Bus-Based Computer Systems

CPU bus, I/O devices, and interfacing
CPU system as a framework
System level performance
Development and debugging
An alarm clock design

Bus-Based Computer Systems

Busses. #Memory devices. **H**/O devices: △serial links Continuents and counters Keyboards ✓ displays △analog I/O

System architectures

#Architectures and components:

△software;

△hardware.

Some software is very hardwaredependent.

Hardware platform architecture

Contains several elements: **∺**CPU; **∺bus**; #memory; I/O devices: networking, sensors, actuators, etc. How big/fast much each one be?

Software architecture

Functional description must be broken into pieces:

#division among people;

#conceptual organization;

% performance;

∺testability;

∺maintenance.

HW/SW architectures

Hardware and software are intimately related:

%software doesn't run without hardware; %how much hardware you need is determined by the software requirements:

⊳speed;

<u>∧</u>memory.

Evaluation boards

Designed by CPU manufacturer or others.
Includes CPU, memory, some I/O devices.
May include prototyping section.
CPU manufacturer often gives out evaluation board netlist---can be used as starting point for your custom board design.

Adding logic to a board

#Programmable logic devices (PLDs) provide low/medium density logic.
 #Field-programmable gate arrays (FPGAs) provide more logic and multi-level logic.
 #Application-specific integrated circuits (ASICs) are manufactured for a single purpose.

The PC as a platform

#Advantages:

△cheap and easy to get;

△rich and familiar software environment.

#Disadvantages:

requires a lot of hardware resources;

△not well-adapted to real-time.

Typical PC hardware platform

Typical busses

∺PCI: standard for high-speed interfacing

△33 or 66 MHz.

△PCI Express (PCIe): serial link.

🗵 4 data wires per lane,

≥V1.x: 250 MB/s per lane

≥V2.0: 500 MB/s per lane

≥V3.0: 1GB/s per lane

Second Second

Software elements

HBM PC uses BIOS (Basic I/O System) to implement low-level functions:

△boot-up;

Minimal device drivers.

₭ BIOS has become a generic term for the lowest-level system software.

Example: StrongARM

StrongARM system includes:

- △CPU chip (3.686 MHz clock)
- - Real-time clock;
 - operating system timer
 - general-purpose I/O;
 - interrupt controller;
 - power manager controller;
 - reset controller.

Debugging embedded systems

#Challenges:

- Mard to generate realistic inputs;

Host/target design

Here a host system to prepare software for target system:

Host-based tools

#Cross compiler:

△compiles code on host for target system.

#Cross debugger:

△displays target state, allows target system to be controlled.

Software debuggers

- **#**A monitor program residing on the target provides basic debugger functions.
- Bebugger should have a minimal footprint in memory.
- ₩User program must be careful not to destroy debugger program, but , should be able to recover from some damage caused by user code.

Breakpoints

₭ A breakpoint allows the user to stop execution, examine system state, and change state.

Replace the breakpointed instruction with a subroutine call to the monitor program.

ARM breakpoints

0x400	MUL r4,r6,r6	0x400	MUL r4,r6,r6
0x404	ADD r2,r2,r4	0x404	ADD r2,r2,r4
0x408	ADD r0,r0,#1	0x408	ADD r0,r0,#1
0x40c	B loop -	0x40c	BL bkpoint

uninstrumented code code with breakpoint

Breakpoint handler actions

∺Save registers.

#Allow user to examine machine.

#Before returning, restore system state.

- Safest way to execute the instruction is to replace it and execute in place.
- Put another breakpoint after the replaced breakpoint to allow restoring the original breakpoint.

In-circuit emulators (ICE)

A microprocessor in-circuit emulator is a specially-instrumented microprocessor.
 Allows you to stop execution, examine CPU state, modify registers.

Logic analyzers

A logic analyzer is an array of low-grade oscilloscopes:

Computers as Components

Logic analyzer architecture

Boundary scan

Simplifies testing of multiple chips on a board.

- Registers on pins can be configured as a scan chain.
- ✓Used for debuggers, in-circuit emulators.

How to exercise code

%Run on host system.
%Run on target system.
%Run in instruction-level simulator.
%Run on cycle-accurate simulator.
%Run in hardware/software co-simulation environment.

Debugging real-time code

Bugs in drivers can cause nondeterministic behavior in the foreground problem.

Bugs may be timing-dependent.

System-level performance analysis

Performance depends on all the elements of the system:

<mark>⊡</mark>CPU.

Cache.

⊡Bus.

Main memory.

►I/O device.

Bandwidth as performance

#Bandwidth applies to several components:

Memory.

<mark>∕</mark>Bus.

