
6 P d OS6. Processes and OS

Process abstraction
Context switching
RTOSRTOS
Interprocess communication
Task-level performance analysis and
power consumptionpower consumption

Computers as Components 1

R ti tReactive systems

Respond to external events.
Engine cont olleEngine controller.
Seat belt monitor.

Requires real-time response.
System architecture.y
Program implementation.

May require a chain reaction amongMay require a chain reaction among
multiple processors.

Computers as Components 2

T k d Tasks and processes

A task is a functional
description of a

A process is a unique
execution of a program.p

connected set of
operations.

p g
Several copies of a
program may run
simultaneously or at

(Task can also mean
a collection of

simultaneously or at
different times.

A process has its own a collection of
processes.)
Threads: processes

p
state:

registers;
Threads: processes
that share the same
address space

memory.

The operating system
manages processes

Computers as Components 3

address space manages processes.

T kTasks

Multiple tasks means multiple processes.
Some hat inte changeabl sedSomewhat interchangeably used
A task can be composed of several processes
or threadsor threads

A task is primarily an implementation
concept
A process more of an implementation p p
concept

Computers as Components 4

Wh lti l ?Why multiple processes?
Requirements on timing and execution rate can
create major problems in programming.
When code is written to satisfy several differentWhen code is written to satisfy several different
timing requirements at once, the control
structures necessary to get any sort of solutionstructures necessary to get any sort of solution
become very complex.
Processes help with timing complexity:

multiple rates
⌧multimedia
⌧automotive⌧automotive

asynchronous input
⌧user interfaces
⌧ i i

Computers as Components 5

⌧communication systems

M lti t tMulti-rate systems

Tasks may be synchronous or
hasynchronous.

Synchronous tasks may recur at different y y
rates.
Processes run at different rates based onProcesses run at different rates based on
computational needs of the tasks.

Computers as Components 6

E l i t lExample: engine control

Tasks:
spark controlspark control
crankshaft sensing
f l/ i i t enginefuel/air mixture
oxygen sensor
K l filt

engine
controller

Kalman filter

Computers as Components 7

Typical rates in engine
t llcontrollers

Variable Full range time (ms) Update period (ms)

E i k ti i 300 2Engine spark timing 300 2

Throttle 40 2

Air flow 30 4Air flow 30 4

Battery voltage 80 4

Fuel flow 250 10

Recycled exhaust gas 500 25

Status switches 100 20

Air temperature Seconds 400

Barometric pressure Seconds 1000

Spark (dwell) 10 1Spark (dwell) 10 1

Fuel adjustment 80 8

Carburetor 500 25

Computers as Components 8
Mode actuators 100 100

R l ti tReal-time systems

Perform a computation to conform to external
timing constraints.g
Deadline frequency:

Periodic.
Aperiodic.

Deadline type:
H d f il d dli f ilHard: failure to meet deadline causes system failure.
Soft: failure to meet deadline causes degraded
response.response.
Firm: late response is useless but some late
responses can be tolerated.

Computers as Components 9

Timing specifications on
processes

Release time: time at which process
b dbecomes ready.
Deadline: time at which process must p
finish.

Computers as Components 10

R l ti d d dliRelease times and deadlines

deadlinedeadline

P1P1P1

time
initiating

event aperiodic process
periodperiod

event pe od c p ocess

Computers as Components 11

R l ti d d dliRelease times and deadlines

deadlinedeadline

P1P1P1

time
initiating

event periodic process initiated
periodperiod

event periodic process initiated
at start of period

Computers as Components 12

R l ti d d dliRelease times and deadlines

deadlinedeadline

P1P1P1

time
initiating

periodperiod

event periodic process initiated
by event

Computers as Components 13

y

Rate requirements on
processes

Period: interval
between processbetween process
activations.
R t i l f P11CPU 1Rate: reciprocal of
period.

P11

P12

CPU 1

CPU 2

Initiation rate may be
higher than period---

P13

P14

CPU 3

CPU 4
several copies of
process run at once. time

Computers as Components 14

Ti i i l tiTiming violations

What happens if a process doesn’t finish
b it d dli ?by its deadline?

Hard deadline: system fails if missed.
Soft deadline: user may notice, but system
doesn’t necessarily fail.does t ecessa y a

Computers as Components 15

Example: Space Shuttle
ft software error

Space Shuttle’s first launch was delayed
b ft ti iby a software timing error:

Primary control system PASS and backup
system BFS.
BFS failed to synchronize with PASS.S a ed to sy c o e t SS
Change to one routine added delay that
threw off start time calculationthrew off start time calculation.
1 in 67 chance of timing problem.

