CPUs

Input and output.

Supervisor mode, exceptions, traps.
Co-processors.

Caches.

Memory management.
CPU performance
CPU power consumption.

Example: data compressor

Computers as Components

/O devices

Usually includes some non-digital
component.

Typical digital interface to CPU:

status
re
CPU <—>/ S

\ data

reg

Computers as Components

Application: 8251 UART

Universal asynchronous receiver
transmitter (UART) : provides serial
communication.

8251 functions are integrated into
standard PC interface chip

GSLUTITUQATL U IHILUI 1AV O \JlllP

Allows many communication parameters
to be programmed.

Computers as Components

Serial commmunication

Characters are transmitted separately:

no
char

\start/< bit0 X bitl) - @/St_op\

time

Computers as Components

Serial communication
parameters

Baud (bit) rate.

Number of bits per character.
Parity/no parity.

Even/odd parity.

Length of stop bit (1, 1.5, 2 bits).

Computers as Components

Sample points

Example: 10 bits/ character (1 stop bit, 8 bits, no parity bit, 1 stop bit)

no
char
R start A bit 0 X bit 1 bit stop
4 $ t t t :
‘ time
Synch ™ o5BT 1.5BT 1.5BT 85BT 9.5BT
point

framing error if not 1

Computers as Components 6

8251 CPU Interface

status

- (8 bit)

data
(8 bit)

8251

serial
port

8251 imterrupts CPU

1. when receiving a character 1s done
2. when sending a character is finished

Computers as Components

Programming 1/O

Two types of instructions can support 1/0:
special-purpose 1/0 instructions;
memory-mapped load/store instructions.

Intel x86 provides in, out Instructions.

NMAact AtlhAavr DIl e 116 MAArYTArY 7, MAAnA A
IVIUSUL ULIICIT LUIruUuo UoS<C IIICIIIUI_Y'IIIQIJPCU

1/0.

I/0 Instructions do not preclude memory-
mapped 1/0.

Computers as Components

ARM memory-mapped I/O

Define location for device:
DEV1 EQU 0x1000

Read/write code:

1,#DEV1 ; set up device ad
LDR rO,[r1] ; read DEV1
LDR r0,#8 ; set up value to write

STR r0,[rl] ; write value to device

I ND
LM\

Computers as Components

Peek and poke
Traditional HLL interfaces:

Int peek(char *location) {
return *location; }

void poke(char *location, char newval) {
(*location) = newval; }

Computers as Components

10

Busy/walit output

Simplest way to program device.
Use Instructions to test when device Is ready.

current_char = mystring;

while (*current_char !'=\0’) {
poke(OUT_CHAR,*current_char);
while (peek(OUT_STATUS) != 0); polling ,busy-wait
current_char++;

}

Computers as Components 11

Simultaneous busy/wait
INnput and output

while (TRUE) {
[* read */
while (peek(IN_STATUS) == 0); busy-walit
achar = (char) peek(IN_DATA);
poke(IN_STATUS,0);
[* write */
poke(OUT_DATA, achar);
poke(OUT_STATUS,1);
while (peek(OUT_STATUS) != 0); busy-wait

Computers as Components

12

Interrupt 1/O

Busy/wait Is very inefficient.
CPU can’t do other work while testing device.
Hard to do simultaneous 1/0.

Int errupts allow a device to change the

fl A Y +hn
1HOW UI bUIILIUI III LIIC \./F'U

Causes a subroutine call to handle device.
Interrupt handler, device driver

Computers as Components 13

Interrupt behavior

Based on subroutine call mechanism.

Interrupt forces next instruction to be a
subroutine call to a predetermined
location.

ol Bl 2 2a¥YaY

esum

if : e Xa W

DAatiivrin AAdAAvraAaces 1o AA A ladAa
NCTUWUIIl aUUulcoo 10 oadavcUu WU Ialc
executing foreground program.

Tl g
|

Computers as Components 14

Interrupt interface

IR

intr request

CPU

PC

<€

intr ack

€

data/address

>

>

status
reg

data
reg

Computers as Components

15

Interrupt physical interface

CPU and device are connected by CPU bus.

