6. Processes and OS

Process abstraction

Context switching

RTOS

Interprocess communication

Task-level performance analysis and
power consumption

Computers as Components

Reactive systems

Respond to external events.
Engine controller.
Seat belt monitor.

Requires real-time response.
System architecture.
Program implementation.

May require a chain reaction among
multiple processors.

Computers as Components

Tasks and processes

A task is a functional A process is a unique

description of a execution of a program.
connected set of Several copies of a
OperatlonS. program may run
simultaneously or at
(Task can also mean different times.
a collection of A process has its own
processes.) state:
registers;

Threads: processes memory.
that share the same The operating system

address space manages processes.

Computers as Components

Tasks

Multiple tasks means multiple processes.
Somewhat interchangeably used

A task can be composed of several processes
or threads

A task is primarily an implementation
concept

A process more of an implementation
concept

Computers as Components 4

Why multiple processes?

Requirements on timing and execution rate can
create major problems in programming.

When code is written to satisfy several different
timing requirements at once, the control
structures necessary to get any sort of solution
become very complex.

Processes help with timing complexity:

multiple rates
multimedia
automotive

asynchronous input
user interfaces
communication systems

Computers as Components

Multi-rate systems

Tasks may be synchronous or
asynchronous.

Synchronous tasks may recur at different
rates.

Processes run at different rates based on
computational needs of the tasks.

Computers as Components

Example: engine control

Tasks:
spark control -
crankshaft sensing
fuel/air mixture /7 engine
OXygen sensor controller
Kalman filter /

Computers as Components

Typical rates In engine
controllers

Variable

Engine spark timing
Throttle

Air flow

Battery voltage

Fuel flow

Recycled exhaust gas
Status switches

Air temperature
Barometric pressure
Spark (dwell)

Fuel adjustment
Carburetor

Mode actuators

300

40

30

80

250

500

100
Seconds
Seconds
10

80

500

100

Computers as Components

Full range time (ms) | Update period (ms)

2

2

4

4

10
25
20
400
1000

25
100

Real-time systems

Perform a computation to conform to external
timing constraints.

Deadline frequency:
Periodic.
Aperiodic.
Deadline type:
Hard: failure to meet deadline causes system failure.

Soft: failure to meet deadline causes degraded
response.

Firm: late response is useless but some late
responses can be tolerated.

Computers as Components

Timing specifications on
processes

Release time: time at which process
becomes ready.

Deadline: time at which process must
finish.

Computers as Components

10

Release times and deadlines

deadline

pd

hﬂﬁéﬁng
event

period
aperiodic process

Computers as Components

N
7

” time

11

Release times and deadlines

deadline

pd

initia\ting
event

period
periodic process initiated
at start of period

Computers as Components

N
7

” time

12

Release times and deadlines

deadline
) . period
Initiating
event

periodic process initiated
by event

Computers as Components

” time

13

Rate requirements on
processes

Period: interval
between process

activations.
Rate: reciprocal of CPUL
period. CPU 2

Initiation rate may be CPU3
higher than period--- cpu 4

several copies of
process run at once.

Computers as Components

time

14

Timing violations

What happens if a process doesn’t finish
by its deadline?

Hard deadline: system fails if missed.

Soft deadline: user may notice, but system
doesn’t necessarily fail.

Computers as Components

15

Example: Space Shuttle
software error

Space Shuttle’s first launch was delayed
by a software timing error:

Primary control system PASS and backup
system BFS.

BFS failed to synchronize with PASS.

Change to one routine added delay that
threw off start time calculation.

1 in 67 chance of timing problem.

Computers as Components 16

Task graphs

Tasks may have data
dependencies---must
execute in certain order.

Task graph shows
data/control
dependencies between
processes.

Task: connected set of
Processes. task 1

Task set: One or more
tasks.

Computers as Components

task set

task 2

17

Communication between
tasks

Task graph assumes that
all processes in each task
run at the same rate,
tasks do not
communicate.

In reality, some amount
of inter-task
communication is
necessary.

It's hard to require
immediate response for
multi-rate communication.

Computers as Components 18

Process execution
characteristics

Process execution time T..
Execution time in absence of preemption.
Possible time units: seconds, clock cycles.

Worst-case, best-case execution time may be useful
In some cases.

Sources of variation:
Data dependencies.
Memory system.
CPU pipeline.

