
CPUCPUs

aInput and output.
aS i d ti taSupervisor mode, exceptions, traps.
aCo-processors.
aCaches.
aMemory management.aMemory management.
aCPU performance
aCPU tiaCPU power consumption.
aExample: data compressor

Computers as Components 1

I/O d iI/O devices

aUsually includes some non-digital
tcomponent.

aTypical digital interface to CPU:yp g

status

CPU

status
reg

ha
ni

sm

data
reg m

ec
h

Computers as Components 2

A li ti 8251 UARTApplication: 8251 UART

aUniversal asynchronous receiver
t itt (UART) id i ltransmitter (UART) : provides serial
communication.
a8251 functions are integrated into

standard PC interface chipstandard PC interface chip.
aAllows many communication parameters

to be programmed.

Computers as Components 3

S i l i tiSerial communication

aCharacters are transmitted separately:

no
char

bit 0 bit 1 bit n-1

char

start stop...

time

Computers as Components 4

Serial communication
tparameters

aBaud (bit) rate.
aNumber of bits per character.
aParity/no parityaParity/no parity.
aEven/odd parity.
aLength of stop bit (1, 1.5, 2 bits).

Computers as Components 5

S l i tSample points

a Example: 10 bits/ character (1 stop bit, 8 bits, no parity bit, 1 stop bit)

no
char

bit 0 bit 1 bit 7

char

start stop...

time
Synch 1.5 BT 1.5 BT 8.5 BT 9.5 BTSynch
point

framing error if not 1
0.5 BT

Computers as Components 6

8251 CPU i t f8251 CPU interface

CPU

status
(8 bit)

xmit/CPU 8251
data

(8 bit)
serial
port

xmit/
rcv

(8 bit) port

8251 interrupts CPU
1. when receiving a character is done
2 h di h t i fi i h d

Computers as Components 7

2. when sending a character is finished

P i I/OProgramming I/O

aTwo types of instructions can support I/O:
`special-purpose I/O instructions;
`memory-mapped load/store instructions.y pp

aIntel x86 provides in, out instructions.
Most other CPUs use memory-mappedMost other CPUs use memory-mapped
I/O.
aI/O instructions do not preclude memory-

mapped I/O.
Computers as Components 8

pp /

ARM d I/OARM memory-mapped I/O

aDefine location for device:
DEV1 EQU 0x1000

aRead/write code:aRead/write code:

LDR r1 #DEV1 ; set up device adrsLDR r1,#DEV1 ; set up device adrs
LDR r0,[r1] ; read DEV1
LDR r0 #8 ; set up value to writeLDR r0,#8 ; set up value to write
STR r0,[r1] ; write value to device

Computers as Components 9

P k d kPeek and poke

aTraditional HLL interfaces:

int peek(char *location) {p () {
return *location; }

void poke(char *location, char newval) {
(*location) = newval; }() ; }

Computers as Components 10

B / it t tBusy/wait output

aSimplest way to program device.
`Use instructions to test when device is ready.

current_char = mystring;
while (*current_char != ‘\0’) {

poke(OUT_CHAR,*current_char);
while (peek(OUT_STATUS) != 0); polling ,busy-wait
current_char++;

}

Computers as Components 11

Simultaneous busy/wait
i t d t tinput and output

while (TRUE) {
/* read *//* read */
while (peek(IN_STATUS) == 0); busy-wait
achar = (char) peek(IN DATA);achar = (char) peek(IN_DATA);
poke(IN_STATUS,0);
/* write *// write /
poke(OUT_DATA, achar);
poke(OUT STATUS,1);p (_ ,);
while (peek(OUT_STATUS) != 0); busy-wait

}

Computers as Components 12

I t t I/OInterrupt I/O

aBusy/wait is very inefficient.
`CPU can’t do other work while testing device.
`Hard to do simultaneous I/O.

aInterrupts allow a device to change the
flow of control in the CPUflow of control in the CPU.
`Causes a subroutine call to handle device.
`Interrupt handler, device driver

Computers as Components 13

I t t b h iInterrupt behavior

aBased on subroutine call mechanism.
aInterrupt forces next instruction to be a

subroutine call to a predetermined p
location.
`Return address is saved to later resume`Return address is saved to later resume

executing foreground program.

Computers as Components 14

I t t i t fInterrupt interface

intr request

CPU

status
reg ni

sm

PC
intr request

intr ackR CPU

data
reg m

ec
ha

nP

data/address

IR

reg

Computers as Components 15

I t t h i l i t fInterrupt physical interface

aCPU and device are connected by CPU bus.
aCPU d d i h d h k ith i t taCPU and device handshake with interrupt

request and acknowledgement:
`device asserts interrupt request;
`CPU asserts interrupt acknowledge when it can

h dl th i t thandle the interrupt.

aAn PIC (programmable interrupt controller)
l l l fconnects multiple external interrupts to one of

the two ARM interrupt requests

Computers as Components 16

Ch t I/O h dlCharacter I/O handlers

void input_handler() {
achar = peek(IN DATA);achar = peek(IN_DATA);
gotchar = TRUE;
poke(IN STATUS 0);poke(IN_STATUS,0);

}
void output handler() {void output_handler() {
}

Computers as Components 17

I t t d i i Interrupt-driven main program

main() {
while (TRUE) {while (TRUE) {

if (gotchar) {
poke(OUT DATA achar);poke(OUT_DATA,achar);
poke(OUT_STATUS,1);
gotchar = FALSE;gotchar = FALSE;
}