CPU and device handshake with interrupt
request and acknowledgement:
device asserts interrupt request;
CPU asserts interrupt acknowledge when it can
handle the interrupt.
An PIC (programmable interrupt controller)
connects multiple external interrupts to one of
the two ARM Interrupt requests

Computers as Components 16

Character I/O handlers

void input_handler() {
achar = peek(IN_DATA);
gotchar = TRUE;
poke(IN_STATUS,0);

}
void output_handler() {

}

Computers as Components

17

Interrupt-driven main program

main() {
while (TRUE) {

If (gotchar) {
poke(OUT_DATA,achar);
poke(OUT_STATUS,1);
gotchar = FALSE;

}

}

Computers as Components 18

Interrupt I/O with buffers

Queue for characters:

a

.

head tail tail

Computers as Components

Interrupt I/O with buffers

Queue for characters:

head tail

Computers as Components

20

Interrupt I/O with buffers

Queue for characters:

taill head

Computers as Components

21

Buffer-based input handler

void input_handler() {
char achar,
If (full_buffer()) error = 1,
else { achar = peek(IN_DATA); add_char(achar); }
poke(IN_STATUS,0);
If (nchars ==1)
{ poke(OUT_DATA,remove_char();
poke(OUT_STATUS,1); }

}

Computers as Components

22

/O sequence diagram

.foreground

‘Input

:output

1
}
}
1
1
}
1
}
}
1
v

Computers as Components

23

Debugging interrupt code

What if you forget to change registers?

Foreground program can exhibit mysterious
bugs.

Bugs will be hard to repeat---depend on
Interrupt timing.

Computers as Components 24

Priorities and vectors

Two mechanisms allow us to make
Interrupts more specific:

Priorities determine what interrupt gets CPU
first.

Vectors determine what code is called for
each type of interrupt.

Mechanisms are orthogonal: most CPUs
provide both.

Computers as Components 25

Prioritized

interrupts
interrupt acknowledge log,n bits
device 1 device 2 device n

L1 L2 .. Ln | Prioritized interrupt lines

Computers as Components

26

Interrupt prioritization

Masking: interrupt with priority lower than
current priority Is not recognized until
pending interrupt is complete.

Non-maskable interrupt (NMI): highest-

priority, never masked.

Often used for power-down.

Computers as Components 27

Example: Prioritized 1/0

:interrupts

.foreground

B

C

A

A,B

A

loe

110

Computers as Components

28

Interrupt vectors

Allow different devices to be handled by
different code.

Interrupt vector table:

Interrupt ' bmell=
vector

table head handler 1

handler 2

handler 3

Computers as Components

Interrupt vector acquisition

:CPU -device

receive
request ack

receive vector
vector

Computers as Components 30

Generic interrupt mechanism

continue . o
N Assume priority selection 1s

execution Y handled before this
point.

ignore [~

bus error

call table[vector]

Computers as Components 31

Interrupt sequence

CPU acknowledges reguest.
Device sends vector.

CPU calls handler.

Handler processes request.

CPU restores state to foreground
program.

Computers as Components

32

Sources of interrupt overhead

Handler execution time.
Interrupt mechanism overhead.
Register save/restore.
Pipeline-related penalties.
Cache-related penalties.

Computers as Components 33

ARM Interrupts

ARMY supports two types of interrupts:
Fast interrupt requests (FIQs).
Interrupt requests (IRQs).

Interrupt table starts at location O.

Computers as Components

34

ARM Interrupt procedure

CPU actions:
Save PC
Copy CPSR to SPSR.
Change the processor mode in new CPSR

Interrupts (FIQ or IRQ) are disabled
Force PC to vector.

Computers as Components

35

ARM Interrupt procedure

Handler :
Save context

Identifies the external interrupt source and
executes the appropriate ISR

Reset the interrupt
Restore context

Return form handler
Restore CPSR from SPSR
Interrupt disable flags.
pc=lIr-4

Computers as Components

36

IRQ Interrupt procedure

an IRQ interrupt is raised when the processor is in
user mode.

CPSR=nzcvqjift_usr : both IRQ and FIQ are
enabled

User mode CPSR is saved into SPSR. Set new CPSR
new CPSR = nzcvqjlft_irg
SPSR_irg = nzcvqjift_usr
rl4 irg=pc
pc= 0x18

Computers as Components 37

Link register offsets

Reset: Ir Is not defined on a reset

Data abort : (Ir — 8) points to the instruction
that caused the abort

-1Q, IRQ: (Ir 4) points to address from the
nandler

Prefetch abort: (Ir — 4) points to the
Instruction that caused the abort

SWI, Undefined Instruction: Ir points to the
next instruction after the SWI or undefined