Computers as Components 16

T k hTask graphs

Tasks may have data
dependencies---must

P1 P2
P5dependencies must

execute in certain order.
Task graph shows P3

P5

g p
data/control
dependencies between

P3

P6
processes.
Task: connected set of
processes

P4

processes.
Task set: One or more
tasks

task 1 task 2

task set

Computers as Components 17

tasks. task set

Communication between
t ktasks

Task graph assumes that
all processes in each task MPEG all processes in each task
run at the same rate,
tasks do not

system
layer

communicate.
In reality, some amount
f i kof inter-task

communication is
necessary

MPEG
audio

MPEG
video

necessary.
It’s hard to require
immediate response for

Computers as Components 18

multi-rate communication.

Process execution
h t i ticharacteristics

Process execution time Ti.
Execution time in absence of preemptionExecution time in absence of preemption.
Possible time units: seconds, clock cycles.
W t b t ti ti b f lWorst-case, best-case execution time may be useful
in some cases.

Sources of variation:Sources of variation:
Data dependencies.
Memory system.
CPU pipeline.

Computers as Components 19

Utili tiUtilization

CPU utilization:
Fraction of the CPU that is doing useful work.
Often calculated assuming no scheduling g g
overhead.

Utilization:Utilization:
U = (CPU time for useful work)/ (total available CPU time)

[Σ T(t)] / [t2 t1]= [Σ t1 ≤ t ≤ t2 T(t)] / [t2 – t1]
= T/t

Computers as Components 20

St t f State of a process

A process can be in
one of three states: tione of three states:

executing on the CPU;
d t

executing gets data
and CPU

d
preemptedgets

CPUready to run;
waiting for data.

needs
data

gets data

CPU

ready waiting
g

needs data

Computers as Components 21

Th h d li blThe scheduling problem

Can we meet all deadlines?
Must be able to meet deadlines in all cases.

How much CPU horsepower do we needHow much CPU horsepower do we need
to meet our deadlines?

Computers as Components 22

S h d li f ibilitScheduling feasibility

Resource constraints
k h d l bilitmake schedulability

analysis NP-hard. P1 P2

Must show that the
deadlines are met for
all timings of resource
requests. I/O deviceq

Computers as Components 23

Simple processor feasibility

Assume:
No resource conflicts.
Constant process T1 T2 T3

p
execution times.

Require:

T1 T2 T3

TRequire:
T ≥ Σi Ti

C ’ h

T

Can’t use more than
100% of the CPU.

Computers as Components 24

H i dHyperperiod

Hyperperiod: least common multiple
(LCM) f th t k i d(LCM) of the task periods.
Must look at the hyperperiod schedule to yp p
find all task interactions.
Hyperperiod can be very long if taskHyperperiod can be very long if task
periods are not chosen carefully.

Computers as Components 25

H i d lHyperperiod example

Long hyperperiod:
P1 7 msP1 7 ms.
P2 11 ms.
P3 15 ms.P3 15 ms.
LCM = 1155 ms.

Shorter hyperperiod:Shorter hyperperiod:
P1 8 ms.
P2 12 ms.
P3 16 ms.
LCM = 96 ms.

Computers as Components 26

Simple processor feasibility
example

P1 period 1 ms, CPU time
0.1 ms. LCM 5.00E-030.1 ms.
P2 period 1 ms, CPU time
0.2 ms.

peirod CPU time CPU time/LC
P1 1.00E-03 1.00E-04 5.00E-04
P2 1.00E-03 2.00E-04 1.00E-03

P3 period 5 ms, CPU time
0.3 ms.

P3 5.00E-03 3.00E-04 3.00E-04

total CPU/LCM 1.80E-03
utilization 3 60E 01

In a hyperperiod, 5 P1
and P2 executed five

utilization 3.60E-01

times and P3 once
U = 1.8 ms/ 5 ms = 36%

Scheduling 27

Cyclostatic/TDMA scheduling

Schedule in time
slotsslots.

Same process
activation

T1 T2 T3 T1 T2 T3

activation
irrespective of
workload

P P

workload.
Time slots may be
equal size orequal size or
unequal.

Computers as Components 28

TDMA tiTDMA assumptions

Schedule based on
least commonleast common
multiple (LCM) of
the process P P Pthe process
periods.
T i i l h d l

P1 P1 P1

P PTrivial scheduler -
> very small

P2 P2

Pscheduling
overhead.

PLCM

Computers as Components 29

TDMA h d l bilitTDMA schedulability

Always same CPU utilization (assuming
t t ti ti)constant process execution times).

Can’t handle unexpected loads.p
Must schedule a time slot for aperiodic
eventsevents.