}}
}

Computers as Components 18

I t t I/O ith b ffInterrupt I/O with buffers

aQueue for characters:

aa

head tailhead tail

Computers as Components 19

I t t I/O ith b ffInterrupt I/O with buffers

aQueue for characters:

b c d e f ga b c d e f ga

head tail

Computers as Components 20

I t t I/O ith b ffInterrupt I/O with buffers

aQueue for characters:

b c d e f g hb c d e f g h

headtail

Computers as Components 21

B ff b d i t h dlBuffer-based input handler

void input_handler() {
char achar;char achar;
if (full_buffer()) error = 1;
else { achar = peek(IN DATA); add char(achar); }else { achar = peek(IN_DATA); add_char(achar); }
poke(IN_STATUS,0);
if (nchars == 1)if (nchars == 1)

{ poke(OUT_DATA,remove_char();
poke(OUT STATUS 1); }poke(OUT_STATUS,1); }
}

Computers as Components 22

I/O diI/O sequence diagram

:foreground :input :output :queue

empty

a

empty

b

bcbc

c

Computers as Components 23

D b i i t t dDebugging interrupt code

aWhat if you forget to change registers?
`Foreground program can exhibit mysterious

bugs.
`Bugs will be hard to repeat---depend on

interrupt timing.p g

Computers as Components 24

P i iti d tPriorities and vectors

aTwo mechanisms allow us to make
i t t ifiinterrupts more specific:
`Priorities determine what interrupt gets CPU

first.
`Vectors determine what code is called for ecto s dete e at code s ca ed o

each type of interrupt.

aMechanisms are orthogonal: most CPUsaMechanisms are orthogonal: most CPUs
provide both.

Computers as Components 25

P i iti d i t tPrioritized interrupts
interrupt acknowledge log2n bits

device 1 device 2 device n

L1 L2 Ln Prioritized interrupt lines
CPU

L1 L2 .. Ln Prioritized interrupt lines

Computers as Components 26

I t t i iti tiInterrupt prioritization

aMasking: interrupt with priority lower than
t i it i t i d tilcurrent priority is not recognized until

pending interrupt is complete.
aNon-maskable interrupt (NMI): highest-

priority never maskedpriority, never masked.
`Often used for power-down.

Computers as Components 27

E l P i iti d I/OExample: Prioritized I/O

:interrupts :foreground :A :B :C

B

C

A

A,B

Computers as Components 28

I t t tInterrupt vectors

aAllow different devices to be handled by
diff t ddifferent code.
aInterrupt vector table:p

handler 0Interrupt handler 0
handler 1
handler 2

p
vector

table head
handler 2
handler 3

Computers as Components 29

I t t t i itiInterrupt vector acquisition

:CPU :device

receive
request krequest

receive
ack

ack

ack
receive
vector

vector
vector

Computers as Components 30

G i i t t h iGeneric interrupt mechanism
intr?

N
Y

Assume priority selection is
handled before this
point

continue
execution

point.
N

ignore intr priority > current priority?

Y

ackack

vector?

Y

N
timeout?

Y
bus error

N

vector?
Y

timeout?bus error

call table[vector]

Computers as Components 31

[]

I t t Interrupt sequence

aCPU acknowledges request.
aDevice sends vector.
aCPU calls handleraCPU calls handler.
aHandler processes request.
aCPU restores state to foreground

program.program.

Computers as Components 32

S f i t t h dSources of interrupt overhead

aHandler execution time.
aInterrupt mechanism overhead.
aRegister save/restoreaRegister save/restore.
aPipeline-related penalties.
aCache-related penalties.

Computers as Components 33

ARM i t tARM interrupts

aARM7 supports two types of interrupts:
`Fast interrupt requests (FIQs).
`Interrupt requests (IRQs).p q (Q)

aInterrupt table starts at location 0.

Computers as Components 34

ARM i t t dARM interrupt procedure

aCPU actions:
`Save PC`Save PC
`Copy CPSR to SPSR.
`Ch th d i CPSR`Change the processor mode in new CPSR
`Interrupts (FIQ or IRQ) are disabled
`Force PC to vector.

Computers as Components 35

ARM i t t dARM interrupt procedure
aHandler :aHandler :
`Save context
`Identifies the external interrupt source and

executes the appropriate ISR
`Reset the interrupt
`Restore context

aReturn form handler
`Restore CPSR from SPSR`Restore CPSR from SPSR
`interrupt disable flags.
`pc=lr 4

Computers as Components 36

`pc=lr-4

IRQ i t t dIRQ interrupt procedure
a an IRQ interrupt is raised when the processor is in

user mode.
` CPSR=nzcvqjift_usr : both IRQ and FIQ are

enabled
a U d CPSR i d i t SPSR S t CPSRa User mode CPSR is saved into SPSR. Set new CPSR
` new CPSR = nzcvqjIft_irq

f` SPSR_irq = nzcvqjift_usr
` r14_irq=pc
` pc= 0x18

Computers as Components 37

Li k i t ff tLink register offsets

a Reset: lr is not defined on a reset
a Data abort : (lr – 8) points to the instructiona Data abort : (lr 8) points to the instruction

that caused the abort
a FIQ IRQ: (lr – 4) points to address from thea FIQ, IRQ: (lr 4) points to address from the

handler
a Prefetch abort: (lr 4) points to thea Prefetch abort: (lr – 4) points to the

instruction that caused the abort
S d f d l ha SWI, Undefined Instruction: lr points to the
next instruction after the SWI or undefined
i i

Computers as Components 38

instruction

Return form IRQ or FIQ handler
handlerhandler

<handler codes>
. . .

a Because there S at the end of the instruction and pc is

SUBS pc, r14, #4 ; pc=r14 -4

a Because there S at the end of the instruction and pc is
the destination register, cpsr is automatically resotred
form spsr.

handler
SUB r14, r14, #4 ; r14 -= 4
. . .
<handler codes>
. . .