Instruction

Computers as Components

38

Return form IRQ or FIQ handler

handler
<handler codes>

SUBS pc, rl4, #4 . pc=rl4 -4

Because there S at the end of the instruction and pc is
the destination register, cpsr is automatically resotred
form spsr.

handler
SUB rl4, r1l4, #4 114 -=4

<handler codes>

MOVS pc, rl4 ; return

Computers as Components 39

Return form IRQ or FIQ handler

handler
SUB 114, rl4, #4 114 =4
STMFD r13!, {r0-r3, r14} , store context

<handler codes>

. N
LDMFD r13!, {r0-r3, pc} , restore context and return

: symbol in the instruction forces cpsr to be restored
from spsr.

Computers as Components 40

ARM Interrupt latency

Worst-case latency to respond to interrupt
IS 27 cycles:

Two cycles to synchronize external request.

Up to 20 cycles to complete current
Instruction.

Three cycles for data abort.
Two cycles to enter interrupt handling state.

Computers as Components 41

A three-level nested interrupt

Normal execution

v Interrupt handler

interrupt (1; Interrupt enabled

\ . interrupt (2) N

\ interrupt (3;

Computers as Components 42

ARM-Thumb procedure call
standard (ATPCS) *

The first four integer arguments are passed | the
four ARM regqister: r0, rl, r2, r3

Subsequent integer arguments are placed in the
FD stack, ascending in memory.

Function return value is passed in r0

sp+8
sp+4

Computers as Components 43

ARM procedure call standard

For functions with 4 or more arguments, both the
caller and the callee must access the stack for
some arguments.

Note that for C++ the first argument to an object
IS the this pointer. This argument is implicit and
additional to the explicit arguments.

If a C function needs more than four arguments,
or a C++ function more than three explicit
arguments, then it is more efficient to use a
structure as a grouped arguments and pass a
structure pointer.

Computers as Components 44

<LDM|STM>{<cond>} {addressing mode}{S} Rn{!} <registers>{"}
Load-store multiple instructions

Addressing mode
|A: increment after: Rn, Rn+4N-4, Rn+4N
IB: increment before: Rn+4, Rn+4N, Rn+4N
DA: decrement after: Rn, Rn-4N+4, Rn-4N
DB: decrement before: Rn-4, Rn-4N, Rn-4N

Load-store multiple pairs when base update Is
1ised

STMIA — LDMDB

STMIB — LDMDA

STMDA — LDMIB

STMDB — LDMIA

Computers as Components 45

STM--LDM palr

Nesting/recursion requires coding convention:

pre

; pre

STMIB r0!, {rl-r3}
MOV rl, #1

MOV r2, #2

MOV r3, #3

;mid

LDMDA r0!, {rl-r3}
;post

r0=0x00009000 | mid r0=0x0000900c
r1=0x00000009 r1=0x00000001
r2=0x00000008 r2=0x00000002
r3=0x00000007 r3=0x00000003

Computers as Components

post

r0=0x00009000
r1=0x00000009
r2=0x00000008
r3=0x00000007

46

Stack operations

(pop,push) for each addressing mode

Full ascending: (LDMFA, STMFA)=(LMDDA, STMIB)
Full descending: (LDMFD, STMFD)=(LMDIA, STMDB)
Empty ascending: (LDMEA, STMEA)=(LMDDB, STMIA)
Empty descending:(LDMED, STMED)=(LMDIB, STMDA)

Computers as Components 47

Nested subroutine calls

BL SUB1
SUB1 STMFD r13!,{r0-r2,ri4} ; save work & link
register

BL SuUB2

LDMFD r13!, {ro-r2,pc} ; restore work regs & link
SUB2 .

MOV pc, rl4 ; return

Computers as Components

48

*

SWI exception

Only a branch to the SWI handler is at x08.

SWI_handler
STMFD sp!, {rO-r12,r14} , save context
LDR r10, [r14,#-4] ; load SWI instruction
BIC rl0, r10, #0xffOOOO00 ;mask off the MSB 8 bits
MOV rl,ri3 ;copy SVC stack to rl1
BL swi_jumptable ;oranch to swi_jumptable
LDMFD r13!, {r0-r12, pc} : ;restore context and return
swi_jumptable
MOV r0,r10 ;mov SWI number to rO
B eventSWIhanlder ;oranch to SWI handler

Computers as Components 49

ARM supervisor mode

Use SWI Instruction to enter supervisor mode,
similar to subroutine:

SWI CODE_1
Actions of SWI
Save the address of the next instruction to r14 svc
Save CPSR in SPSR
Set CPSR
Enter supervisor mode: CPSR[4:0]=10011
disable IRQ: CPSR[7]=1.
Set PC=x08
24-bit argument to SWI Is passed to supervisor
mode code.

