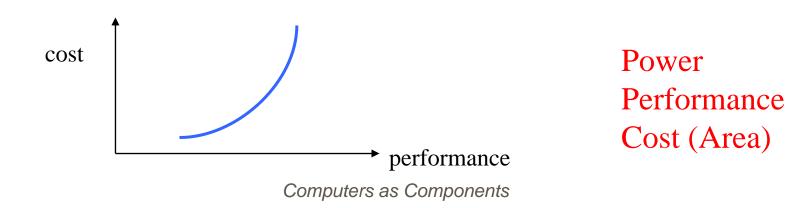
7. Multiprocessors

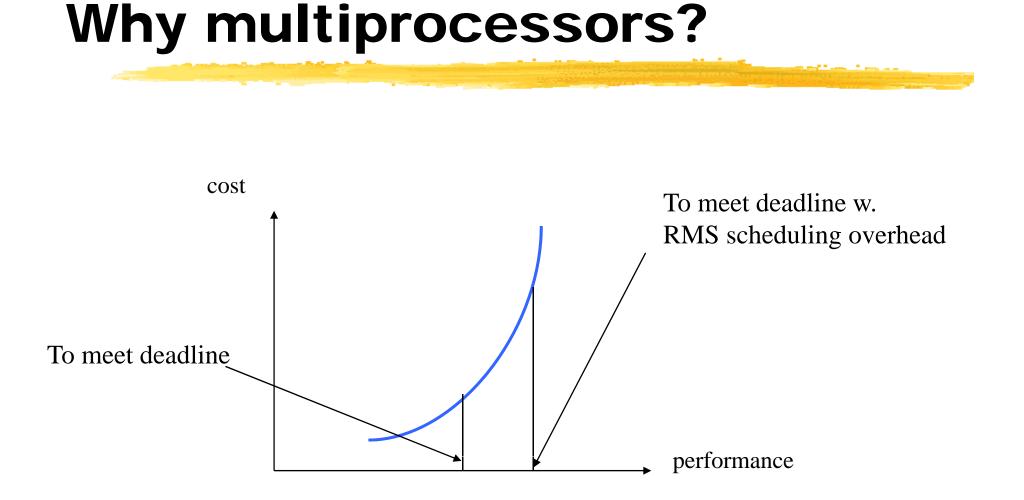
Why multiprocessors? CPUs and accelerators. Multiprocessor performance analysis.

Programming a single CPU is hard enough.
 Why make life more difficult by adding more processors?

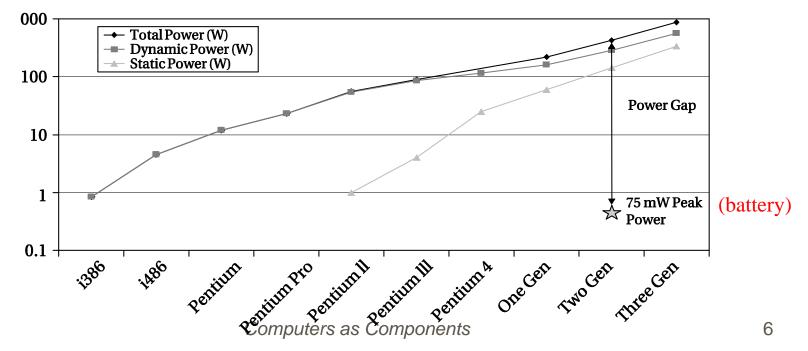
- ₩ PE: processing element for computation


 Mether is is programmable or not.
- Hultiprocessors tend to have regular architectures
 - Several identical processors that can access a uniform memory space

Here are a variety of different multiprocessor architectures


∺Better cost/performance.

Match each CPU to its tasks or use custom logic (smaller, cheaper).

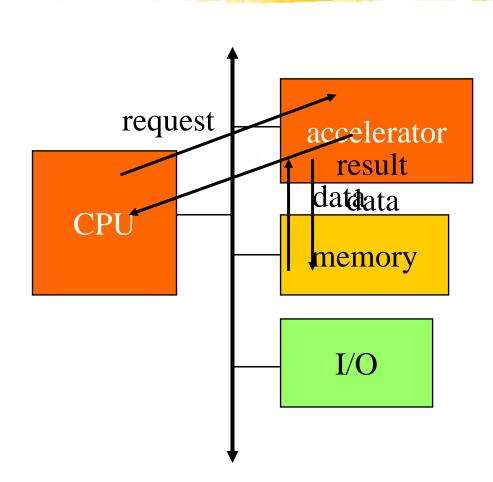

△CPU cost is a non-linear function of performance.

- Splitting the application across multiple processors entails higher engineering cost and lead times.
- **#**Better real-time performance.
 - Put time-critical functions on less-loaded processing elements.
 - Remember RMS utilization---extra CPU cycles must be reserved to meet deadlines.

- Husing specialized processors or custom logic saves power.
- Besktop processors are not power-efficient enough for battery-powered applications.

May consume less energy.
May be better at streaming data.
May not be able to do all the work on even the largest single CPU.