Computers as Components 30

TDMA schedulability example

TDMA period = 10
msms.
P1 CPU time 1 ms.

TDMA period 1.00E-02
CPU time

P1 1.00E-03

P2 CPU time 3 ms.
P3 CPU time 2 ms.

P2 3.00E-03
P3 2.00E-03
P4 2.00E-03

P4 CPU time 2 ms.
total 8.00E-03
utilization 8.00E-01

Scheduling 31

R d biRound-robin

Schedule process
only if ready.y y

Always test
processes in the
same order

T1 T2 T3 T2 T3

same order.
Variations:

Constant system
P P

Constant system
period.
Start round-robin
again after finishing

Skip P1
Because no useful work for P1

again after finishing
a round.

Computers as Components 32

R d bi tiRound-robin assumptions

Schedule based on least common multiple
(LCM) f th i d(LCM) of the process periods.
Best done with equal time slots for q
processes.
Simple scheduler > low schedulingSimple scheduler -> low scheduling
overhead.

Can be implemented in hardware.

Computers as Components 33

R d bi h d l bilitRound-robin schedulability

Can bound maximum CPU load.
May leave unused CPU cycles.

Can be adapted to handle unexpectedCan be adapted to handle unexpected
load.

Use time slots at end of periodUse time slots at end of period.
Last slot left empty for aperiodic tasks

Computers as Components 34

S h d l bilit d h dSchedulability and overhead

The scheduling process consumes CPU
titime.

Not all CPU time is available for processes.

Scheduling overhead must be taken into
account for exact scheduleaccount for exact schedule.

May be ignored if it is a small fraction of total
ti tiexecution time.

Computers as Components 35

R i i di Running periodic processes

Need code to control execution of
processes.
Simplest implementation: process = p p p
subroutine.

Computers as Components 36

hil l i l t tiwhile loop implementation

Simplest
implementation has

while (TRUE) {
1()implementation has

one loop.
No control over

p1();
p2();

No control over
execution rate.
All processes should

}

All processes should
have the same rate

Computers as Components 37

Ti d l i l t tiTimed loop implementation

Encapsulate set of all
processes in a single

void pall(){
p1();processes in a single

function that
implements the task

p1();
p2();

implements the task
set,.
U ti t t l

}

th ti ’ i t tUse timer to control
execution of the task.

the timer’s interrupt
handler : pall()

No control over timing
of individual
processes

If a process is too
slow, next iteration

Computers as Components 38

processes. start late

M lti l ti i l t tiMultiple timers implementation
Each task has its own
function. void pA(){ /* rate A */

p1();
Each task has its own
timer.

p1();
p3();

}
May not have enough
timers to implement all the

}
void B(){ /* rate B */

p2();rates.

We amy not have enough

p2();
p4();
p5();timers to support all the

rate required in the

p5();
}

Computers as Components 39
system

Timer + counter
i l t tiimplementation

Use a software count
to divide the timer

int p2count = 0;
void pall(){to divide the timer.

Only works for clean
lti l f th ti

void pall(){
p1();
if (p2count >= 2) {multiples of the timer

period.
if (p2count >= 2) {

p2();
p2count 0;p2() must run at 1/3

the rate of p1()

p2count = 0;
}

else p2count++;
Rates should be
multiple each other

else p2count++;
}

Computers as Components 40

p

I l ti Implementing processes

All of these implementations are
i d tinadequate.

When the rates are not related by simple
ratio

Need better control over timingNeed better control over timing.
Need a better mechanism than

b tisubroutines.
We need to employ RTOS

Computers as Components 41

We need to employ RTOS

O ti tOperating systems

The operating system controls resources:
who gets the CPU;
when I/O takes place;p ;
how much memory is allocated.

The most important resource is the CPUThe most important resource is the CPU
itself.

CPU access controlled by the scheduler.

Computers as Components 42

RTOSRTOS

Executes processes based on timing
t i t id d b th tconstraints provided by the system

designer.
The most reliable way to meet timing
constraints accurately isconstraints accurately is

to build a preemptive OS
to use priorities to control what process runs
at any given time.

Computers as Components 43

P tiPreemption
A lt ti t th C f ti ll t t lAn alternative to the C function call as a way to control
function calls as process execution with a timer.
We want to share across two processesWe want to share across two processes.

kernel: part of OS that determines what process is
running, activated periodically by the timer.g, p y y
time quantum: the timer period, which is the
smallest increment in which we can control CPU
activityactivity.

How do we switch between processes before the
process is done?process is done?

Context (the set of CPU registers) switching
Process control block: the data structure that hold

Computers as Components 44

the state of the process.