Computers as Components 50

Exception

Exception: internally detected error.

Exceptions are synchronous with
Instructions but unpredictable.

Build exception mechanism on top of
iInterrupt mechanism.

Exceptions are usually prioritized and
vectorized.

Computers as Components

51

Trap

Trap (software interrupt): an exception
generated by an instruction.

Call supervisor mode.
ARM uses SWI instruction for traps.

SHARC offers three levels of software
Interrupts.

Called by setting bits in IRPTL register.

Computers as Components 52

Stack design

Depends on
OS requirement for stack design

Target HW provides a physical limit to the
size and positioning of the stack memory.

ARM-based system : stack grow

downward with top of the stack at a high
memory address

Stack overflow must be avoided

Computers as Components 53

Typical memory layouts

N
traditional
Heap T
Code Heap T
Code
Vector table Vector table

Layout B does not corrupt the vector table when a stack overflow occurs
Computers as Components 54

Co-processor

Co-processor: added function unit that Is
called by instruction.

Floating-point units are often structured as
CO-Processors.

ARM allows up to 16 designer-selected co-
Processors.
Floating-point co-processor uses units 1, 2.

Computers as Components 55

Caches and CPUs |

address

CPU

data

data

— cache

address

data

Computers as Components

56

Cache operation

Many main memory locations are mapped
onto one cache entry.
May have caches for:

Instructions;

data;

data + instructions (unified).

Memory access time is no longer
deterministic.

Computers as Components S7

Terms

Cache hit: required location is in cache.

Cache miss: required location is not in
cache.

Working set: set of locations used by
program in a time interval.

Computers as Components

58

Types of misses

Compulsory (cold): location has never
been accessed.

Capacity: working set is too large.

Conflict: multiple locations in working set
map to same cache entry.

Computers as Components

59

Memory system
performance

h = cache hit rate.

t...he = Cache access time, t. .,
memory access time.

Average memory access time:
1:av — ht(:ache + (1'h)tmain

Computers as Components

= main

60

Multiple levels of cache

CPU

> L1 cache | *>

Computers as Components

.2 cache

61

Multi-level cache access
time

h, = cache hit rate.
h, = hit rate on L2 and miss on L1.

Average memory access time:
t,, = hit, + (1-hy)hst, , (1- hy)(1-h))t
= hityy + haut; 4 (1- hy-hy)t

main

main

Computers as Components 62

Replacement policies

Replacement policy: strategy for choosing
which cache entry to throw out to make
room for a new memory location.

Two popular strategies:
Random.

Least-recently used (LRU).

Computers as Components 63

Cache organizations

Fully-associative: any memory location
can be stored anywhere in the cache
(almost never implemented).

Direct-mapped: each memory location

maps onto exactly one cache entry.

N-way set-associative: each memory
location can go into one of n sets.

Computers as Components 64

Cache performance
benefits

Keep frequently-accessed locations in fast
cache.

Cache retrieves more than one word at a
time.

access.
Spatial locality

Computers as Components 65

Direct-mapped Cache

-=-:=l"""_-|-\.-\. -:“'“’5""‘:5-"-\.:1—-—

Oxabcd byte byte byte ..

Loid| e || | om

cache block

tag 1ndex offset

address ?

match

hit=match and valid

Computers as Components 66

Write operations

Write-through: immediately copy write to
main memory.

Write-back: write to main memory only
when location is removed from cache.

Computers as Components

67

Direct-mapped cache
locations

Many locations map onto the same cache
block.
Conflict misses are easy to generate:

Array a[] uses locations O, 1, 2, ...
Array b[] uses locations 1024, 1025, 1026, ...

Operation a[i] + b[i] generates conflict
mIsses.

Computers as Components 68

Fully Associative Cache

Vi '_I'_a_lg_ _ Data Block

HIT

Data

\ Word
— T — or Byte

Block
o LOffset
?«

Computers as Components 69

Example caches

StrongARM:

16 Kbyte, 32-way, 32-byte block instruction
cache.

16 Kbyte, 32-way, 32-byte block data cache
(write-back).

Chhx:

Various models have 16KB, 24KB cache.
Can be used as scratch pad memory.