Computers as Components

19

Utilization

CPU utilization:
Fraction of the CPU that is doing useful work.

Often calculated assuming no scheduling
overhead.

Utilization:

U= (CPU time for useful work)/ (total available CPU time)

- [ZtlststZT(t)]/[tz_tl]
= T/t

Computers as Components 20

State of a process

A process can be in

one of three states: executing |\ gets data

' . 7 d CPU
executing on the CPU; gets preempted\ an

ready to run; CPU needs
waiting for data. / data N
gets data

~

[ready : R waiting}

“ needsdata ™

Computers as Components 21

The scheduling problem

Can we meet all deadlines?
Must be able to meet deadlines in all cases.

How much CPU horsepower do we need
to meet our deadlines?

Computers as Components

22

Resource constraints
make schedulability
analysis NP-hard.

Must show that the
deadlines are met for
all timings of resource
requests.

Computers as Components

23

Simple processor feasibility

Assume:
No resource conflicts.
Constant process

execution times.

Require: T
T2%T

Can’t use more than
100% of the CPU.

Computers as Components 24

Hyperperiod

Hyperperiod: least common multiple
(LCM) of the task periods.

Must look at the hyperperiod schedule to
find all task interactions.

Hyperperiod can be very long if task
periods are not chosen carefully.

Computers as Components

25

Hyperperiod example

Long hyperperiod:
P1 7 ms.
P2 11 ms.
P3 15 ms.
LCM = 1155 ms.

Shorter hyperperiod:
P1 8 ms.
P2 12 ms.
P3 16 ms.
LCM = 96 ms.

Computers as Components

26

Simple processor feasibility
example

P1 period 1 ms, CPU time

0.1 ms. LCM 5.00E-03
. i peirod CPU time CPU time/L
P2 period 1 ms, CPU time P1 1.00E-03 1.00E-04 5.00E-04
0.2 ms. P2 1.00E-03 2.00E-04 1.00E-03
_ _ P3 5.00E-03 3.00E-04 3.00E-04
P3 period 5 ms, CPU time
0.3 ms total CPU/LCM 1.80E-03

In a hyperperiod, 5 P1
and P2 executed five
times and P3 once

U=1.8ms/5ms = 36%

Scheduling 27

Cyclostatic/TDMA scheduling

Schedule in time

ot

Same process

activation

. . P P
irrespective of

workload.

Time slots may be
equal size or
unequal.

Computers as Components

28

TDMA assumptions

Schedule based on
least common

multiple (LCM) of

the process P, Py P
periods. = - .
Trivial scheduler - P2 P2

> very small -
scheduling HCM

overhead.

Computers as Components

29

TDMA schedulability

Always same CPU utilization (assuming
constant process execution times).

Cant handle unexpected loads.

Must schedule a time slot for aperiodic
events.

Computers as Components

30

TDMA schedulability example

TDMA period = 10
ms.

TDMA period 1.00E-02
P1 CPU time 1 ms. CPU time
_ P1 1.00E-03
P2 CPU time 3 ms. P2 3.00E-03
. P3 2.00E-03
P3 CPU time 2 ms. P4 2.00E-03
_ total 8.00E-03
P4 CPU time 2 ms. utilization = 8.00E-01

Scheduling

Round-robin

Schedule process

only if ready.
Py et
processes in the T T,

same order.)

Variations: P .

Constant system |
period. Skip P1
Start round-robin Because no useful work for P1

again after finishing
a round.

Computers as Components 32

Round-robin assumptions

Schedule based on least common multiple
(LCM) of the process periods.

Best done with equal time slots for
processes.

Simple scheduler -> low scheduling
overhead.
Can be implemented in hardware.

Computers as Components 33

Round-robin schedulability

Can bound maximum CPU load.
May leave unused CPU cycles.

Can be adapted to handle unexpected
load.

Use time slots at end of period.

Last slot left empty for aperiodic tasks

Computers as Components 34

Schedulability and overhead

The scheduling process consumes CPU
time.

Not all CPU time is available for processes.

Scheduling overhead must be taken into
account for exact schedule.

May be ignored if it is a small fraction of total
execution time.

Computers as Components 35

Running periodic processes

Need code to control execution of
processes.

Simplest implementation: process =
subroutine.