P t tProcess state

A process can be in
one of three states:one of three states:

executing on the CPU;
d tready to run;

waiting for data. executing gets datag
and CPU

needs
d

preemptedhighest priority
process gets CPU

ready waiting

data
gets data

Computers as Components 45

ready waiting
needs data

O ti t t tOperating system structure

OS needs to keep track of:
process priorities;
scheduling state;g ;
process activation record.

Processes may be created:Processes may be created:
statically before system starts;
dynamically during execution.

Computers as Components 46

Embedded vs. general-
 h d lipurpose scheduling

Workstations try to avoid starving
f CPUprocesses of CPU access.

Fairness = access to CPU.

Embedded systems must meet deadlines.
Low priority processes may not run for aLow-priority processes may not run for a
long time.

Computers as Components 47

P i it d i h d liPriority-driven scheduling

Each process has a priority.
CPU goes to highest-priority process that
is ready.y
Priorities determine scheduling policy:

fi d i itfixed priority;
time-varying priorities.

Computers as Components 48

Example: priority-driven
h d lischeduling

Rules:
each process has a fixed priority (1 highest);each process has a fixed priority (1 highest);
highest-priority ready process gets CPU;

l d d bprocess continues until done or it is preempted by
a higher-priority process.

Processes
P1: priority 1 execution time 10 release at time 15P1: priority 1, execution time 10, release at time 15
P2: priority 2, execution time 30, release at time 0
P3 i it 3 ti ti 20 l t ti 18

Computers as Components 49

P3: priority 3, execution time 20, release at time 18

Example: priority-driven
h d lischeduling

P2 ready t=0 P1 ready t=15
P3 ready t=18 ready = release

P2 ready t=0 P1 ready t=15

P2 P2P1 P3P2 P2P1 P3

time
0 3010 20 6040 50

Computers as Components 50

Th h d li blThe scheduling problem

Can we meet all deadlines?
Must be able to meet deadlines in all cases.

How much CPU horsepower do we needHow much CPU horsepower do we need
to meet our deadlines?

Computers as Components 51

P i iti ti di i liProcess initiation disciplines

Periodic process: executes on (almost)
i devery period.

Aperiodic process: executes on demand.p p
Analyzing aperiodic process sets is harder-

must consider worst case combinations--must consider worst-case combinations
of process activations.

Computers as Components 52

Timing requirements on
processes

Period: interval between process
activations.
Initiation interval: time difference
between process starting; reciprocal ofbetween process starting; reciprocal of
period.
Initiation time: time at which processInitiation time: time at which process
becomes ready.

dl h hDeadline: time at which process must
finish.

Computers as Components 53

Ti i i l tiTiming violations

What happens if a process doesn’t finish
b it d dli ?by its deadline?

Hard deadline: system fails if missed.
Soft deadline: user may notice, but system
doesn’t necessarily fail.does t ecessa y a

Computers as Components 54

I t i tiInterprocess communication

Interprocess communication (IPC): OS
id h i th tprovides mechanisms so that processes

can pass data.
Two types of semantics:

blocking: sending process waits for response;blocking: sending process waits for response;
non-blocking: sending process continues.

Computers as Components 55

IPC t lIPC styles

Shared memory:
processes have some memory in common;
must cooperate to avoid destroying/missing p y g g
messages.

Message passing:Message passing:
processes send messages along a
communication channel no commoncommunication channel---no common
address space.

Computers as Components 56

Sh d Shared memory
Shared memory on a bus:

CPU 1 CPU 2
memory

CPU 1 CPU 2

The fag (additional shared data location)The fag (additional shared data location)
0 if the data (memory) is not in use;

Computers as Components 57

1 if the memory is in use.

Race condition
i h d in shared memory

Problem when two CPUs try to write the same
location:

1. CPU 1 reads flag and sees 0.
2 CPU 2 reads flag and sees 02. CPU 2 reads flag and sees 0.
3. CPU 1 sets flag to one and writes location.

fl d l4. CPU 2 sets flag to one and overwrites location.

A critical timing race between 3 and 4 stepsA critical timing race between 3 and 4 steps.
To avoid this timing race, the microprocessor
m st s ppo t an atomic test and set ope ation

Computers as Components 58

must support an atomic test-and-set operation

At i t t d tAtomic test-and-set

Problem can be solved with an atomic
t t d ttest-and-set:

single bus operation reads memory location,
tests it, writes it.

ARM test-and-set provided by SWP:ARM test and set provided by SWP:
ADR r0,SEMAPHORE
LDR r1 #1LDR r1,#1

GETFLAG SWP r1,r1,[r0]
BNZ GETFLAG

Computers as Components 59

BNZ GETFLAG

C iti l iCritical regions

Critical region: section of code that cannot
b i t t d b thbe interrupted by another process.
Examples:p

writing shared memory;
accessing I/O deviceaccessing I/O device.