Computers as Components 70

Scratch pad memories

Alternative to cache:

Software determines what Is stored In
scratch pad.

Provides predictable behavior at the cost
of software control.

C55x cache can be configured as scratch
pad.

Computers as Components 71

Memory management units

o =2 F oS S

Memory management unit (MMU)
translates addresses:

CPU

logical
address

physical
address

Computers as Components 72

IVIIVINY

Responsible for
VIRTUAL — PHYSICAL
address mapping

Sits between CPU and cache

ﬁ
D orl

Computers as Components

PA

Main
Mem

73

>
O
@
D
0))
0))
=
3
D
O
SD
-3
©
D
-,
0))
@
S

DRAM 60ns (2B) 60ns (2B) N/A
2.56us (512B) 2.56us (512B)
NOR flash 150ns (2B) 211us (2B) 1.2s (128KB)
14.4us (512B) 3.53ms (512B)
NAND flash 10.2us (2B) 201us (2B) 2ms (16KB,
35.9us (512B) 226us (512B) 128K)
Disk 12.5ms (512B) 14.5ms (512B) N/A
(Average seek) (Average seek)
Price
HDD<<NAND<DRAM<NOR

Computers as Components

| - N
Y

arat
IVIIVIN Wl CAU

nn
Ul

N
M~

Operating System allocates pages of physical
memory to users

OS constructs page tables - one for each user
Page address from memory address selects a

Y

~AAr~NA A N nntrgs
JQUC LAUJICT Clll.ly

Page table entry contains physical page address

Computers as Components 75

Memory management tasks

Allows programs to move in physical
memory during execution.
Allows virtual memory:

memory images kept in secondary storage,;

Images returned to main memory on demand
during execution.

Page fault: request for location not
resident in memory.

Computers as Components 76

MMU — address translation

Physical Memory

————— q-k — -k —-

Virtual Page Offset
Address within page

Page Table)
Phys Page Address
np-k - Kk —-

~t -k - Physical Page Offset
P }Add res.'sf.ag within page

SN .

Computers as Components

| - \/irtiial memanr\s
[| CUACAL | I

CNACo
IVIIVIJ \'4 HHICIHIIvl y opaAauvuo

Page Table Entries can also point to disc blocks

If Valid bit is set, page in memory (address is physical
page address); cleared, page “swapped out” (
address is disc block address)

MMU hardware generates page fault when swapped out
page Is requested

Allows virtual memory space to be larger than
physical memory
Only “working set” is in physical memory
Remainder on paging disc

Computers as Components 78

I_P::

Nne Earniltce
IVIIVIN MH\I | CA -

Al U

Page Fault Handler
Part of OS kernel

Finds usable physical page
LRU algorithm
Writes it back to disc if modified

Reads requested page from paging disc
Adjusts page table entries
Memory access re-tried

Computers as Components

79

Page Fault

Physical Memory

———— q_k - o —-
Virtual Page Offset
Address within page
rEs
£3 % Page Table
1
0 Disc address 6
\ T .. Memory access
re-tried
5 7
p-k P | ——~
- p-k m\ Physical Page Offset
\ Address within page
Paging disc
4
Page tab
updated
8

Page read into memory

Computers as Components

C:

- Page Fa

(!)

o=
aAaye

<
<

Page Fault Handler
Part of OS kernel
Finds usable physical page
LRU algorithm
Writes it back to disc if modified
Reads requested page from paging disc
Adjusts page table entries
Memory access re-tried

Can be an expensive process!
Usual to allow page tables to be swapped out too!
= Page fault can be generated on the page tables!

Computers as Components 81

1] - Nnr
IVIIVIN P

E:".
%
0

Page size
8 kbyte pages = k=13
q=32, g-k=19
So page table size
219~ 0.5 x 10° entries
Each entry 4 bytes
= 0.5x 10° X 4 =2 Mbytes!
Page tables can take a lot of memory!

Larger page sizes reduce page table size
but can waste space (fragmentation)

Computers as Components

1] - Nnr
IVIIVIN P

r-l-

+tiac
| U B WL

Page tables are stored in main memory
They’re too large to be in smaller memories!

MMU needs to read page table for address
translation

". Address translation can require additional
memory accesses!

Computers as Components 83

MMU - Protection

Page table entries

Extra bits are added to specify access rights

Set by OS (software)
but

Checked by MMU hardware!

