tL1 + h2*tL2 + (1- h1-h2*)tmain
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R l t li iReplacement policies

aReplacement policy: strategy for choosing 
hi h h t t th t t kwhich cache entry to throw out to make 

room for a new memory location.
aTwo popular strategies:
`Random`Random.
`Least-recently used (LRU).
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C h  i tiCache organizations

aFully-associative: any memory location 
b t d h i th hcan be stored anywhere in the cache 

(almost never implemented).
aDirect-mapped: each memory location 

maps onto exactly one cache entrymaps onto exactly one cache entry.
aN-way set-associative: each memory 

location can go into one of n sets.
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Cache performance 
b fitbenefits

aKeep frequently-accessed locations in fast 
hcache.

aCache retrieves more than one word at a 
time.
`Sequential accesses are faster after first`Sequential accesses are faster after first 

access.
`S ti l l lit`Spatial locality

Computers as Components 65



Di t d hDirect-mapped cache

lid t d t
1 0xabcd byte byte byte ...

valid tag data
cache block

tag index offset
=

tag index offset

address

valuebytematch
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W it  tiWrite operations

aWrite-through: immediately copy write to 
imain memory.

aWrite-back: write to main memory only y y
when location is removed from cache.
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Direct-mapped cache 
l tilocations

aMany locations map onto the same cache 
bl kblock.
aConflict misses are easy to generate:y g
`Array a[] uses locations 0, 1, 2, …
`Array b[] uses locations 1024 1025 1026`Array b[] uses locations 1024, 1025, 1026, …
`Operation a[i] + b[i] generates conflict 

imisses.

Computers as Components 68



F ll  A i ti  C hFully Associative Cache
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E l  hExample caches

aStrongARM:
`16 Kbyte, 32-way, 32-byte block instruction 

cache.
`16 Kbyte, 32-way, 32-byte block data cache 

(write-back).( )

aC55x:
`Various models have 16KB 24KB cache`Various models have 16KB, 24KB cache.
`Can be used as scratch pad memory.
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S t h d iScratch pad memories

aAlternative to cache:
`Software determines what is stored in 

scratch pad.

aProvides predictable behavior at the cost 
of software controlof software control.
aC55x cache can be configured as scratch 

dpad.
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M  t itMemory management units

aMemory management unit (MMU) 
t l t ddtranslates addresses:

CPU mainmemory
t

logical
address

physical
address

CPU memorymanagement
unit
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MMUMMU

aResponsible for
VIRTUAL → PHYSICAL

address mapping
aSits between CPU and cacheaSits between CPU and cache

CPU

MMU
Main

VA PA PA

CPU Cache
Main
MemD or I D

or
I
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Access time comparisonAccess time comparison

Media Read Write Erase

DRAM 60ns (2B)
2.56us (512B)

60ns (2B)
2.56us (512B)

N/A

NOR flash 150ns (2B)
14 4 (512B)

211us (2B)
3 53 (512B)

1.2s (128KB)
14.4us (512B) 3.53ms (512B)

NAND flash 10.2us (2B)
35.9us (512B)

201us (2B)
226us (512B)

2ms (16KB, 
128K)

Disk 12.5ms (512B)
(Average seek)

14.5ms (512B)
(Average seek)

N/A

a Price
`HDD<<NAND<DRAM<NOR
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MMU - operationMMU - operation

aOperating System allocates pages of physical p g y p g p y
memory to users 

aOS constructs page tables - one for each useraOS constructs page tables one for each user
aPage address from memory address selects a 

page table entrypage table entry
aPage table entry contains physical page address
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M  t t kMemory management tasks

aAllows programs to move in physical 
d i timemory during execution.

aAllows virtual memory:y
`memory images kept in secondary storage;
`images returned to main memory on demand`images returned to main memory on demand 

during execution.

f l f laPage fault: request for location not 
resident in memory.
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MMU dd  t l tiMMU – address translation
q-k
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MMU - Virtual memory spaceMMU - Virtual memory space

aPage Table Entries can also point to disc blocks
`If Valid bit is set, page in memory (address is physical 

page address); cleared, page “swapped out” (       
address is disc block address)