Good for processing I/O in real-time.
May consume less energy.
May be better at streaming data.
May not be able to do all the work on even the largest single CPU.
A thread per processor
no context switching


Accelerated systems

#Use additional computational unit
dedicated to some functions?

- ⊡Hardwired logic.
- Extra CPU.

#Hardware/software co-design: joint design of hardware and software architectures.

Accelerated system architecture

Accelerator vs. co-processor

#A co-processor executes instructions.

- ☐ Instructions are dispatched by the CPU.
- ∺An accelerator appears as a device on the bus.
 - ☐Its interface is functionally equivalent to an I/O device
 - \bigtriangleup is controlled by it registers.

Accelerator implementations

Application-specific integrated circuit.
Field-programmable gate array (FPGA).
Standard component.
Example: graphics processor.

System design tasks

Design a heterogeneous multiprocessor architecture.

Processing element (PE): CPU, accelerator, etc.

#Program the system.

Accelerated system design

∺First, determine that the system really needs to be accelerated.

- △How much faster is the accelerator on the core function?
- △How much data transfer overhead?
- Besign the accelerator itself.

Accelerated system platforms

Several off-the-shelf boards are available for acceleration in PCs:

- ➢ FPGA-based core;
- △PC bus interface.

Accelerator/CPU interface

- Accelerator registers provide control registers for CPU.
- Bata registers (buffers) can be used for small data objects.
- # Accelerator may include special-purpose
 read/write logic.
 - Especially valuable for large data transfers.
 - △ DMA to transfer a large volume of data without intervention of CPU

System integration/debugging

Try to debug the CPU/accelerator interface separately from the accelerator core.

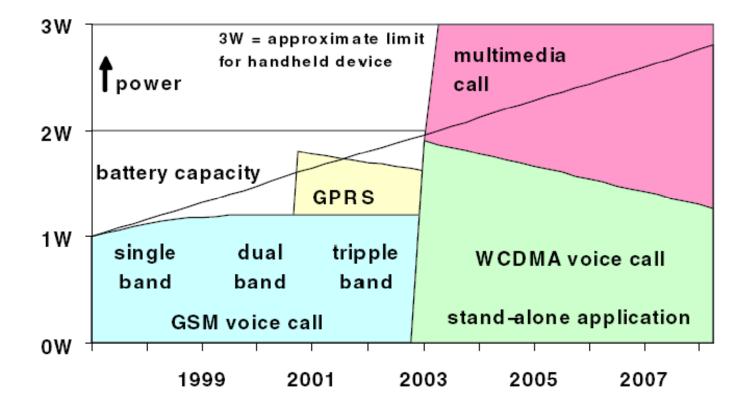
- **#Build scaffolding to test the accelerator.**
- Hardware/software co-simulation can be useful.

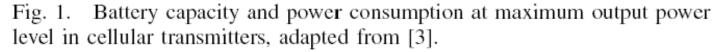
Caching problems

Hain memory provides the primary data transfer mechanism to the accelerator.

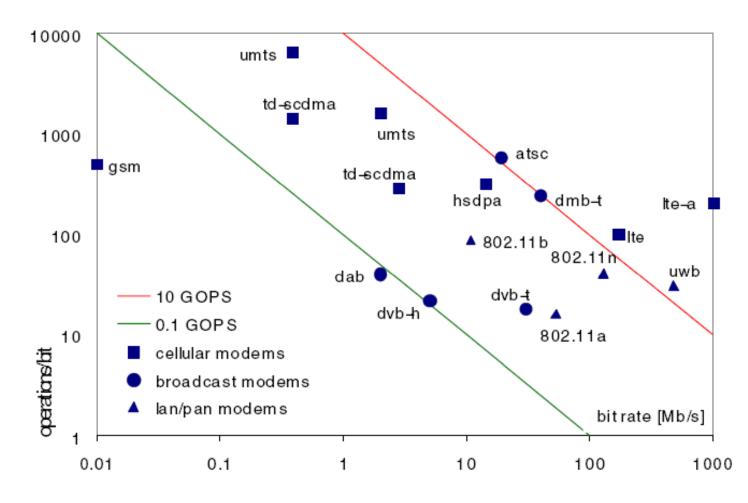
- Programs must ensure that caching does not invalidate main memory data.
 - △CPU reads location S.
 - Accelerator writes location S.
 - △CPU writes location S.