Computers as Components

36

while loop implementation

Simplest while (TRUE) {
implementation has p1();
one loop. 02():

No control over

execution rate. ¥

All processes should
have the same rate

Computers as Components

37

Timed loop implementation

Encapsulate set of all ~ void pall(){

processes in a single p1();

function that 02();

implements the task \

set,.

Use timer to control the timer’s interrupt

execution of the task. handler : pall()
No control over timing If a process is too
of individual slow, next iteration
ProCesses.

start late

Computers as Components 38

Multiple timers implementation

Each task has its own void pA(){ /* rate A */

function.

. p1();

Each task has its own 03();

timer.) '
May not have enough : * ”
timers to implement all the void B(_){ " rate B%/

rates. 32()’

p4();

We amy not have enough 50,

timers to support all the
rate required in the
system

Computers as Components 39

Timer + counter
Implementation

Use a software count int p2count = 0O;

to divide the timer. void pall(){

Only works for clean p1();

multiples of the timer if (p2count >= 2) {
period. p2();

p2() must run at 1/3 p2count = 0;
the rate of p1() ;

else p2count++;

Rates should be)

multiple each other

Computers as Components

Implementing processes

All of these implementations are
inadequate.

When the rates are not related by simple
ratio

Need better control over timing.
Need a better mechanism than
subroutines.

We need to employ RTOS

Computers as Components 41

Operating systems *

The operating system controls resources:
who gets the CPU;
when I/O takes place;
how much memory is allocated.

The most important resource is the CPU
itself.

CPU access controlled by the scheduler.

Computers as Components 42

RTOS

Executes processes based on timing
constraints provided by the system
designer.

The most reliable way to meet timing

r*nnci-ralni-c QCCl |r'::i-n|\/ |c
WA\ ITIDUI UUTTL IUWUD CUI\L\.UlI y

to build a preemptive OS

to use priorities to control what process runs
at any given time.

Computers as Components 43

Preemption

An alternative to the C function call as a way to control
function calls as process execution with a timer.

We want to share across two processes.

kernel: part of OS that determines what process is
running, activated periodically by the timer.

time quantum: the timer period, which is the
smallest increment in which we can control CPU
activity.
How do we switch between processes before the
process is done?
Context (the set of CPU registers) switching

Process control block: the data structure that hold
the state of the process.

Computers as Components 44

Process state

A process can be in
one of three states:
executing on the CPU;
ready to run;
waiting for data.

executing |\ gets data
highest priority and CPU

I\
process gets CPU pryempted needs
data
gets data Y

\‘ 4
{ ready J waiting }
Computers as Components 45

’/ needsdata ~

Operating system structure

OS needs to keep track of:
process priorities;
scheduling state;
process activation record.
Processes may be created:
statically before system starts;
dynamically during execution.

Computers as Components

46

Embedded vs. general-
purpose scheduling

Workstations try to avoid starving
processes of CPU access.

Fairness = access to CPU.

Embedded systems must meet deadlines.

Low-priority processes may not run for a
long time.

Computers as Components 47

Priority-driven scheduling

Each process has a priority.

CPU goes to highest-priority process that
IS ready.

Priorities determine scheduling policy:
fixed priority;
time-varying priorities.

Computers as Components

48

Example: priority-driven
scheduling

Rules:

each process has a fixed priority (1 highest);
highest-priority ready process gets CPU;

process continues until done or it is preempted by
a higher-priority process.

Processes

P]:
P2:

oriority 1, execution time 10, re
oriority 2, execution time 30, re

P3:

oriority 3, execution time 20, re

Computers as Components

ease at time 15
ease at time 0
ease at time 18

49

Example: priority-driven
scheduling

P3 ready t=18 ready = release
P2 ready t=0 P1 ready t=15

A

P2 P1 P2

time

Computers as Components 50

The scheduling problem

Can we meet all deadlines?
Must be able to meet deadlines in all cases.

How much CPU horsepower do we need
to meet our deadlines?

Computers as Components

51

Process initiation disciplines

Periodic process: executes on (almost)
every period.

Aperiodic process: executes on demand.

Analyzing aperiodic process sets is harder-
--must consider worst-case combinations
of process activations.

Computers as Components 52

Timing reqguirements on
processes

Period: interval between process
activations.

Initiation interval: time difference

between process starting; reciprocal of
period.

Initiation time: time at which process
becomes ready.

Deadline: time at which process must
finish.