Computers as Components 60

S hSemaphores
Semaphore: OS primitive for controlling access
to critical regions.
Protocol:

1. P(); //Get access to semaphore(); // p
2. Perform critical region operations.
3. V(); //Release semaphore(); // p

P(): use a test-and-set to repeatedly test a
location that holds a lock on the memorylocation that holds a lock on the memory
block. access to semaphore
() h l k

Computers as Components 61

V(): reset the lock

M iMessage passing

Message passing on a network:
Messages are stored in the senders/receivers at theMessages are stored in the senders/receivers at the
end of the link

CPU 1 CPU 2

messages messagesess ges ess ges

a message unit

Computers as Components 62

g

Si lSignals

Another form of interprocess communication p
commonly used in Unix
A signal: simple because it does not pass dataA signal: simple because it does not pass data
beyond the existence of the signal itself.
It is analogous to an interrupt but it is entirelyIt is analogous to an interrupt, but it is entirely
a software creation. It is generated by a process
and transmitted to another process by the OSand transmitted to another process by the OS.

Computers as Components 63

P d t d d iProcess data dependencies

One process may not be P1 P2One process may not be
able to start until
another finishes

P1 P2

another finishes.
Data dependencies
d f d k h

P3
defined in a task graph.
All processes in one task
run at the same rate. P4

Computers as Components 64

Oth OS f tiOther OS functions

Date/time.
File system.
NetworkingNetworking.
Security.

Computers as Components 65

P d OSProcesses and OS

Scheduling policies:
RMS;
EDF.

Scheduling modeling assumptions.

Computers as Components 66

M t iMetrics

How do we evaluate a scheduling policy:
Ability to satisfy all deadlines.
CPU utilization---percentage of time devoted p g
to useful work.
Scheduling overhead---time required to makeScheduling overhead time required to make
scheduling decision.

Computers as Components 67

R t t i h d liRate monotonic scheduling

Static scheduling policy
RMS (Liu and Layland): widely-used,
analyzable scheduling policy.y g p y
Analysis is known as Rate Monotonic
Analysis (RMA)Analysis (RMA).

Computers as Components 68

RMA d lRMA model

All process run on a single CPU.
Zero context switch time.
No data dependencies betweenNo data dependencies between
processes.
P i i iProcess execution time is constant.
Deadline is at end of period.Deadline is at end of period.
Highest-priority ready process runs.

Computers as Components 69

P tProcess parameters

Ti is computation time of process i; τi is
i d f iperiod of process i.

period τi

Pi

computation time Tcomputation time Ti

Computers as Components 70

R t t i l iRate-monotonic analysis

Response time: time required to finish
process.
Critical instant: scheduling state that gives g g
worst response time.
Critical instant occurs when all higherCritical instant occurs when all higher-
priority processes are ready to execute.

Computers as Components 71

C iti l i t tCritical instant
interfering processes

P1 P1 P1 P1 P1

P2

P1 P1 P1 P1 P1

P2 P2P2 P2 P2

P3
critical
instant

P3

P4

Computers as Components 72

RMS i itiRMS priorities

Optimal (fixed) priority assignment:
shortest-period process gets highest priority;
priority inversely proportional to period;p y y p p p ;
break ties arbitrarily.

No fixed priority scheme does betterNo fixed-priority scheme does better.

Computers as Components 73

RMS lRMS example

P2 periodP2 period

P2
P1 period

P2

P1 P1 P1

time
0 5 10

Computers as Components 74

RMS CPU tili tiRMS CPU utilization

Utilization for n processes is

Σ i Ti / τi

U m (21/m 1) fo m # of tasksU = m (21/m-1) for m=# of tasks
As number of tasks approaches infinity, pp y,
maximum utilization approaches 69%.

Computers as Components 75

RMS CPU tili tiRMS CPU utilization

RMS cannot use 100% of CPU, even with
t t it h h dzero context switch overhead.

Must keep idle cycles available to handle p y
worst-case scenario.
However RMS guarantees all processesHowever, RMS guarantees all processes
will always meet their deadlines.

Computers as Components 76

RMS i l t tiRMS implementation

Efficient implementation: O(n)
An RMS scheduler runs at the OS’s timer
interrupt
The scheduler scans thru the list of processes;
It chooses the highest-priority active process.It chooses the highest priority active process.

Computers as Components 77

E li t d dli fi t (EDF)Earliest-deadline-first (EDF)

dynamic priority scheduling scheme.
Process closest to its deadline has highest
priority.p y
Requires recalculating processes at every
timer interrupttimer interrupt.