`MMU h d t f lt h d t`MMU hardware generates page fault when swapped out 
page is requested

aAllo i t l memo p e to be l ge th naAllows virtual memory space to be larger than 
physical memory
`O l “ ki t” i i h i l`Only “working set” is in physical memory
`Remainder on paging disc
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MMU - Page FaultsMMU - Page Faults

aPage Fault Handler
`Part of OS kernel
`Finds usable physical pagep y p g
⌧LRU algorithm

`Writes it back to disc if modified`Writes it back to disc if modified
`Reads requested page from paging disc
`Adj t t bl t i`Adjusts page table entries
`Memory access re-tried
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P  F ltPage Fault

q-k

6
1

2 7

8

4

3
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MMU - Page FaultsMMU - Page Faults

aPage Fault Handler
` Part of OS kernel
` Finds usable physical page

⌧LRU algorithm
`Writes it back to disc if modified`Writes it back to disc if modified
` Reads requested page from paging disc
` Adjusts page table entries
`Memory access re-tried

aCan be an expensive process!
`Usual to allow page tables to be swapped out too!
ÖPage fault can be generated on the page tables!
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MMU - practicalitiesMMU - practicalities

a Page size
`8 kbyte pages ⇒ k = 13
` q = 32,  q - k = 19
`So page table size
⌧219 ≈ 0.5 x 106 entries
⌧Each entry 4 bytes

⇒ 0.5 x 106× 4 ≈ 2 Mbytes!
a Page tables can take a lot of memory!
`Larger page sizes reduce page table size

but can waste space (fragmentation)
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MMU - practicalitiesMMU - practicalities

aPage tables are stored in main memory
`They’re too large to be in smaller memories!
`MMU needs to read page table for address p g

translation
∴ Address translation can require additional∴ Address translation can require additional 

memory accesses! 
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MMU P t ti  MMU - Protection 

aPage table entries
`Extra bits are added to specify access rights`Extra bits are added to specify access rights
⌧Set by OS (software)
but
⌧Checked by MMU hardware!

`Access control bits
⌧Read
⌧Write
⌧Read/Write
⌧Execute only
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MMU - Alternative Page 
T bl  St l  Table Styles 
aInverted Page tables
`One page table entry (PTE) / page of physical memory
`MMU has to search for correct VA entry
∴PowerPC hashes VA → PTE address

• PTE address = h( VA )
• h – hash function
⌧Hashing ⇒ collisions

aHash functions in hardwareaHash functions in hardware
` “hash” of n bits to produce m bits (Usually m < n)
`Fewer bits reduces information content
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MMU - Alternative Page 
T bl  St l  Table Styles 

aHash functions in hardware
`“Fewer bits reduces information content
⌧There are only 2m distinct values now!
⌧ Some n-bit patterns will reduce to the same m-bit 

patterns

`Trivial example
⌧2-bits → 1-bit with xor

y     h(y)
00     0

C lli i⌧h(x1 x0) = x1 xor x0
01     1
10 1

Collisions
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MMU - Alternative Page 
T bl  St l  Table Styles 

aInverted Page tables
`One page table ent (PTE) / page of`One page table entry (PTE) / page of 

physical memory
`MMU has to search for correct VA entry`MMU has to search for correct VA entry
∴PowerPC hashes VA → PTE address

dd h( )• PTE address = h( VA )
• h – hash function
⌧Hashing collisions⌧Hashing ⇒ collisions
⌧PTEs are linked together

• PTE contains tags (like cache) and link bits
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• PTE contains tags (like cache) and link bits
⌧MMU searches linked list to find correct entry

`Smaller Page Tables / Longer searches



Address Translation -
S di  it Speeding it up

aTwo+ memory accesses for each datum?
`Page table 1 - 3 (single - 3 level tables)`Page table 1 - 3 (single 3 level tables)
`Actual data 1

b l d d` system can be slowed down
a Translation Look-Aside Buffer 

• Acronym: TLB or TLAB
• Small cache of recently used page table entries• Small cache of recently-used page table entries
• Usually fully-associative
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Address Translation -
S di  it Speeding it up
aTLB iaTLB sizes
`MIPS R10000 1996 64 entries
`Pentium 4 (Prescott) 2006 64 entries

• One page table entry / page of data
• Locality of reference

• Programs spend a lot of time in same memory regionPrograms spend a lot of time in same memory region