Computers as Components 39

. . .
MOVS pc, r14 ; return

Return form IRQ or FIQ handler

handler
SUB r14, r14, #4 ; r14 -= 4, , ;
STMFD r13!, {r0-r3, r14} ; store context
. . .
<handler codes>
. . .
LDMFD r13! {r0 r3 pc} ; restore context and return

>

LDMFD r13!, {r0-r3, pc} ; restore context and return

>

a symbol in the instruction forces cpsr to be restored
from spsr.

>

Computers as Components 40

ARM i t t l tARM interrupt latency

aWorst-case latency to respond to interrupt
i 27 lis 27 cycles:
`Two cycles to synchronize external request.
`Up to 20 cycles to complete current

instruction.st uct o
`Three cycles for data abort.
`Two cycles to enter interrupt handling state`Two cycles to enter interrupt handling state.

Computers as Components 41

A three-level nested interrupt
Normal execution

Interrupt handler

Interrupt enabledinterrupt (1) pp ()
interrupt (2)

interrupt (3)

Computers as Components 42

ARM-Thumb procedure call
standard (ATPCS)
aTh fi t f i t t d I thaThe first four integer arguments are passed I the

four ARM register: r0, r1, r2, r3
aSubsequent integer arguments are placed in theaSubsequent integer arguments are placed in the

FD stack, ascending in memory.
aFunction return value is passed in r0aFunction return value is passed in r0

argument 6
…

sp+8argument 2r2
argument 3r3

argument 4
argument 5

sp
sp+4

argument 0
argument 1

r0
r1

return value

Computers as Components 43

g pg

ARM procedure call standard
aF f ti ith 4 t b th thaFor functions with 4 or more arguments, both the

caller and the callee must access the stack for
some arguments.some arguments.

aNote that for C++ the first argument to an object
is the this pointer. This argument is implicit and p g p
additional to the explicit arguments.

aIf a C function needs more than four arguments,
or a C++ function more than three explicitor a C++ function more than three explicit
arguments, then it is more efficient to use a
structure as a grouped arguments and pass astructure as a grouped arguments and pass a
structure pointer.

Computers as Components 44

<LDM|STM>{<cond>}{addressing_mode}{S} Rn{!},<registers>{^}

Load-store multiple instructions

aAddressing mode
`IA: increment after: Rn, Rn+4N-4, Rn+4N
`IB: increment before: Rn+4, Rn+4N, Rn+4N
`DA: decrement after: Rn, Rn-4N+4, Rn-4N
`DB dec ement befo e Rn 4 Rn 4N Rn 4N`DB: decrement before: Rn-4, Rn-4N, Rn-4N

aLoad-store multiple pairs when base update is
usedused
`STMIA – LDMDB
`STMIB – LDMDA
`STMDA – LDMIB
`STMDB – LDMIA

Computers as Components 45

STM LDM iSTM--LDM pair
a Nesting/recursion requires coding convention:

; pre; pre
STMIB r0!, {r1-r3}
MOV r1, #1
MOV r2 #2MOV r2, #2
MOV r3, #3
;mid

{ }LDMDA r0!, {r1-r3}
;post

pre r0=0x00009000 post r0=0x00009000mid r0=0x0000900cpre r0 0x00009000
r1=0x00000009
r2=0x00000008
r3=0x00000007

p
r1=0x00000009
r2=0x00000008
r3=0x00000007

mid r0 0x0000900c
r1=0x00000001
r2=0x00000002
r3=0x00000003

Computers as Components 46

r3=0x00000007 r3 0x00000007r3=0x00000003

St k tiStack operations

a(pop,push) for each addressing mode

`Full ascending: (LDMFA, STMFA)=(LMDDA, STMIB)
`Full descending: (LDMFD, STMFD)=(LMDIA, STMDB)

d () ()`Empty ascending: (LDMEA, STMEA)=(LMDDB, STMIA)
`Empty descending:(LDMED, STMED)=(LMDIB, STMDA)

Computers as Components 47

Nested subroutine calls

BL SUB1
. .