Access control bits
Read
Write
Read/Write
Execute only

Computers as Components

84

MMU - Alternative Page
Table Styles

Inverted Page tables
One page table entry (PTE) / page of physical memory
MMU has to search for correct VA entry
. PowerPC hashes VA — PTE address
* PTE address = h(VA)
* h — hash function
Hashing = collisions

Hash functions in hardware

“hash” of n bits to produce m bits (Usually m < n)
Fewer bits reduces information content

Computers as Components 85

MMU - Alternative Page
Table Styles

Hash functions in hardware

“Fewer bits reduces information content
There are only 2™ distinct values now!
Some n-bit patterns will reduce to the same m-bit

patterns
Trivial example y h(y)
2-bits — 1-bit with xor 00 0 S
h(X, X,) = X, x0T X, (1)(1) i :j ollisions
11 0

Computers as Components 86

MMU - Alternative Page
Table Styles

Inverted Page tables

One page table entry (PTE) / page of
physical memory

MMU has to search for correct VA entry

-.PowerPC hashes VA — PTE address
* PTE address =h(VA)
* h — hash function
Hashing = collisions

PTEs are linked together
PTE contains tags (like cache) and link bits

MMU searches linked list to find correct entry

Computers as Components 87
Smaller Pane Tahleg / | nnner cearcheg

Address Translation -
Speeding It up

Two+ memory accesses for each datum?
Page table 1 -3 (single - 3 level tables)

Actual data 1
system can be slowed down

Translation Look-Aside Buffer

e Acronym: TLB or TLAB

e Small cache of recently-used page table entries
e Usually fully-associative

e Can be gquite small!

Computers as Components 88

Address Translation -
Speeding It up

TLB sizes
MIPS R10000 1996 64 entries
Pentium 4 (Prescott) 2006 64 entries

e One page table entry / page of data

e [ocality of reference
e Programs spend a lot of time in same memory region

= TLB hit rates tend to be very high
e 98%

= Compensate for cost of a miss

(many memory accesses —
but for only 2% of references to memory!)

Computers as Components 89

TLB — Seqguential access

Luckily, sequential access is fine!

Example: large (several MByte) matrix of
doubles (8 bytes floating point values)
8kbyte pages => 1024 doubles/page
Sequential access, eg sum all values:
for(J=0;j<n;j++)
sum = sum + X[}]

Computers as Components

90

“nl\mt\lf'\l I_I:Alf'ﬁlf'f\lf'\\l nhhl"ﬁ"'
IVICITIUTY TliTcialcully = pcliatl
S CPU/ Retry
Virtual Address l l
l [Search Cache] Search I:age table
| Search TLB | { E
l Y — @ Page fault
Get page from
@ wss] | e o] Leemmemen
Y Update caphe 1 Update
l from main Generate PA main memory,
Generate PA memory { cache and
| { Update TLB] page table entry

Data

Return value
~ from cache

Computers as Components

O

91

)

Address translation

Requires some sort of register/table to
allow arbitrary mappings of logical to
physical addresses.

Two basic schemes:
segmented,;
paged.

Segmentation and paging can be
combined (x86).

Computers as Components

92

Segments and page

= e T S
T

page 1
age 2

_

memory

Computers as Components

93

Segment address translation

segment base address

logical address

segment lower bound
segment upper bound

physical address

Computers as Components

range
error

94

ARM memory management

Memory region types:
section: 1 Mbyte block;
large page: 64 kbytes;
small page: 4 kbytes.

An address Is marked as section-mapped
or page-mapped.
Two-level translation scheme.

Computers as Components

95

ARM address translation

Translation table Ist index|2nd index| offset

base register

descriptor
I1st level table

4 concatenate

concatenate

descriptor

2nd level table

physical address

Computers as Components

96

Elements of CPU performance

Cycle time.
CPU pipeline.
Memory system.

Computers as Components 97

Pipelining

Several instructions are executed
simultaneously at different stages of
completion.

Various conditions can cause pipeline
bubbles that reduce utilization:
branches;
memory system delays;

etc.

Computers as Components

98

Performance measures

Latency: time it takes for an instruction to
get through the pipeline.

Throughput: number of instructions
executed per time period.

Pipelining increases throughput without
reducing latency.

Computers as Components 99

ARMY pipeline

ARM 7 has 3-stage pipe:
fetch Instruction from memory;
decode opcode and operands;
execute.