Computers as Components 53

Timing violations

What happens if a process doesn’t finish
by its deadline?

Hard deadline: system fails if missed.

Soft deadline: user may notice, but system
doesn’t necessarily fail.

Computers as Components

54

Interprocess communication

Interprocess communication (IPC): OS
provides mechanisms so that processes

can pass data.
Two types of semantics:

I"\I I I\IﬂA 2V] I"\F I ™1
DIOCKING: sending pro vdai

S
non-blocking: sending process continues.

‘l"FI‘I’\A
(S TOr response,

Computers as Components 55

IPC styles

Shared memory:
processes have some memory in common;

must cooperate to avoid destroying/missing
messages.

Message passing:

processes send messages along a
communication channel---no common
address space.

Computers as Components 56

Shared memory

Shared memory on a bus:

memdry
CPU 1 1 CPU 2

3

S G VA

The fag (additional shared data location)
0 if the data (memory) is not in use;
1 if the memory is in use.

Computers as Components

Race condition
In shared memory

Problem when two CPUs try to write the same
location:

CP
CP
CP
CP

et

\/

ot

\J

1 reads flag and sees 0.
2 reads flag and sees 0.
1 sets flag to one and writes location.
2 sets flag to one and overwrites location.

A critical timing race between 3 and 4 steps.

To avoid this timing race, the microprocessor
must support an atomic test-and-set operation

Computers as Components 58

Atomic test-and-set

Problem can be solved with an atomic
test-and-set:

single bus operation reads memory location,

tests it, writes It.
ARM test-and-set provided by SWP:

ADR r0,SEMAPHORE
LDR r1,#1

GETFLAG SWP r1,r1,[r0]
BNZ GETFLAG

Computers as Components

59

Critical regions

Critical region: section of code that cannot
be interrupted by another process.

Examples:
writing shared memory;
accessing I/0 device.

Computers as Components 60

Semaphores

Semaphore: OS primitive for controlling access
to critical regions.

Protocol:
P(); //Get access to semaphore

Perform critical region operations.
V(); //Release semaphore

°(): use a test-and-set to repeatedly test a
ocation that holds a lock on the memory

dlock. access to semaphore
V(): reset the lock

Computers as Components

61

Message passing

Message passing on a network:

Messages are stored in the senders/receivers at the
end of the link

MeSSages MeSSages

a message unit

Computers as Components

62

Signhals

Another form of interprocess communication
commonly used in Unix

A signal: simple because it does not pass data
beyond the existence of the signal itself.

=Y o

T+ ic ~nnalAaAaAiic A i el
1L 1D CIIICIIUHUUD LV dadill llli 11

nF haitk R e AanfFiralvs
|JL, iUl IU 15 Tl Il C|y

a software creation. It is generated by a process
and transmitted to another process by the OS.

F
|

Computers as Components 63

Process data dependencies

One process may not be @ @

able to start until
another finishes.

Data dependencies
defined in a task graph.

All processes in one task
run at the same rate. @

Computers as Components

64

ther OS functions

Date/time.
File system.
Networking.
Security.

Computers as Components

65

Processes and OS

Scheduling policies:
RMS;
EDF.

Scheduling modeling assumptions.

Computers as Components

66

Metrics

How do we evaluate a scheduling policy:
Ability to satisfy all deadlines.

CPU utilization---percentage of time devoted
to useful work.

Scheduling overhead---time required to make
scheduling decision.

Computers as Components 67

Rate monotonic scheduling

Static scheduling policy

RMS (Liu and Layland): widely-used,
analyzable scheduling policy.

Analysis is known as Rate Monotonic
Analysis (RMA).

Computers as Components

68

RMA model

All process run on a single CPU.
Zero context switch time.

No data dependencies between
processes.

Process execution time is constant.
Deadline is at end of period.

Highest-priority ready process runs.

Computers as Components

69

Process parameters

T. is computation time of process i; 7 is
period of process i.

period t;

computation time T;

Computers as Components

70

Rate-monotonic analysis

Response time: time required to finish
process.

Critical instant: scheduling state that gives
worst response time.

Critical instant occurs when all higher-
priority processes are ready to execute.

Computers as Components 71

Critical Instant

Interfering processes

critical
Instant

N

v

Computers as Components

v

v

72

MS priorities

Optimal (fixed) priority assignment:
shortest-period process gets highest priority;
priority inversely proportional to period;
break ties arbitrarily.