SUB1 STMFD r13!,{r0-r2,r14} ; save work & link
register

BL SUB2
. .
LDMFD r13!, {ro-r2,pc} ; restore work regs & link, { ,p } ; g

SUB2 . .
MOV pc, r14 ; return

Computers as Components 48

SWI tiSWI exception

aOnly a branch to the SWI handler is at x08.
SWI_handler

STMFD sp!, {r0-r12,r14} ; save context
LDR r10 [r14 # 4] ; load SWI instructionLDR r10, [r14,#-4] ; load SWI instruction
BIC r10, r10, #0xff000000 ;mask off the MSB 8 bits
MOV r1,r13 ;copy SVC stack to r1, ; py
BL swi_jumptable ;branch to swi_jumptable
LDMFD r13!, {r0-r12, pc} ;restore context and return>

swi_jumptable
MOV r0,r10 ;mov SWI number to r0
B eventSWIhanlder ;branch to SWI handler

Computers as Components 49

B eventSWIhanlder ;branch to SWI handler

ARM i dARM supervisor mode

aUse SWI instruction to enter supervisor mode,
similar to subroutine:
SWI CODE_1

aActions of SWI
`S h dd f h i i 14`Save the address of the next instruction to r14_svc
`Save CPSR in SPSR
`Set CPSR`Set CPSR

⌧Enter supervisor mode: CPSR[4:0]=10011
⌧disable IRQ: CPSR[7]=1.

`S t PC 08`Set PC=x08
a24-bit argument to SWI is passed to supervisor

mode code
Computers as Components 50

mode code.

E tiException

aException: internally detected error.
aExceptions are synchronous with

instructions but unpredictable.p
aBuild exception mechanism on top of

interrupt mechanisminterrupt mechanism.
aExceptions are usually prioritized and p y p

vectorized.

Computers as Components 51

TTrap

aTrap (software interrupt): an exception
t d b i t tigenerated by an instruction.

`Call supervisor mode.

aARM uses SWI instruction for traps.
aSHARC offers three levels of softwareaSHARC offers three levels of software

interrupts.
`Called by setting bits in IRPTL register.

Computers as Components 52

St k d iStack design

aDepends on
`OS eq i ement fo stack design`OS requirement for stack design
`Target HW provides a physical limit to the

size and positioning of the stack memorysize and positioning of the stack memory.
aARM-based system : stack grow

d d h f h k h hdownward with top of the stack at a high
memory address
aStack overflow must be avoided

Computers as Components 53

T i l l tTypical memory layouts
A BUser stackA B

User stack
traditional

Heap
User stack

Code Heap

Interrupt stack Code

Vector table

p

Vector table

Computers as Components 54
Layout B does not corrupt the vector table when a stack overflow occurs

CCo-processor

aCo-processor: added function unit that is
ll d b i t ticalled by instruction.
`Floating-point units are often structured as

co-processors.

aARM allows up to 16 designer-selected co-aARM allows up to 16 designer selected co
processors.
`Fl ti i t it 1 2`Floating-point co-processor uses units 1, 2.

Computers as Components 55

C h d CPUCaches and CPUs

dataaddress

he ol
le

r cache
mainCPU

ca
ch

co
nt

ro main
memoryaddress

datadata

Computers as Components 56

C h tiCache operation

aMany main memory locations are mapped
t h tonto one cache entry.

aMay have caches for:y
`instructions;
`data;`data;
`data + instructions (unified).

aMemory access time is no longer
deterministic.

Computers as Components 57

deterministic.

TTerms

aCache hit: required location is in cache.
aCache miss: required location is not in

cache.
aWorking set: set of locations used by

program in a time intervalprogram in a time interval.

Computers as Components 58

T f iTypes of misses

aCompulsory (cold): location has never
b dbeen accessed.
aCapacity: working set is too large.p y g g
aConflict: multiple locations in working set

map to same cache entrymap to same cache entry.

Computers as Components 59

Memory system
fperformance

ah = cache hit rate.
atcache = cache access time, tmain = main

memory access time.y
aAverage memory access time:
`t ht (1 h)t`tav = htcache + (1-h)tmain

Computers as Components 60

M lti l l l f hMultiple levels of cache

CPU L1 h L2 hCPU L1 cache L2 cache

Computers as Components 61

Multi-level cache access
titime

ah1 = cache hit rate.
ah2 = hit rate on L2 and miss on L1.
aAverage memory access time:aAverage memory access time:
`tav = h1tL1 + (1-h1)h2tL2 + (1- h2)(1-h1)tmain

h h (1 h h)= h1tL1 + h2*tL2 + (1- h1-h2*)tmain

Computers as Components 62

R l t li iReplacement policies

aReplacement policy: strategy for choosing
hi h h t t th t t kwhich cache entry to throw out to make

room for a new memory location.
aTwo popular strategies:
`Random`Random.
`Least-recently used (LRU).

Computers as Components 63

C h i tiCache organizations

aFully-associative: any memory location
b t d h i th hcan be stored anywhere in the cache

(almost never implemented).
aDirect-mapped: each memory location

maps onto exactly one cache entrymaps onto exactly one cache entry.
aN-way set-associative: each memory

location can go into one of n sets.

Computers as Components 64

Cache performance
b fitbenefits

aKeep frequently-accessed locations in fast
hcache.

aCache retrieves more than one word at a
time.
`Sequential accesses are faster after first`Sequential accesses are faster after first

access.
`S ti l l lit`Spatial locality

Computers as Components 65

Di t d hDirect-mapped cache

lid t d t
1 0xabcd byte byte byte ...

valid tag data
cache block

tag index offset
=

tag index offset

address

valuebytematch

Computers as Components 66

hit=match and valid

W it tiWrite operations

aWrite-through: immediately copy write to
imain memory.

aWrite-back: write to main memory only y y
when location is removed from cache.