CPU fetches.

High parts of the system run at different clock rates.

Different components may have different widths (bus, memory).

Bandwidth and data transfers

₩Per video frame: 320 x 240 x 3 = 230,400
bytes.

#Transfer 1 byte/μsec, 0.23 sec per frame.

 \square Too slow.

#Increase bandwidth:

☐ Increase bus width.

☐ Increase bus clock rate.

Bus bandwidth

% T: # bus cycles.
% P: time/bus cycle.
% Total time for transfer:

 $rac{1}{2}$ t = TP.

- **#** D: data payload length.
- 33 O1 + O2 = overhead O.

🗠 Address, handshaking

- ₭ N bytes to be transferred
- Bus width: W bytes

 $T_{\text{basic}}(N) = (D+O)N/W$

Bus burst transfer bandwidth

¥ T: # bus cycles.
¥ P: time/bus cycle.
¥ Total time for transfer:
☑t = TP.
X D: data payload length.
¥ O1 + O2 = overhead O.

 $T_{burst}(N) = (BD+O)N/(BW)$

Memory aspect ratios

Computers as Components

Memory access times

- Hemory component access times comes from chip data sheet.
 - Page modes allow faster access for successive transfers on same page.
- **#** What if data doesn't fit naturally into physical words:
- ₭ A pixel: RGB 24-bit
 - An access for 24-bit-wide memory
 - △ 3 accesses for 8-bit wide memory
 - how about 32-bit wide memory
 - ☑ waste one byte for each access
 - 🗵 packing

Bus performance bottlenecks

% Transfer 320 x 240
video frame @ 30
frames/sec = 612,000
bytes/sec.

Is performance
 bottleneck bus or
 memory?

Bus performance bottlenecks, cont'd.

However Bus: assume 1 MHz bus, D=1, O=3:

$$T_{\text{basic}} = (1+3)612,000/2 = 1,224,000 \text{ cycles}$$

= 1.224 sec.

#Memory: try burst mode B=4, width w=0.5. (assume 10MHz)

 $rac{1}{2}T_{mem} = (4*1+4)612,000/(4*0.5) = 2,448,000$ cycles = 0.2448 sec.

Performance spreadsheet

bus		memory		
clock period	1.00E-06	clock period	1.00E-08	
W	2	W	0.5	
D	1	D	1	
0	3	0	4	
		В	4	
N	612000	N	612000	
T_basic	1224000	T_mem	2448000	
t	1.22E+00	t	2.45E-02	

Computers as Components
Parallelism

Alarm clock interface

Operations

Set time: hold set time, depress hour, minute.

Set alarm time: hold set alarm, depress hour, minute.

#Turn alarm on/off: depress alarm on/off.

Alarm clock requirements

name	alarm clock
name	
purpose	24-hour digital clock with one alarm
inputs	set time, set alarm, hour, minute, alarm on/off
outputs	four-digit display, PM indicator, alarm ready, buzzer
functions	keep time, set time, set alarm, turn alarm on/off, activate buzzer by alarm
performance	hours and digits, no seconds; not high precision
manufacturing	consumer product
cost	
power	AC
physical size/weight	fits on stand

Alarm clock class diagram

Alarm clock physical classes

Lights*Buttons*Speaker*digit-val()
digit-scan()
alarm-on-light()set-time(): boolean
set-alarm(): boolean
alarm-on(): boolean
minute(): boolean
hour(): boolean
hour(): booleanbuzz()

Display class

Display

time[4]: integer alarm-indicator: boolean PM-indicator: boolean

set-time() alarm-light-on() alarm-light-off() PM-light-on() PM-light-off()

Mechanism class

Mechanism

Seconds: integer PM: boolean tens-hours, ones-hours: boolean tens-minutes, ones-minutes: boolean alarm-ready: boolean alarm-tens-hours, alarm-ones-hours: boolean alarm-tens-minutes, alarm-ones-minutes: boolean scan-keyboard() update-time()

Update-time behavior

Scan-keyboard behavior

System architecture

#Includes:

periodic behavior (clock);

Apperiodic behavior (buttons, buzzer activation).

#Two major software components:

➢interrupt-driven routine updates time;

foreground program deals with buttons, commands.

Interrupt-driven routine

Timer probably can't handle one-minute interrupt interval.

Here was a software wariable to convert interrupt frequency to seconds.

Foreground program

#Operates as while loop: while (TRUE) { read_buttons(button_values); process_command(button_values); check_alarm();

Testing

#Component testing:

Can test foreground program using a mockup.

System testing:

relatively few components to integrate;

△check clock accuracy;

Check recognition of buttons, buzzer, etc.