No fixed-priority scheme does better.

Computers as Components 73

P2 period
P2 _
P1 period
P1 P1 P1
| | |
0 5 10

time

Computers as Components 74

RMS CPU utilization

Utilization for n processes is
2 T/ T
U=m (2V/m-1) for m=# of tasks

As number of tasks approaches infinity,
maximum utilization approaches 69%.

Computers as Components

75

MS CPU utilization

RMS cannot use 100% of CPU, even with
zero context switch overhead.

Must keep idle cycles available to handle
worst-case scenario.

However, RMS guarantees all processes
will always meet their deadlines.

Computers as Components 76

RMS implementation

Efficient implementation: O(n)

An RMS scheduler runs at the OS’s timer
interrupt

The scheduler scans thru the list of processes;
It chooses the highest-priority active process.

Computers as Components 77

Earliest-deadline-first (EDF)

dynamic priority scheduling scheme.
Process closest to its deadline has highest
priority.

Requires recalculating processes at every
timer interrupt.

Computers as Components 78

EDF analysis

EDF can use 100% of CPU.
But EDF may fail to miss a deadline.

Computers as Components

79

EDF implementation

On each timer interrupt:
compute time to deadline;
choose process closest to deadline.

Generally considered too expensive to use

/T

Computers as Components

80

Fixing scheduling problems

What if your set of processes is
unschedulable?

Change deadlines in requirements.
Reduce execution times of processes.
Get a faster CPU.

Computers as Components 81

Priority inversion

Priority inversion: low-priority process

keeps high-priority process from running.

Improper use of system resources can
cause scheduling problems:
Low-priority process grabs I/O device.

High-priority device needs I/O device, but

can't get it until low-priority process is done.

Can cause deadlock.

Computers as Components

82

Priority inversion

Priority T, assumed to be higher than priority of T..

If T, requests exclusive access first (at t,), T, has to wait
until T, releases the resource (time t;), thus inverting the

priority:

normal execution

critical section

In this example:

duration of inversion bounded by length of critical section of T,.

Computers as Components 83

Duration of priority inversion
with >2 tasks

maximum blocking time of J; = duration of J, in critical section
— unavoidable due to semantics of critical section
However: blocking time may be unbounded if there are tasks with
intermediate priority:
3 normal execution
B critical section
A Jq blocked

t t, t, t, t, t- t: t;
Priority inversion occurs in interval [t,, t]

can exceed the length of any critical section!

Computers as Components 84

“But a few days into the mission,
not long after Pathfinder started
gathering meteorological data, the
spacecraft began experiencing
total system resets, each resulting
in losses of data. The press
reported these failures in terms
such as "software glitches" and
"the computer was trying to do too

many things at once".” ...

Computers as Components 85

“VxWorks provides preemptive priority scheduling of
threads. Tasks on the Pathfinder spacecraft were executed as
threads with priorities that were assigned in the usual manner
reflecting the relative urgency of these tasks.”

“Pathfinder contained an " " which you can
think of as a shared memory area used for passing
information between different components of the spacecraft.”

A bus management task ran frequently with high

priority to move certain kinds of data in and out of the
information bus.

Access to the bus was synchronized with mutual
exclusion locks (mutexes).”

Computers as Components 86

The meteorological data gathering task ran as an
infrequent, low priority thread, ... When
publishing its data, it would acquire a mutex, do
writes to the bus, and release the mutex. ..

The spacecraft also contained a communications
task that ran with medium priority.”

&

High priority: retrieval of data from shared memory
Medium priority: long-running communications task
Low priority: thread collecting meteorological data

Computers as Components 87

“Most of the time this combination worked fine. However, very
infrequently it was possible for an interrupt to occur that caused
the (medium priority) communications task to be scheduled
during the short interval while the (high priority) information bus
thread was blocked waiting for the (low priority) meteorological
data thread. In this case, the long-running communications task,
having higher priority than the meteorological task, would
prevent it from running, consequently preventing the blocked
information bus task from running. After some time had passed,

, hotice that the data bus task had
not been executed for some time, conclude that something had
gone drastically wrong, and initiate a total system reset. This
scenario is a classic case of priority inversion.”

Computers as Components 88

Priority inheritance protocol

A task is scheduled according to its active priority.
Tasks with the same priorities are scheduled FCFS.