Computers as Components 67

Direct-mapped cache
l tilocations

aMany locations map onto the same cache
bl kblock.
aConflict misses are easy to generate:y g
`Array a[] uses locations 0, 1, 2, …
`Array b[] uses locations 1024 1025 1026`Array b[] uses locations 1024, 1025, 1026, …
`Operation a[i] + b[i] generates conflict

imisses.

Computers as Components 68

F ll A i ti C hFully Associative Cache

Computers as Components 69

E l hExample caches

aStrongARM:
`16 Kbyte, 32-way, 32-byte block instruction

cache.
`16 Kbyte, 32-way, 32-byte block data cache

(write-back).()

aC55x:
`Various models have 16KB 24KB cache`Various models have 16KB, 24KB cache.
`Can be used as scratch pad memory.

Computers as Components 70

S t h d iScratch pad memories

aAlternative to cache:
`Software determines what is stored in

scratch pad.

aProvides predictable behavior at the cost
of software controlof software control.
aC55x cache can be configured as scratch

dpad.

Computers as Components 71

M t itMemory management units

aMemory management unit (MMU)
t l t ddtranslates addresses:

CPU mainmemory
t

logical
address

physical
address

CPU memorymanagement
unit

Computers as Components 72

MMUMMU

aResponsible for
VIRTUAL → PHYSICAL

address mapping
aSits between CPU and cacheaSits between CPU and cache

CPU

MMU
Main

VA PA PA

CPU Cache
Main
MemD or I D

or
I

Computers as Components 73

aC h t Ph i l Add

I

Access time comparisonAccess time comparison

Media Read Write Erase

DRAM 60ns (2B)
2.56us (512B)

60ns (2B)
2.56us (512B)

N/A

NOR flash 150ns (2B)
14 4 (512B)

211us (2B)
3 53 (512B)

1.2s (128KB)
14.4us (512B) 3.53ms (512B)

NAND flash 10.2us (2B)
35.9us (512B)

201us (2B)
226us (512B)

2ms (16KB,
128K)

Disk 12.5ms (512B)
(Average seek)

14.5ms (512B)
(Average seek)

N/A

a Price
`HDD<<NAND<DRAM<NOR

Computers as Components 74

MMU - operationMMU - operation

aOperating System allocates pages of physical p g y p g p y
memory to users

aOS constructs page tables - one for each useraOS constructs page tables one for each user
aPage address from memory address selects a

page table entrypage table entry
aPage table entry contains physical page address

Computers as Components 75

M t t kMemory management tasks

aAllows programs to move in physical
d i timemory during execution.

aAllows virtual memory:y
`memory images kept in secondary storage;
`images returned to main memory on demand`images returned to main memory on demand

during execution.

f l f laPage fault: request for location not
resident in memory.

Computers as Components 76

y

MMU dd t l tiMMU – address translation
q-k

Computers as Components 77

MMU - Virtual memory spaceMMU - Virtual memory space

aPage Table Entries can also point to disc blocks
`If Valid bit is set, page in memory (address is physical

page address); cleared, page “swapped out” (
address is disc block address)

`MMU h d t f lt h d t`MMU hardware generates page fault when swapped out
page is requested

aAllo i t l memo p e to be l ge th naAllows virtual memory space to be larger than
physical memory
`O l “ ki t” i i h i l`Only “working set” is in physical memory
`Remainder on paging disc

Computers as Components 78

MMU - Page FaultsMMU - Page Faults

aPage Fault Handler
`Part of OS kernel
`Finds usable physical pagep y p g
⌧LRU algorithm

`Writes it back to disc if modified`Writes it back to disc if modified
`Reads requested page from paging disc
`Adj t t bl t i`Adjusts page table entries
`Memory access re-tried

Computers as Components 79

P F ltPage Fault

q-k

6
1

2 7

8

4

3

Computers as Components 80

MMU - Page FaultsMMU - Page Faults

aPage Fault Handler
` Part of OS kernel
` Finds usable physical page

⌧LRU algorithm
`Writes it back to disc if modified`Writes it back to disc if modified
` Reads requested page from paging disc
` Adjusts page table entries
`Memory access re-tried

aCan be an expensive process!
`Usual to allow page tables to be swapped out too!
ÖPage fault can be generated on the page tables!

Computers as Components 81

MMU - practicalitiesMMU - practicalities

a Page size
`8 kbyte pages ⇒ k = 13
` q = 32, q - k = 19
`So page table size
⌧219 ≈ 0.5 x 106 entries
⌧Each entry 4 bytes

⇒ 0.5 x 106× 4 ≈ 2 Mbytes!
a Page tables can take a lot of memory!
`Larger page sizes reduce page table size

but can waste space (fragmentation)

Computers as Components 82

MMU - practicalitiesMMU - practicalities

aPage tables are stored in main memory
`They’re too large to be in smaller memories!
`MMU needs to read page table for address p g

translation
∴ Address translation can require additional∴ Address translation can require additional

memory accesses!

Computers as Components 83

MMU P t ti MMU - Protection

aPage table entries
`Extra bits are added to specify access rights`Extra bits are added to specify access rights
⌧Set by OS (software)
but
⌧Checked by MMU hardware!