Computers as Components 78

EDF l iEDF analysis

EDF can use 100% of CPU.
But EDF may fail to miss a deadline.

Computers as Components 79

EDF i l t tiEDF implementation

On each timer interrupt:
compute time to deadline;
choose process closest to deadline.p

Generally considered too expensive to use
in practicein practice.

Computers as Components 80

Fi i h d li blFixing scheduling problems

What if your set of processes is
h d l bl ?unschedulable?

Change deadlines in requirements.
Reduce execution times of processes.
Get a faster CPUGet a faster CPU.

Computers as Components 81

P i it i iPriority inversion

Priority inversion: low-priority process
k hi h i it f ikeeps high-priority process from running.
Improper use of system resources can p p y
cause scheduling problems:

Low priority process grabs I/O deviceLow-priority process grabs I/O device.
High-priority device needs I/O device, but

’t t it til l i it i dcan’t get it until low-priority process is done.

Can cause deadlock.

Computers as Components 82

P i it i iPriority inversion

Priority T1 assumed to be higher than priority of T2.
If T2 requests exclusive access first (at t0), T1 has to wait 2 q (0) 1

until T2 releases the resource (time t3), thus inverting the
priority:

In this example:

Computers as Components 83

duration of inversion bounded by length of critical section of T2.

Duration of priority inversion
with >2 tasks

Computers as Components 84
can exceed the length of any critical section!

Th MARS P thfi d blThe MARS Pathfinder problem

“But a few days into the mission,
not long after Pathfinder startednot long after Pathfinder started
gathering meteorological data, the
spacecraft began experiencingspacecraft began experiencing
total system resets, each resulting
in losses of data. The pressin losses of data. The press
reported these failures in terms
such as "software glitches" andsuch as software glitches and
"the computer was trying to do too
many things at once".” …

Computers as Components 85

many things at once . …

Th MARS P thfi d blThe MARS Pathfinder problem

“VxWorks provides preemptive priority scheduling of
threads. Tasks on the Pathfinder spacecraft were executed as
threads with priorities that were assigned in the usual manner
reflecting the relative urgency of these tasks.”

“P thfi d t i d "i f ti b " hi h“Pathfinder contained an "information bus", which you can
think of as a shared memory area used for passing
information between different components of the spacecraft ”information between different components of the spacecraft.

A bus management task ran frequently with high
priority to move certain kinds of data in and out of thepriority to move certain kinds of data in and out of the
information bus.
Access to the bus was synchronized with mutual

Computers as Components 86

y
exclusion locks (mutexes).”

Th MARS P thfi d blThe MARS Pathfinder problem

The meteorological data gathering task ran as an
infrequent, low priority thread, … When q , p y ,
publishing its data, it would acquire a mutex, do
writes to the bus, and release the mutex. ..,
The spacecraft also contained a communications
task that ran with medium priority ”task that ran with medium priority.

High priority: retrieval of data from shared memoryHigh priority: retrieval of data from shared memory
Medium priority: long-running communications task
Low priority: thread collecting meteorological data

Computers as Components 87

p y g g

Th MARS P thfi d bl The MARS Pathfinder problem
“M t f th ti thi bi ti k d fi H“Most of the time this combination worked fine. However, very

infrequently it was possible for an interrupt to occur that caused
the (medium priority) communications task to be scheduledthe (medium priority) communications task to be scheduled
during the short interval while the (high priority) information bus
thread was blocked waiting for the (low priority) meteorological
data thread. In this case, the long-running communications task,
having higher priority than the meteorological task, would

t it f i tl ti th bl k dprevent it from running, consequently preventing the blocked
information bus task from running. After some time had passed,
a watchdog timer would go off notice that the data bus task hada watchdog timer would go off, notice that the data bus task had
not been executed for some time, conclude that something had
gone drastically wrong, and initiate a total system reset. This

Computers as Components 88

scenario is a classic case of priority inversion.”

P i it i h it t l Priority inheritance protocol
A task is scheduled according to its active priority. g p y
Tasks with the same priorities are scheduled FCFS.

• A task inherits the highest priority from the tasks it g
blocks. (PIP)

• If task T1 executes P(S) but its exclusive access was
granted to T2, then T1 will be blocked.

• If priority(T2) < priority(T1), then T2 inherits the
i it f T1 th t T2 l th h dpriority of T1 so that T2 can release the shared

resource earlier by preventing medium-priority tasks
from preempting T2 and prolonging the blockingfrom preempting T2 and prolonging the blocking
period..

• When T2 executes V(S), its original priority at the

Computers as Components 89

When T2 executes V(S), its original priority at the
point of entry of the critical section as restored.