A task inherits the highest priority from the tasks it
blocks. (PIP)

If task T1 executes P(S) but its exclusive access was
granted to T2, then T1 will be blocked.

If priority(T2) < priority(T1), then T2 inherits the
priority of T1 so that T2 can release the shared
resource earlier by preventing medium-priority tasks
from preempting T2 and prolonging the blocking
period..

When T2 executes V(S), its original priority at the
point of entry of the critical section as restored.

Computers as Components

89

Priority inheritance protocol

Priority inheritance is transitive

Assuming that priority(T1) > priority(T2) >
priority(T3)

If T3 blocks T2 and T2 blocks T1, then T3
inherits the priority of T1.

Computers as Components

90

Priority inversion on Mars

Priority inheritance also solved the Mars Pathfinder
problem: the VxWorks operating system used in the
pathfinder implements a flag for the calls to mutex
primitives. This flag allows priority inheritance to be
set to “on”. When the software was shipped, it was set
to “off”.

The problem on Mars was corrected
by using the debugging facilities of
VxWorks to change the flag to “on”,
while the Pathfinder was already on
the Mars [Jones, 1997].

Computers as Components 91

Remarks on priority
Inheritance protocol

Possible large number of tasks with high priority.
Possible deadlocks.

More sophisticated protocol: priority ceiling protocol.

Computers as Components

92

Data dependencies

Data dependencies
allow us to improve
utilization.

Restrict combination

of processes that can
run simultaneously.

P1 and P2 cant run
simultaneously.

Computers as Components

93

Context-switching time

Non-zero context switc
limits of a tight schedu

N time can push
e.

Hard to calculate effec
order of context switch

's---depends on
es.

In practice, OS context switch overhead is
small (hundreds of clock cycles) relative to
many common task periods (ms — us).

Computers as Com

ponents 94

Evaluating RTOS
performance

Simplifying assumptions:
Context switch costs no CPU time,.

We know the exact execution time of
processes.

WCET/BCET don’t depend on context
switches.

Computers as Components

95

Scheduling and context
switch overhead

Process Execution | deadline Pl P2 Pl
time * * *
P1 3 5 P2]
P2 3 10 PL |
| |

| |
0 2 4 6 8 10

|

Time

With context switch overhead of
1, no feasible schedule.
2TP1 + TP2 = 2*(1+3)+(3)=11

Computers as Components 96

Process execution time

Process execution time is not constant.
Extra CPU time can be good.

Extra CPU time can also be bad:

Next process runs earlier, causing new
preemption.

Computers as Components 97

Processes and caches

Processes can cause additional caching
problems.

Even if individual processes are well-
behaved, processes may interfere with each

other.

Worst-case execution time with bad
behavior is usually much worse than
execution time with good cache behavior.

Computers as Components 98

Effects of scheduling on
the cache

S Avg. CPU Schedule 1 (LRU cache):
time nol] []
P1 8

. r]]
s]]

P2 4 3 -
Cache P1 P1, P2 P2,P3 P1,P3 P2,P1 P3,P2

P3 4 3

Schedule 2 (half of cache
moee el reserved for P1):

P1

Schedule 1: P1 is the worst
case for the 2" jteration

Schedule 2: P1 is the
dverage case for the 2d Cache P1 P1,P2 P1,P3 P1,P3 P1,P2 PI,P3
iteration

P2

P3

-

Computers as Components 99

Power optimization

Power management: determining how
system resources are scheduled/used to
control power consumption.

OS can manage for power just as it

manaaes Fnr Fimao
IIIUIlug 1 Ul LIIII\—

OS reduces power by shutting down units.
May have partial shutdown modes.

Computers as Components 100

Simple power management
policies

Request-driven: power up once request is
received. Adds delay to response.

Predictive shutdown: try to predict how
long you have before next request.
May start up in advance of request in
anticipation of a new request.

If you predict wrong, you will incur additional
delay while starting up.

Computers as Components 101

Probabilistic shutdown

Assume service requests are probabilistic.

Optimize expected values:
power consumption;
response time.

Simple probabilistic: shut down after time
T, turn back on after waiting for T .