`Access control bits
⌧Read
⌧Write
⌧Read/Write
⌧Execute only

Computers as Components 84

MMU - Alternative Page
T bl St l Table Styles
aInverted Page tables
`One page table entry (PTE) / page of physical memory
`MMU has to search for correct VA entry
∴PowerPC hashes VA → PTE address

• PTE address = h(VA)
• h – hash function
⌧Hashing ⇒ collisions

aHash functions in hardwareaHash functions in hardware
` “hash” of n bits to produce m bits (Usually m < n)
`Fewer bits reduces information content

Computers as Components 85

`Fewer bits reduces information content

MMU - Alternative Page
T bl St l Table Styles

aHash functions in hardware
`“Fewer bits reduces information content
⌧There are only 2m distinct values now!
⌧ Some n-bit patterns will reduce to the same m-bit

patterns

`Trivial example
⌧2-bits → 1-bit with xor

y h(y)
00 0

C lli i⌧h(x1 x0) = x1 xor x0
01 1
10 1

Collisions

Computers as Components 86

11 0

MMU - Alternative Page
T bl St l Table Styles

aInverted Page tables
`One page table ent (PTE) / page of`One page table entry (PTE) / page of

physical memory
`MMU has to search for correct VA entry`MMU has to search for correct VA entry
∴PowerPC hashes VA → PTE address

dd h()• PTE address = h(VA)
• h – hash function
⌧Hashing collisions⌧Hashing ⇒ collisions
⌧PTEs are linked together

• PTE contains tags (like cache) and link bits

Computers as Components 87

• PTE contains tags (like cache) and link bits
⌧MMU searches linked list to find correct entry

`Smaller Page Tables / Longer searches

Address Translation -
S di it Speeding it up

aTwo+ memory accesses for each datum?
`Page table 1 - 3 (single - 3 level tables)`Page table 1 - 3 (single 3 level tables)
`Actual data 1

b l d d` system can be slowed down
a Translation Look-Aside Buffer

• Acronym: TLB or TLAB
• Small cache of recently used page table entries• Small cache of recently-used page table entries
• Usually fully-associative

Computers as Components 88
• Can be quite small!

Address Translation -
S di it Speeding it up
aTLB iaTLB sizes
`MIPS R10000 1996 64 entries
`Pentium 4 (Prescott) 2006 64 entries

• One page table entry / page of data
• Locality of reference

• Programs spend a lot of time in same memory regionPrograms spend a lot of time in same memory region

ÖTLB hit rates tend to be very high
• 98%• 98%
ÖCompensate for cost of a miss

(many memory accesses –

Computers as Components 89

(many memory accesses
but for only 2% of references to memory!)

TLB S ti l TLB – Sequential access

a Luckily sequential access is fine!a Luckily, sequential access is fine!
a Example: large (several MByte) matrix of

doubles (8 bytes floating point values)doubles (8 bytes floating point values)
` 8kbyte pages => 1024 doubles/page

a Sequential access eg sum all values:a Sequential access, eg sum all values:
for(j=0;j<n;j++)

sum = sum + x[j]sum sum + x[j]

Computers as Components 90

Memory Hierarchy OperationMemory Hierarchy - Operation

Computers as Components 91

Add t l tiAddress translation

aRequires some sort of register/table to
ll bit i f l i l tallow arbitrary mappings of logical to

physical addresses.
aTwo basic schemes:
`segmented;`segmented;
`paged.

aSegmentation and paging can be
combined (x86).

Computers as Components 92

()

S t d Segments and pages

page 1
page 2

segment 1

page 2

memory

segment 2

Computers as Components 93

S t dd t l tiSegment address translation

segment base address logical addresssegment base address logical address

+

range

+

rangesegment lower bound g
check error

g
segment upper bound

physical address

Computers as Components 94

ARM tARM memory management

aMemory region types:
`section: 1 Mbyte block;
`large page: 64 kbytes;g p g y ;
`small page: 4 kbytes.

aAn address is marked as section mappedaAn address is marked as section-mapped
or page-mapped.
aTwo-level translation scheme.

Computers as Components 95

ARM dd t l tiARM address translation

offset1st index 2nd indexTranslation table
base register

1st level table
descriptor concatenate

1st level table

concatenate

2nd level table
descriptor

concatenate

physical address2nd level table

Computers as Components 96

El t f CPU fElements of CPU performance

aCycle time.
aCPU pipeline.
aMemory systemaMemory system.

Computers as Components 97

Pi li iPipelining

aSeveral instructions are executed
i lt l t diff t t fsimultaneously at different stages of

completion.
aVarious conditions can cause pipeline

bubbles that reduce utilization:bubbles that reduce utilization:
`branches;
`memory system delays;
`etc.

Computers as Components 98

P f Performance measures

aLatency: time it takes for an instruction to
t th h th i liget through the pipeline.

aThroughput: number of instructions g p
executed per time period.
aPipelining increases throughput withoutaPipelining increases throughput without

reducing latency.

Computers as Components 99

ARM7 i liARM7 pipeline

aARM 7 has 3-stage pipe:
`fetch instruction from memory;
`decode opcode and operands;p p ;
`execute.

Computers as Components 100

ARM i li tiARM pipeline execution

add r0 r1 #5f t h d d t add r0,r1,#5

sub r2 r3 r6

fetch decode

fetch

execute

decode executesub r2,r3,r6

cmp r2,#3

fetch decode

fetch

execute

decode executecmp r2,#3

time1 2 31 2 3

Computers as Components 101

Pi li t llPipeline stalls

aIf every step cannot be completed in the
t f ti i li t llsame amount of time, pipeline stalls.

aBubbles introduced by stall increase y
latency, reduce throughput.