P i it i h it t lPriority inheritance protocol

• Priority inheritance is transitive
• Assuming that priority(T1) > priority(T2) >

priority(T3)
• If T3 blocks T2 and T2 blocks T1, then T3

inherits the priority of T1.p y

Computers as Components 90

P i it i i MPriority inversion on Mars
Priority inheritance also solved the Mars Pathfinder
problem: the VxWorks operating system used in the
pathfinder implements a flag for the calls to mutexpathfinder implements a flag for the calls to mutex
primitives. This flag allows priority inheritance to be
set to “on”. When the software was shipped, it was setset to on . When the software was shipped, it was set
to “off”.

The problem on Mars was corrected
by using the debugging facilities of
VxWorks to change the flag to “on”VxWorks to change the flag to on ,
while the Pathfinder was already on
the Mars [Jones, 1997].

Computers as Components 91

Remarks on priority
i h it t linheritance protocol

Possible large number of tasks with high priority.g g p y

Possible deadlocks.

More sophisticated protocol: priority ceiling protocol.

Computers as Components 92

D t d d iData dependencies

Data dependencies
allow us to improveallow us to improve
utilization.

Restrict combination

P1

Restrict combination
of processes that can
run simultaneously. P2run simultaneously.

P1 and P2 can’t run
simultaneously

P2

simultaneously.

Computers as Components 93

C t t it hi tiContext-switching time

Non-zero context switch time can push
li it f ti ht h d llimits of a tight schedule.
Hard to calculate effects---depends on p
order of context switches.
In practice OS context switch overhead isIn practice, OS context switch overhead is
small (hundreds of clock cycles) relative to
many common task periods (ms – μs).

Computers as Components 94

Evaluating RTOS
fperformance

Simplifying assumptions:
Context switch costs no CPU time,.
We know the exact execution time of
processes.
WCET/BCET don’t depend on contextWCET/BCET don t depend on context
switches.

Computers as Components 95

Scheduling and context
it h h dswitch overhead

Process Execution
time

deadline

P1 3 5

P2 3 10

With context switch overhead of
1, no feasible schedule.
2TP1 + TP2 = 2*(1+3)+(3)=11

Computers as Components 96

P ti tiProcess execution time

Process execution time is not constant.
Extra CPU time can be good.
Extra CPU time can also be bad:Extra CPU time can also be bad:

Next process runs earlier, causing new
preemptionpreemption.

Computers as Components 97

P d hProcesses and caches

Processes can cause additional caching
problemsproblems.

Even if individual processes are well-
behaved, processes may interfere with each
other.

Worst-case execution time with bad
behavior is usually much worse thanbehavior is usually much worse than
execution time with good cache behavior.

Computers as Components 98

Effects of scheduling on
th hthe cache

Process WCET Avg. CPU
time

Schedule 1 (LRU cache):

P1 8 6

P2 4 3

P3 4 3P3 4 3

Schedule 2 (half of cache
d f P1)Each process uses half the reserved for P1):Each process uses half the

cache
Schedule 1: P1 is the worst

f th 2nd it ticase for the 2nd iteration
Schedule 2: P1 is the
average case for the 2nd

Computers as Components 99

g
iteration

P ti i tiPower optimization

Power management: determining how
t h d l d/ d tsystem resources are scheduled/used to

control power consumption.
OS can manage for power just as it
manages for timemanages for time.
OS reduces power by shutting down units.

May have partial shutdown modes.

Computers as Components 100

Simple power management
li ipolicies

Request-driven: power up once request is
i d Add d l treceived. Adds delay to response.

Predictive shutdown: try to predict how y p
long you have before next request.

May start up in advance of request inMay start up in advance of request in
anticipation of a new request.
If di t ill i dditi lIf you predict wrong, you will incur additional
delay while starting up.

Computers as Components 101

P b bili ti h tdProbabilistic shutdown

Assume service requests are probabilistic.
Optimize expected values:

power consumption;power consumption;
response time.

Si l b bili ti h t d ft tiSimple probabilistic: shut down after time
Ton, turn back on after waiting for Toff.

Computers as Components 102

Advanced Configuration
d P I t fand Power Interface

ACPI: open standard for power
t imanagement services.

applications

OS kernel

applications

power
managementdevice

drivers
ACPI BIOS

OS kernel management

Hardware platform

ACPI BIOS

Computers as Components 103

ACPI l b l t tACPI global power states

G3: mechanical off
G2 ft ffG2: soft off

⌧S1: low wake-up latency with no loss of context
⌧S2: low latency with loss of CPU/cache state⌧S2: low latency with loss of CPU/cache state
⌧S3: low latency with loss of all state except memory
⌧S4: lowest-power state with all devices offp

G1: sleeping state
G0: working stateG0: working state

Computers as Components 104

Processes and operating
tsystems

Telephone answering machine.