Computers as Components 100

ARM pipeline executlon

——zma ::-ﬁ-"_.-.-\.-\.-\-o---_- =2 F A e e e

=g = == :- - i e

| | | .
| | | i g
1) 3 time

Computers as Components 101

Pipeline stalls

If every step cannot be completed in the
same amount of time, pipeline stalls.

Bubbles introduced by stall increase
latency, reduce throughput.

Computers as Components 102

ARM multi-cycle LDMIA
INStruction

ldmia r0, {r2,r3}

sub r2,r3,r6

cmp r2,#3

fetch ex Id r2 ex 1d r3

time

Computers as Components 103

Control stalls

Branches often introduce stalls (branch
penalty).

Stall time may depend on whether branch is
taken.

May have to squash instructions that
already started executing.

Don’'t know what to fetch until condition iIs
evaluated.

Computers as Components 104

ARM pipelined branch

bne foo ex bne ex bne ex bne

Housekeeping tasks related

sub to the execution of the branch

r2

rO,rl,r2

time

Computers as Components 105

Delayed branch

To increase pipeline efficiency, delayed
branch mechanism requires n instructions
after branch always executed whether
branch is executed or not.

Computers as Components 106

Example: ARM execution time

Determine execution time of FIR filter:
for (i=0; i<N; i++)
f=f+ c[i*x]i];
Only branch in loop test may take more
than one cycle.
BLT loop takes 1 cycle best case, 3 worst
case.

Computers as Components 107

FIR Tilter ARM code
; loop body
Loop LDR r4,[r3,r8] ; get value of c[i]
L LDR r6,[r5,r8] ; get value of x[i]
; loop initiation code _ MUL r4,r4,r6 ; compute c[i]*x[i]
MOVr0.#0 ; use r0 for i, set to 0 ADD r2,r2,r4 ; add into running sum

MOVY8,#0 ; use an index for arrays ; update loop counter and array index

fSRR rf,NZ ge: adldressf T\cl)r N ADD r8,r8,#4 ; add one to array index
r1,[r2] ; get value o ADD r0,r0,#1 : add 1 to |
MOV r2,#0 ; use r2 for f, setto O

ADR r3,c : load r3 with C base
ADR r5,x ; load r5 with x base

- test for exit

CMP r0,rl
BLT loop ; If i < N, continue loop

loopend ...

Computers as Components 108

FIR filter performance by block

Initialization tinit

Body yoay 4 4
Update Lipdate 2 2
Test Lrest 2 [2.4]

+ N(tbody Tt

update) T (N 1) ttest ,worst ttest,best

/

Loop test succeeds 1s worst case

tloop 1n1t

Loop test fails is best case

Computers as Components 109

Memory system
performance

Caches introduce indeterminacy In
execution time.

Depends on order of execution.
Cache miss penalty: added time due to a
cache miss.

Computers as Components 110

CPU power consumption

Most modern CPUs are designed with
power consumption in mind to some
degree.

Power vs. energy:

If\f\lf‘\f\lf\ 'Y 2N aYeaY s

heat depends on power consumptio

battery life depends on energy onsumption.

Computers as Components 111

CMOS power consumption

Voltage drops: power consumption
proportional to V2.

Toggling: more activity means more
power.

_eakage: basic circuit characteristics; can
e eliminated by disconnecting power.

Computers as Components 112

CPU power-saving strategies

Reduce power supply voltage.
Run at lower clock frequency.

Disable function units with control signals
when not in use.

Disconnect parts from power supply when
not in use.

Computers as Components 113

C55x low power features

Parallel execution units---longer idle shutdown
times.

Multiple data widths:
16-bit ALU vs. 40-bit ALU.

Instruction caches minimizes main memory
accesses.
Power management:

Function unit idle detection.

Memory idle detection.

User-configurable IDLE domains allow programmer
control of what hardware is shut down.

Computers as Components 114

Power management styles

Static power management: does not
depend on CPU activity.

Example: user-activated power-down mode.

Dynamic power management: based on
CPU activity.

Example: disabling off function units.

Computers as Components 115

Application: PowerPC 603
energy features

Provides doze, nap, sleep modes.

Dynamic power management features:
Uses static logic.
Can shut down unused execution units.
Cache organized into subarrays to minimize
amount of active circuitry.

Computers as Components 116

Goals

Compress data transmitted over serial
line.
Receives byte-size input symbols.

Produces output symbols packed into bytes.