Computers as Components 102

ARM multi-cycle LDMIA
i t tiinstruction

fetch decode ex ld r2ldmia r0,{r2,r3} ex ld r3

sub r2,r3,r6 fetch decode ex sub, ,

cmp r2 #3

fetch decode ex sub

fetch decode ex cmpcmp r2,#3

time

fetch decode ex cmp

time

Computers as Components 103

C t l t llControl stalls

aBranches often introduce stalls (branch
lt)penalty).

`Stall time may depend on whether branch is
taken.

aMay have to squash instructions thataMay have to squash instructions that
already started executing.
aD ’t k h t t f t h til diti iaDon’t know what to fetch until condition is

evaluated.

Computers as Components 104

ARM i li d b hARM pipelined branch

fetch decode ex bnebne foo ex bne ex bne

sub fetch decode
Housekeeping tasks related

to the execution of the branch

r2,r3,r6
fetch decode

foo add fetch decode ex add

time

foo add
r0,r1,r2

fetch decode ex add

time

Computers as Components 105

D l d b hDelayed branch

aTo increase pipeline efficiency, delayed
b h h i i i t tibranch mechanism requires n instructions
after branch always executed whether
branch is executed or not.

Computers as Components 106

Example: ARM execution time

aDetermine execution time of FIR filter:
for (i=0; i<N; i++)

f = f + c[i]*x[i];[] []
aOnly branch in loop test may take more

than one cyclethan one cycle.
`BLT loop takes 1 cycle best case, 3 worst

case.

Computers as Components 107

FIR filt ARM dFIR filter ARM code
l b d

l i iti ti d

; loop body
Loop LDR r4,[r3,r8] ; get value of c[i]

LDR r6,[r5,r8] ; get value of x[i]
; loop initiation code
MOV r0,#0 ; use r0 for i, set to 0
MOV r8,#0 ; use an index for arrays

,[,] ; g []
MUL r4,r4,r6 ; compute c[i]*x[i]
ADD r2,r2,r4 ; add into running sum
; update loop counter and array index

ADR r2,N ; get address for N
LDR r1,[r2] ; get value of N
MOV r2 #0 ; use r2 for f set to 0

; update loop counter and array index
ADD r8,r8,#4 ; add one to array index
ADD r0,r0,#1 ; add 1 to i

MOV r2,#0 ; use r2 for f, set to 0
ADR r3,c ; load r3 with C base
ADR r5,x ; load r5 with x base

; test for exit
CMP r0,r1
BLT loop ; if i < N, continue loopBLT loop ; if i < N, continue loop

loopend ...

Computers as Components 108

FIR filt f b bl kFIR filter performance by block

Block Variable # instructions # cycles

Initialization tinit 7 7init

Body tbody 4 4

Update tupdate 2 2

Test ttest 2 [2,4]

t t + N(t + t) + (N 1) t + ttloop = tinit+ N(tbody + tupdate) + (N-1) ttest,worst + ttest,best

Loop test succeeds is worst case

Loop test fails is best case

Computers as Components 109

Loop test fails is best case

Memory system
fperformance

aCaches introduce indeterminacy in
ti tiexecution time.

`Depends on order of execution.

aCache miss penalty: added time due to a
cache misscache miss.

Computers as Components 110

CPU tiCPU power consumption

aMost modern CPUs are designed with
ti i i d tpower consumption in mind to some

degree.
aPower vs. energy:
`heat depends on power consumption;`heat depends on power consumption;
`battery life depends on energy consumption.

Computers as Components 111

CMOS tiCMOS power consumption

aVoltage drops: power consumption
ti l t V2proportional to V2.

aToggling: more activity means more gg g y
power.
aLeakage: basic circuit characteristics; canaLeakage: basic circuit characteristics; can

be eliminated by disconnecting power.

Computers as Components 112

CPU i t t iCPU power-saving strategies

aReduce power supply voltage.
aRun at lower clock frequency.
aDisable function units with control signalsaDisable function units with control signals

when not in use.
aDi f l haDisconnect parts from power supply when

not in use.

Computers as Components 113

C55 l f tC55x low power features

aParallel execution units---longer idle shutdown
times.

l l d d haMultiple data widths:
`16-bit ALU vs. 40-bit ALU.

aInstruction caches minimizes main memoryaInstruction caches minimizes main memory
accesses.

aPower management:g
`Function unit idle detection.
`Memory idle detection.
`User-configurable IDLE domains allow programmer`User-configurable IDLE domains allow programmer

control of what hardware is shut down.

Computers as Components 114

P t t lPower management styles

aStatic power management: does not
d d CPU ti itdepend on CPU activity.
`Example: user-activated power-down mode.

aDynamic power management: based on
CPU activityCPU activity.
`Example: disabling off function units.

Computers as Components 115

Application: PowerPC 603
 f tenergy features

aProvides doze, nap, sleep modes.
aDynamic power management features:
`Uses static logic.`Uses static logic.
`Can shut down unused execution units.
`Cache organized into subarrays to minimize`Cache organized into subarrays to minimize

amount of active circuitry.

Computers as Components 116

G lGoals

aCompress data transmitted over serial
liline.
`Receives byte-size input symbols.
`Produces output symbols packed into bytes.

aWill build software module only hereaWill build software module only here.