The CPU bus

Bus allows CPU, memory, devices to communicate.

△Shared communication medium.

∺A bus is:

 $\triangle A$ set of wires.

△A communications protocol.

Bus protocols

 Bus protocol determines how devices communicate.

Protocols are specified by state machines, one state machine per actor in the protocol.

#May contain asynchronous logic behavior.

Four-cycle handshake

Four-cycle handshake

- 1. Device 1 raises enq.
- 2. Device 2 responds with ack.
- 3. Device 2 lowers ack once it has finished.
- 4. Device 1 lowers enq.

Microprocessor busses

- Clock provides synchronization.
- R/W is true when reading (R/W' is false when reading).
- Address is a-bit bundle of address lines.
- Data is n-bit bundle of data lines.
- Data ready signals when n-bit data is ready.

Timing diagrams

Bus read

State diagrams for bus read

Computers as Components

Bus wait state

Bus burst read

Computers as Components

Bus multiplexing

DMA

Direct memory access (DMA) performs data transfers without executing instructions.

- △CPU sets up transfer.
- DMA engine fetches, writes.
- BMA controller is a separate unit.

Bus mastership

∺By default, CPU is bus master and initiates transfers.

- How we want to be the second bus master to perform its work.
 - △CPU can't use bus while DMA operates.

Bus mastership protocol:

Bus request.

Bus grant.

DMA operation

- CPU sets DMA registers for start address, length.
- Here 3 Controls the unit.
- ₭ Once DMA is bus master, it transfers automatically.
 - May run continuously until complete.
 - May use every nth bus cycle.

Bus transfer sequence diagram

Computers as Components

System bus configurations

Bridge state diagram

ARM AMBA bus

- **#** Two varieties:
 - △ AHB is high-performance.
 - APB is lower-speed, lower cost.
- # AHB supports pipelining, burst transfers, split transactions, multiple bus masters.
- HI devices are slaves on APB.

Memory components

Several different types of memory:
DRAM.
SRAM.
Flash.
Each type of memory comes in varying:

△Capacities.

➡Widths.

Random-access memory

Dynamic RAM is dense, requires refresh.
 Synchronous DRAM is dominant type.
 SDRAM uses clock to improve performance, pipeline memory accesses.
 Static RAM is faster, less dense, consumes more power.

SDRAM operation

Computers as Components

Read-only memory

ROM may be programmed at factory.
Flash is dominant form of fieldprogrammable ROM.

- △Electrically erasable, must be block erased.
- □ Random access, but write/erase is much slower than read.
- △NOR flash is more flexible.
- △NAND flash is more dense.
Flash memory

₭Non-volatile memory.

✓Flash can be programmed in-circuit.

#Random access for read.

#To write:

Erase a block to 1.

 \square Write bits to 0.

Flash writing

₩ Write is much slower than read.
▲ 1.6 µs write, 70 ns read.
₩ Blocks are large (approx. 1 Mb).
₩ Writing causes wear that eventually destroys the device.

Modern lifetime approx. 1 million writes.

Types of flash

<mark>₩NOR</mark>:

△Word-accessible read.

⊡Erase by blocks.

<mark>₩NAND</mark>:

─ Read by pages (512-4K bytes).

⊡Erase by blocks.

NAND is cheaper, has faster erase, sequential access times.

Timers and counters

#Very similar:

△a timer is incremented by a periodic signal;
 △a counter is incremented by an asynchronous, occasional signal.
 ೫Rollover causes interrupt.

Watchdog timer

Watchdog timer is periodically reset by system timer.

#If watchdog is not reset, it generates an interrupt to reset the host.

Switch debouncing

₭ A switch must be debounced to multiple contacts caused by eliminate mechanical bouncing:

Encoded keyboard

∺An array of switches is read by an encoder.

%N-key rollover remembers multiple key depressions.

Computers as Components

LED

#Must use resistor to limit current:

Computers as Components

7-segment LCD display

High-resolution display

Liquid crystal display (LCD) is dominant form.

#Plasma, OLED, etc.

₭Frame buffer holds current display contents.

⊡Written by processor.

☐Read by video.

#Includes input and output device.
#Input device is a two-dimensional
voltmeter:

Touchscreen position sensing

Digital-to-analog conversion

#Use resistor tree:

Flash A/D conversion

KN-bit result requires 2ⁿ comparators:

Computers as Components

Dual-slope conversion

₩Use counter to time required to charge/discharge capacitor.

Charging, then discharging eliminates non-linearities.

Sample-and-hold

∺Samples data:

System architectures

#Architectures and components:

△software;

△hardware.

Some software is very hardwaredependent.