\ALLLL Kool
vviil UJuUll

'F ATV
l I

4
LVV

A S M 7\ IMI\AI Ilf\ I\If‘\l\l If\f\lf‘f\
u ov C I11TUUUIC Ullly TICIC.

Computers as Components 117

Collaboration diagram for

compressor
1..m: packed
l1..n: input output
symbols symbols
1Input " :data compressor » :output

Computers as Components

118

Huffman coding

Early statistical text compression algorithm.

Select non-uniform size codes.
Use shorter codes for more common symbols.
Use longer codes for less common symbols.

To allow decoding, codes must have unique
prefixes.

No code can be a prefix of a longer valid code.

Computers as Components 119

Huffman example

character P

a 45 T
b 24 \:I> P
. L P=55

¥ 08 _P>19 P=231

e 07 —

f 05 —>

Computers as Components 120

Example Huffman code

Read code from root to leaves:

= O®© O O T D

1

01
0000
0001
0010
0011

Computers as Components

121

Huffman coder
requirements table

name data compression module

purpose code module for Huffman
compression

inputs encoding table, uncoded
byte-size inputs

outputs packed compression output
symbols

functions Huffman coding

performance fast

manufacturing cost N/A

power N/A

physical size/weight N/A

Computers as Components 122

Building a specification

Collaboration diagram shows only steady-
state input/output.
A real system must:

Accept an encoding table.

Allow a system reset that flushes the
compression buffer.

Computers as Components 123

data-compressor class

data-compressor

buffer: data-buffer
table: symbol-table
current-bit: integer

flush()
new-symbol-table()

Computers as Components 124

data-compressor behaviors

encode: Takes one-byte input, generates
packed encoded symbols and a Boolean
iIndicating whether the buffer is full.

new-symbol-table: installs new symbol

fﬂb!\, In th'QCt, fhr WS Q\Alay n|r~| tubln

flush: returns current state of buffer,
iIncluding number of valid bits in buffer.

Computers as Components 125

Auxiliary classes

data-buffer symbol-table

databuf]databuflen] : symbols[nsymbols] :
character data-buffer

len : integer len : integer

insert() value() : symbol

length() : integer load()

Computers as Components 126

Auxiliary class roles

data-buffer holds both packed and
unpacked symbols.

Longest Huffman code for 8-bit inputs Is 256
bits.

symbol-table inde oded verison of
each symbol.
load() puts data in a new symbol table.

Computers as Components 127

Class relationships

data-compressor

S\

data-buffer

symbol-table

Computers as Components

128

Encode behavior

create new buffer return true]
T add to buffers

buffer filled?

input symbol

encode

K {add to buffer} { return false]

Computers as Components 129

Insert behavior

this buffer

I dat
update
0
fills buffer” [- }—@
/
/pack bottom bits\
into this buffer,
top bits into

koverﬂow buffer)

pack into }

Computers as Components 130

Program design

In an object-oriented language, we can
reflect the UML specification in the code
more directly.

In a non-object-oriented language, we

must aithar-
ITTIUAOUL UILIIUIL .

add code to provide object-oriented features;
diverge from the specification structure.

Computers as Components 131

C++ classes

Class data_buffer {

char databuf[databuflen];

Int len;

int length_in_chars() { return len/bitsperbyte; }
public:

void insert(data_buffer,data_buffer&);

int length() { return len; }

int length_in_bytes() { return (int)ceil(len/8.0); }

Int initialize();

Computers as Components 132

C++ classes, cont’d.

class data_compressor {
data_buffer buffer;
Int current_bit;
symbol_table table;

public:
boolean encode(char,data_buffer&);
void new_symbol_table(symbol table);
int flush(data_buffer&);
data_compressor();
~data_compressor();

}

Computers as Components 133

C code

struct data_compressor_struct {
data_buffer buffer;
Int current_Dbit;
sym_table table;
¥
typedef struct data _compressor_struct data_compressor,
*data_compressor_ptr;

boolean data _compressor _encode(data_compressor_ptr
mycmptrs, char isymbol, data_buffer *fullouf) ...

Computers as Components 134

Testing

Test by encoding, then decoding:

symbol table

input symbols

encoder

» decoder

@

compare

Computers as Components

135

Code Inspection tests

Look at the code for potential problems:

Can we run past end of symbol table?

What happens when the next symbol does
not fill the buffer? Does fill it?

Do very long encoded symbols work
properly? Very short symbols?

Does flush() work properly?

Computers as Components

136