ÖTLB hit rates tend to be very high
• 98%• 98%
ÖCompensate for cost of a miss

(many memory accesses –
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TLB S ti l TLB – Sequential access

a Luckily sequential access is fine!a Luckily, sequential access is fine!
a Example: large (several MByte) matrix of 

doubles (8 bytes floating point values)doubles (8 bytes floating point values)
` 8kbyte pages => 1024 doubles/page

a Sequential access eg sum all values:a Sequential access, eg sum all values:
for(j=0;j<n;j++)

sum = sum + x[j]sum  sum + x[j]
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Memory Hierarchy OperationMemory Hierarchy - Operation
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Add  t l tiAddress translation

aRequires some sort of register/table to 
ll bit i f l i l tallow arbitrary mappings of logical to 

physical addresses.
aTwo basic schemes:
`segmented;`segmented;
`paged.

aSegmentation and paging can be 
combined (x86).
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S t  d Segments and pages

page 1
page 2

segment 1

page 2

memory

segment 2
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S t dd  t l tiSegment address translation

segment base address logical addresssegment base address logical address

+

range

+

rangesegment lower bound g
check error

g
segment upper bound

physical address
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ARM  tARM memory management

aMemory region types:
`section: 1 Mbyte block;
`large page: 64 kbytes;g p g y ;
`small page: 4 kbytes.

aAn address is marked as section mappedaAn address is marked as section-mapped 
or page-mapped.
aTwo-level translation scheme.
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ARM dd  t l tiARM address translation

offset1st index 2nd indexTranslation table
base register

1st level table
descriptor concatenate

1st level table

concatenate

2nd level table
descriptor

concatenate

physical address2nd level table
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El t  f CPU fElements of CPU performance

aCycle time.
aCPU pipeline.
aMemory systemaMemory system.
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Pi li iPipelining

aSeveral instructions are executed 
i lt l t diff t t fsimultaneously at different stages of 

completion.
aVarious conditions can cause pipeline 

bubbles that reduce utilization:bubbles that reduce utilization:
`branches;
`memory system delays;
`etc.
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P f  Performance measures

aLatency: time it takes for an instruction to 
t th h th i liget through the pipeline.

aThroughput: number of instructions g p
executed per time period.
aPipelining increases throughput withoutaPipelining increases throughput without 

reducing latency.
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ARM7 i liARM7 pipeline

aARM 7 has 3-stage pipe:
`fetch instruction from memory;
`decode opcode and operands;p p ;
`execute.
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ARM i li  tiARM pipeline execution

add r0 r1 #5f t h d d t add r0,r1,#5

sub r2 r3 r6

fetch decode

fetch

execute

decode executesub r2,r3,r6

cmp r2,#3

fetch decode

fetch

execute

decode executecmp r2,#3

time1 2 31 2 3
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Pi li  t llPipeline stalls

aIf every step cannot be completed in the 
t f ti i li t llsame amount of time, pipeline stalls.

aBubbles introduced by stall increase y
latency, reduce throughput.
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ARM multi-cycle LDMIA 
i t tiinstruction

fetch decode ex ld r2ldmia r0,{r2,r3} ex ld r3

sub r2,r3,r6 fetch decode ex sub, ,

cmp r2 #3

fetch decode ex sub

fetch decode ex cmpcmp r2,#3

time

fetch decode ex cmp

time
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C t l t llControl stalls

aBranches often introduce stalls (branch 
lt )penalty).

`Stall time may depend on whether branch is 
taken.

aMay have to squash instructions thataMay have to squash instructions that 
already started executing.
aD ’t k h t t f t h til diti iaDon’t know what to fetch until condition is 

evaluated.
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ARM i li d b hARM pipelined branch

fetch decode ex bnebne foo ex bne ex bne

sub fetch decode
Housekeeping tasks related 

to the execution of the branch

r2,r3,r6
fetch decode

foo add fetch decode ex add

time

foo add
r0,r1,r2

fetch decode ex add

time
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D l d b hDelayed branch

aTo increase pipeline efficiency, delayed 
b h h i i i t tibranch mechanism requires n instructions 
after branch always executed whether 
branch is executed or not.
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Example: ARM execution time

aDetermine execution time of FIR filter:
for (i=0; i<N; i++)

f = f + c[i]*x[i];[ ] [ ]
aOnly branch in loop test may take more 

than one cyclethan one cycle.
`BLT loop takes 1 cycle best case, 3 worst 

case.
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FIR filt  ARM dFIR filter ARM code
l b d

l i iti ti d

; loop body
Loop   LDR r4,[r3,r8] ; get value of c[i]