Computers as Components 105

Th f tiTheory of operation

Compress audio using adaptive
diff ti l l d d l tidifferential pulse code modulation
(ADPCM).

analog

time
ADPCM 3 2 1 1 2 3

time

ADPCM 3 2 1 -1 -2 -3

Computers as Components 106

ADPCM diADPCM coding

Coded in a small alphabet with positive
d ti land negative values.
{-3,-2,-1,1,2,3}

Minimize error between predicted value
and actual signal valueand actual signal value.

Computers as Components 107

ADPCM compression
tsystem

quantizerΣ q

inverseintegrator inverse
quantizer

encoder
samples

inverse
quantizer integrator

Computers as Components 108

T l h t tTelephone system terms

Subscriber line: line to phone.
Central office: telephone switching
system.y
Off-hook: phone active.
O h k h i iOn-hook: phone inactive.

Computers as Components 109

Real and simulated
b ib lisubscriber line

Real subscriber line:
90V RMS ringing signal;
companded analog signals;p g g ;
lightning protection, etc.

Simulated subscriber line:Simulated subscriber line:
microphone input;
speaker output;
switches for ring, off-hook, etc.

Computers as Components 110

switches for ring, off hook, etc.

R i tRequirements
Inputs Telephone: voice samples ringInputs Telephone: voice samples, ring.

User interface: microphone, play
messages button, record OGM button.

Outputs Telephone: voice samples on-Outputs Telephone: voice samples, on
hook/off-hook command.
User interface: speaker, # messages
indicator, message light., g g

Functions Default mode: detects ring, signals off-
hook, pays OGM, records ICM
Playback: play all messages, wait 5
seconds for new playback.
OGM editing: OGM up to 10 sec.

Performance About 30 minutes voice (@ 8kHz).
Manufacturing cost Consumer product range ($50)
Power AC plug
Physical Comparable to desk phone.

Computers as Components 111

size/weight

C t l iComments on analysis

DRAM requirement influenced by DRAM
iprice.

Details of user interface protocol could be p
tested on a PC-based prototype.

Computers as Components 112

Answering machine class
didiagram

1

Microphone*
Controls Record Outgoing

1
11

1
*

Line-in*

Controls Record Outgoing-
message1 11 1 1 1

1

*

*

Line-out*
Playback Incoming-

message
1

1

1 1

1

*

*

Buttons* Lights1

Speaker* 1

Computers as Components 113

Ph i l i t f lPhysical interface classes

Line-out*Microphone* Line-in*

sample()
pick up()sample() sample()

ring indicator() pick-up()ring-indicator()

* i h * Speaker*Buttons*

record-OGM

Lights*

messages

sample()play num-messages

Computers as Components 114

M lMessage classes

Message

length
start-adrs

tnext-msg
samples

Incoming-message Outgoing-message

msg-time length=30 sec

Computers as Components 115

O ti l lOperational classes

Controls Record Playback

operate() record-msg() playback-msg()operate() record msg() playback msg()

Computers as Components 116

S ft tSoftware components

Front panel module.
Speaker module.
Telephone line moduleTelephone line module.
Telephone input and output modules.
Compression module.
Decompression moduleDecompression module.

Computers as Components 117

C t l ti t b h iControls activate behavior

Compute buttons, line activations

Activations?

Play OGM Record OGM Play ICM Erase Answer

Wait for timeout
Play OGM

Erase
Allocate ICM

Record ICM

Computers as Components 118

Record ICM

Record-msg/playback-msg
b h ibehaviors

nextadrs = 0 nextadrs = 0nextadrs 0

msg.samples[nextadrs] =

nextadrs 0

speaker.samples() =
l [t d]sample(source)

F

msg.samples[nextadrs];
nextadrs++

F
End(source)

F

T

nextadrs=msg.length
F

T

record-msg playback-msg

Computers as Components 119

H d l tfHardware platform

CPU.
Memory.
Front panelFront panel.
2 A/Ds:

subscriber line, microphone.

2 D/A:2 D/A:
subscriber line, speaker.

Computers as Components 120

Component design and
t titesting

Must test performance as well as testing.
Compression time shouldn’t dominate other
tasks.

Test for error conditions:
memory overflow;memory overflow;
try to delete empty message set, etc.

Computers as Components 121

System integration and
t titesting

Can test partial integration on host
l tf f ll t ti i i t tiplatform; full testing requires integration

on target platform.
Simulate phone line for tests:

it’s legal;it s legal;
easier to produce test conditions.

Computers as Components 122