Computers as Components 117

Collaboration diagram for
compressor

1..m: packed

:input :data compressor :output

1..n: input
symbols

output
symbols

:input :data compressor :output

Computers as Components 118

H ff diHuffman coding

aEarly statistical text compression algorithm.
aS l t if i daSelect non-uniform size codes.
`Use shorter codes for more common symbols.
`Use longer codes for less common symbols.

aTo allow decoding, codes must have unique
prefixes.
`No code can be a prefix of a longer valid code.

Computers as Components 119

H ff lHuffman example

character P
45a .45

b .24 P=1
P 55c .11

d .08

P=.55

P=.31
P 19d .08

e .07
f 05

P=.19

f .05 P=.12

Computers as Components 120

E l H ff dExample Huffman code

aRead code from root to leaves:
a 1
b 01b 01
c 0000
d 0001
e 0010e 0010
f 0011

Computers as Components 121

Huffman coder
i t t blrequirements table

name data compression module

purpose code module for Huffman
compression

inputs encoding table, uncoded
byte-size inputs

outputs packed compression output
symbols

functions Huffman coding

performance fast

manufacturing cost N/A

power N/A

physical size/weight N/A

Computers as Components 122

B ildi ifi tiBuilding a specification

aCollaboration diagram shows only steady-
t t i t/ t tstate input/output.

aA real system must:y
`Accept an encoding table.
`Allow a system reset that flushes the`Allow a system reset that flushes the

compression buffer.

Computers as Components 123

d t ldata-compressor class

data-compressor

buffer: data-buffer
table: symbol-table
current-bit: integer

encode(): booleanencode(): boolean,
data-buffer

flush()
new-symbol-table()

Computers as Components 124

d t b h idata-compressor behaviors

aencode: Takes one-byte input, generates
k d d d b l d B lpacked encoded symbols and a Boolean

indicating whether the buffer is full.
anew-symbol-table: installs new symbol

table in object throws away old tabletable in object, throws away old table.
aflush: returns current state of buffer,

including number of valid bits in buffer.

Computers as Components 125

A ili lAuxiliary classes

data-buffer symbol-tabledata buffer

databuf[databuflen] :
character

symbol table

symbols[nsymbols] :
data buffercharacter

len : integer
data-buffer

len : integer

insert()
length() : integer

value() : symbol
load()

Computers as Components 126

A ili l lAuxiliary class roles

adata-buffer holds both packed and
k d b lunpacked symbols.

`Longest Huffman code for 8-bit inputs is 256
bits.

asymbol-table indexes encoded verison ofasymbol table indexes encoded verison of
each symbol.
`l d() t d t i b l t bl`load() puts data in a new symbol table.

Computers as Components 127

Cl l ti hiClass relationships

data compressordata-compressor

1

1

1
1

symbol-tabledata-buffer

1 1

Computers as Components 128

E d b h iEncode behavior

create new buffercreate new buffer
add to buffers

return true
input symbol

T

encode buffer filled?

add to buffer return falseF

Computers as Components 129

I t b h iInsert behavior

k i tpack into
this bufferinput

symbol
T

update
length

symbol
fills buffer?

pack bottom bits
into this buffer,

F

top bits into
overflow buffer

Computers as Components 130

P d iProgram design

aIn an object-oriented language, we can
fl t th UML ifi ti i th dreflect the UML specification in the code

more directly.
aIn a non-object-oriented language, we

must either:must either:
`add code to provide object-oriented features;
`diverge from the specification structure.

Computers as Components 131

C lC++ classes

Class data_buffer {
char databuf[databuflen];char databuf[databuflen];
int len;
int length in chars() { return len/bitsperbyte; }int length_in_chars() { return len/bitsperbyte; }

public:
void insert(data buffer data buffer&);void insert(data_buffer,data_buffer&);
int length() { return len; }
int length in bytes() { return (int)ceil(len/8 0); }int length_in_bytes() { return (int)ceil(len/8.0); }
int initialize();

Computers as Components 132

...

C l t’dC++ classes, cont’d.

class data_compressor {
data_buffer buffer;_ ;
int current_bit;
symbol_table table;

public:
boolean encode(char,data_buffer&);
void new symbol table(symbol table);void new_symbol_table(symbol_table);
int flush(data_buffer&);
data_compressor();_ p ();
~data_compressor();
}

Computers as Components 133

C dC code

struct data_compressor_struct {
data buffer buffer;data_buffer buffer;
int current_bit;
sym table table;sym_table table;

}
typedef struct data compressor struct data compressortypedef struct data_compressor_struct data_compressor,

*data_compressor_ptr;
boolean data compressor encode(data compressor ptrboolean data_compressor_encode(data_compressor_ptr

mycmptrs, char isymbol, data_buffer *fullbuf) ...

Computers as Components 134

T tiTesting

aTest by encoding, then decoding:

symbol table

input symbols encoder decoder resultinput symbols encoder decoder result

compare

Computers as Components 135

C d i ti t tCode inspection tests

aLook at the code for potential problems:
`Can we run past end of symbol table?
`What happens when the next symbol does pp y

not fill the buffer? Does fill it?
`Do very long encoded symbols work`Do very long encoded symbols work

properly? Very short symbols?
`Does flush() work properly?`Does flush() work properly?

Computers as Components 136