LDR r6,[r5,r8] ; get value of x[i]
; loop initiation code
MOV r0,#0  ; use r0 for i, set to 0
MOV r8,#0  ; use an index for arrays

,[ , ] ; g [ ]
MUL r4,r4,r6 ; compute c[i]*x[i]
ADD r2,r2,r4   ; add into running sum
; update loop counter and array index

ADR r2,N    ; get address for N
LDR r1,[r2] ; get value of N
MOV r2 #0 ; use r2 for f set to 0

; update loop counter and array index
ADD r8,r8,#4 ; add one to array index
ADD r0,r0,#1 ; add 1 to i

MOV r2,#0 ; use r2 for f, set to 0
ADR r3,c    ; load r3 with C base
ADR r5,x ; load r5 with x base

; test for exit
CMP r0,r1
BLT loop ; if i < N, continue loopBLT loop       ; if i < N, continue loop

loopend ...
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FIR filt  f  b  bl kFIR filter performance by block

Block Variable # instructions # cycles

Initialization tinit 7 7init

Body tbody 4 4

Update tupdate 2 2

Test ttest 2 [2,4]

t t + N(t + t ) + (N 1) t + ttloop = tinit+ N(tbody + tupdate) + (N-1) ttest,worst + ttest,best

Loop test succeeds is worst case

Loop test fails is best case
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Memory system 
fperformance

aCaches introduce indeterminacy in 
ti tiexecution time.

`Depends on order of execution.

aCache miss penalty: added time due to a 
cache misscache miss.
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CPU  tiCPU power consumption

aMost modern CPUs are designed with 
ti i i d tpower consumption in mind to some 

degree.
aPower vs. energy:
`heat depends on power consumption;`heat depends on power consumption;
`battery life depends on energy consumption.
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CMOS  tiCMOS power consumption

aVoltage drops: power consumption 
ti l t V2proportional to V2.

aToggling: more activity means more gg g y
power.
aLeakage: basic circuit characteristics; canaLeakage: basic circuit characteristics; can 

be eliminated by disconnecting power.
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CPU i  t t iCPU power-saving strategies

aReduce power supply voltage.
aRun at lower clock frequency.
aDisable function units with control signalsaDisable function units with control signals 

when not in use.
aDi f l haDisconnect parts from power supply when 

not in use.
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C55  l   f tC55x low power features

aParallel execution units---longer idle shutdown 
times.

l l d d haMultiple data widths:
`16-bit ALU vs. 40-bit ALU.

aInstruction caches minimizes main memoryaInstruction caches minimizes main memory 
accesses.

aPower management:g
`Function unit idle detection.
`Memory idle detection.
`User-configurable IDLE domains allow programmer`User-configurable IDLE domains allow programmer 

control of what hardware is shut down.
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P  t t lPower management styles

aStatic power management: does not 
d d CPU ti itdepend on CPU activity.
`Example: user-activated power-down mode.

aDynamic power management: based on 
CPU activityCPU activity.
`Example: disabling off function units.
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Application: PowerPC 603 
 f tenergy features

aProvides doze, nap, sleep modes.
aDynamic power management features:
`Uses static logic.`Uses static logic.
`Can shut down unused execution units.
`Cache organized into subarrays to minimize`Cache organized into subarrays to minimize 

amount of active circuitry.
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G lGoals

aCompress data transmitted over serial 
liline.
`Receives byte-size input symbols.
`Produces output symbols packed into bytes.

aWill build software module only hereaWill build software module only here.
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Collaboration diagram for 
compressor

1..m: packed

:input :data compressor :output

1..n: input
symbols

output
symbols

:input :data compressor :output
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H ff  diHuffman coding

aEarly statistical text compression algorithm.
aS l t if i daSelect non-uniform size codes.
`Use shorter codes for more common symbols.
`Use longer codes for less common symbols.