Computers as Components 102

Advanced Configuration

and Power Interface

e S e

ACPI: open standard for power
management services.

device
drivers

power
OS kernel management

Computers as Components 103

ACPI global power states

G3: mechanical off
G2: soft off

S1: low wake-up latency with no loss of context

S2: low latency with loss of CPU/cache state

S3: low latency with loss of all state except memory
S4: lowest-power state with all devices off

G1: sleeping state
GO: working state

Computers as Components

104

Processes and operating
systems

Telephone answering machine.

Computers as Components 105

Theory of operation

Compress audio using adaptive
differential pulse code modulatlon
(ADPCM). | i Ny | |

analog

time

ADPCM i3i2i1i-1i2-3

time

Computers as Components 106

Coded in a small alphabet with positive
and negative values.

{_31_21_1111213}

Minimize error between predicted value
and actual signal value.

Computers as Components

107

ADPCM compression

system

L0

2

" quantizer

Integrator [*

encoder

Inverse

quantizer |

samples

Inverse

quantizer

Integrator

Computers as Components

108

Telephone system terms

Subscriber line: line to phone.

Central office: telephone switching
system.

Off-hook: phone active.
On-hook: phone inactive.

Computers as Components 109

Real and simulated
subscriber line

Real subscriber line:
90V RMS ringing signal;
companded analog signals;
lightning protection, etc.

Simulated subscriber line:
microphone input;
speaker output;
switches for ring, off-hook, etc.

Computers as Components 110

Requirements

Inputs

Outputs

Functions

Performance
Manufacturing cost

Power
Physical
size/weight

Telephone: voice samples, ring.

User interface: microphone, play
messages button, record OGM button.
Telephone: voice samples, on-
hook/off-hook command.

User interface: speaker, # messages
indicator, message light.

Default mode: detects ring, signals off-
hook, pays OGM, records ICM
Playback: play all messages, wait 5
seconds for new playback.

OGM editing: OGM up to 10 sec.
About 30 minutes voice (@ 8kHz).

Consumer product range ($50)

AC plug
Comparable to desk phone.

Computers as Components

111

Comments on analysis

DRAM requirement influenced by DRAM
price.

Details of user interface protocol could be
tested on a PC-based prototype.

Computers as Components 112

Answering machine class

diagram

1

: \1\1
Microphone* 1

Controls Record “| Outgoing-
11 1
Linein® 4 | message
1 * :

_ Playback - Jgolig-
Line-out™ 1 message
Buttons™
Speaker* —

Computers as Components 113

Physical interface classes

play

nNUM-mesSages

Microphone* Line-in* Line-out™
sample() sample()
SIS ring-indicator() pick-up()
Buttons™* Lights* Speaker*
record-OGM messages

sample()

Computers as Components

114

Message classes

/d samples K

Incoming-message

msg-time

Message

length
start-adrs
next-msg

Outgoing-message

length=30 sec

Computers as Components

115

Operational classes

Controls

operate()

Record

Playback

record-msg()

Computers as Components

playback-msg()

116

Software components

Front panel module.

Speaker module.

Telephone line module.

Telephone input and output modules.
Compression module.

Decompression module.

Computers as Components 117

Controls activate behavior

’

[Compute buttons, line activations]

<Activ;tions’>\
_— 7 N

[Play OGM] [Record OGI\% Play ICM] [Erase] [Answer:

[Play (")GM:

[Wait for timeout]

:Allocate ICM\

-
@r Record ICM

Computers as Components 118

Record-msg/playback-msg
behaviors

. .

| nextadrs=0 | _nextadrs =0 |
msg.samples[nextadrs] = mzpeszl;ﬁr'f:;?ﬁ;i‘;’gd;]_
sample(source) J ne>|[<)ta dret+ ’

!
= ' F
j <End(source> <fextadrs=msg.length>
o ®
record-msg playback-msg

Computers as Components 119

Hardware platform

CPU.
Memory.
Front panel.
2 A/Ds:
subscriber line, microphone.
2 D/A:
subscriber line, speaker.

Computers as Components 120

Component design and
testing

Must test performance as well as testing.

Compression time shouldn’t dominate other
tasks.

Test for error conditions:

maoamnrvy onvarflaw e
SOy OVCiTioOw,

try to delete empty message set, etc.

Computers as Components 121

System integration and
testing

Can test partial integration on host
platform; full testing requires integration
on target platform.

Simulate phone line for tests:

.l"h II\I‘I

1 ﬂll
IUS 1€Jal,

easier to produce test conditions.

Computers as Components 122