aTo allow decoding, codes must have unique 
prefixes.
`No code can be a prefix of a longer valid code.
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H ff  lHuffman example

character P
45a .45

b .24 P=1
P 55c .11

d .08

P=.55

P=.31
P 19d .08

e .07
f 05

P=.19

f .05 P=.12
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E l  H ff  dExample Huffman code

aRead code from root to leaves:
a 1
b 01b 01
c 0000
d 0001
e 0010e 0010
f 0011
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Huffman coder 
i t  t blrequirements table

name data compression module

purpose code module for Huffman
compression

inputs encoding table, uncoded
byte-size inputs

outputs packed compression output
symbols

functions Huffman coding

performance fast

manufacturing cost N/A

power N/A

physical size/weight N/A
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B ildi   ifi tiBuilding a specification

aCollaboration diagram shows only steady-
t t i t/ t tstate input/output.

aA real system must:y
`Accept an encoding table.
`Allow a system reset that flushes the`Allow a system reset that flushes the 

compression buffer.
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d t  ldata-compressor class

data-compressor

buffer: data-buffer
table: symbol-table
current-bit: integer

encode(): booleanencode(): boolean,
data-buffer

flush()
new-symbol-table()
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d t  b h idata-compressor behaviors

aencode: Takes one-byte input, generates 
k d d d b l d B lpacked encoded symbols and a Boolean 

indicating whether the buffer is full.
anew-symbol-table: installs new symbol 

table in object throws away old tabletable in object, throws away old table.
aflush: returns current state of buffer, 

including number of valid bits in buffer.
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A ili  lAuxiliary classes

data-buffer symbol-tabledata buffer

databuf[databuflen] :
character

symbol table

symbols[nsymbols] :
data buffercharacter

len : integer
data-buffer

len : integer

insert()
length() : integer

value() : symbol
load()
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A ili  l  lAuxiliary class roles

adata-buffer holds both packed and 
k d b lunpacked symbols.

`Longest Huffman code for 8-bit inputs is 256 
bits.

asymbol-table indexes encoded verison ofasymbol table indexes encoded verison of 
each symbol.
`l d() t d t i b l t bl`load() puts data in a new symbol table.
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Cl  l ti hiClass relationships

data compressordata-compressor

1

1

1
1

symbol-tabledata-buffer

1 1
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E d  b h iEncode behavior

create new buffercreate new buffer
add to buffers

return true
input symbol

T

encode buffer filled?

add to buffer return falseF
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I t b h iInsert behavior

k i tpack into
this bufferinput

symbol
T

update
length

symbol
fills buffer?

pack bottom bits
into this buffer,

F

top bits into
overflow buffer
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P  d iProgram design

aIn an object-oriented language, we can 
fl t th UML ifi ti i th dreflect the UML specification in the code 

more directly.
aIn a non-object-oriented language, we 

must either:must either:
`add code to provide object-oriented features;
`diverge from the specification structure.
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C  lC++ classes

Class data_buffer {
char databuf[databuflen];char databuf[databuflen];
int len;
int length in chars() { return len/bitsperbyte; }int length_in_chars() { return len/bitsperbyte; }

public:
void insert(data buffer data buffer&);void insert(data_buffer,data_buffer&);
int length() { return len; }
int length in bytes() { return (int)ceil(len/8 0); }int length_in_bytes() { return (int)ceil(len/8.0); }
int initialize(); 
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C  l  t’dC++ classes, cont’d.

class data_compressor {
data_buffer buffer;_ ;
int current_bit;
symbol_table table;

public:
boolean encode(char,data_buffer&);
void new symbol table(symbol table);void new_symbol_table(symbol_table);
int flush(data_buffer&);
data_compressor();_ p ();
~data_compressor();
}
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C dC code

struct data_compressor_struct {
data buffer buffer;data_buffer buffer;
int current_bit;
sym table table;sym_table table;

}
typedef struct data compressor struct data compressortypedef struct data_compressor_struct data_compressor,

*data_compressor_ptr;
boolean data compressor encode(data compressor ptrboolean data_compressor_encode(data_compressor_ptr 

mycmptrs, char isymbol, data_buffer *fullbuf) ...
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T tiTesting

aTest by encoding, then decoding:

symbol table

input symbols encoder decoder resultinput symbols encoder decoder result

compare
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C d  i ti  t tCode inspection tests

aLook at the code for potential problems:
`Can we run past end of symbol table?
`What happens when the next symbol does pp y

not fill the buffer? Does fill it?
`Do very long encoded symbols work`Do very long encoded symbols work 

properly? Very short symbols?
`Does flush() work properly?`Does flush() work properly?
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