Synchronization

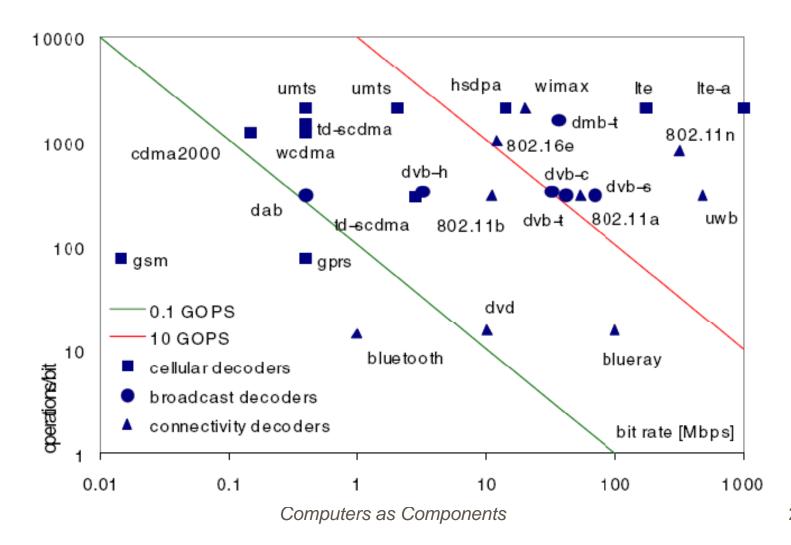

Solution State (Section 2)
Solution (Section 2)<


Mobile Phone Trends

WIOBILE PHONE TRENDS IN 3-YEAR INTERVALS.										
year	1995	2000	2005	2010	2015					
cellular generation	2G	2.5-3G	3.5G	pre-4G	4G					
cellular standards	GSM	GPRS	HSPA	HSPA	LTE					
		UMTS		LTE	LTE-A					
downlink bitrate [Mb/s]	0.01	0.1	1	10	100					
display pixels [×1000]	4	16	64	256	1024					
battery energy [Wh]	1	2	3	4	5					
CMOS [ITRS, nm]	350	180	90	50	25					
PC CPU clock[MHz]	100	1000	3000	6000	8500					
PC CPU power [W]	5	20	100	200	200					
PC CPU MHz/W	20	50	30	30	42					
phone CPU clock[MHz]	20	100	200	500	1000					
phone CPU power [W]	0.05	0.05	0.1	0.2	0.3					
phone CPU MHz/W	400	2000	2000	2500	3000					
workload [GOPS]	0.1	1	10	100	1000					
software [MB]	0.1	1	10	100	1000					
#programmable cores	1	2	4	8	16					


TABLE IMOBILE PHONE TRENDS IN 5-YEAR INTERVALS.

Power and Battery Capacity



Radio Demodulation Workload

Radio Decoding Workload

23

3.5G Workload

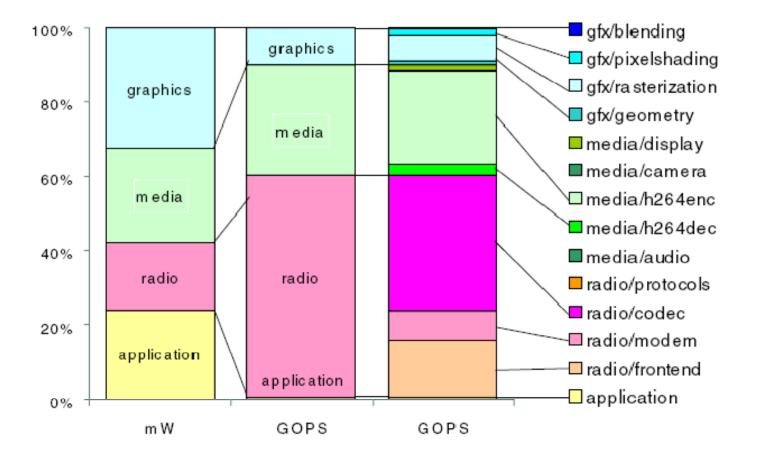
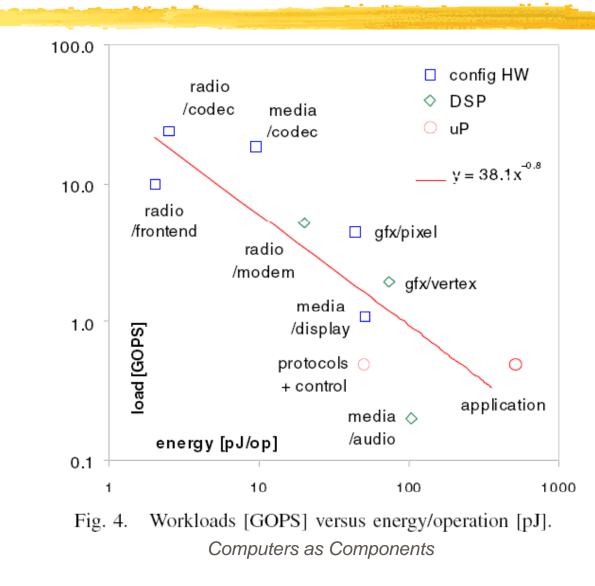



Fig. 3. 3.5G workload (power consumption) as fractions of 100GOPS (1W). Computers as Components

Workload vs Energy/operation

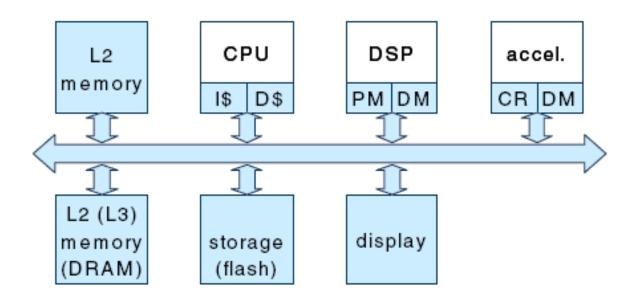
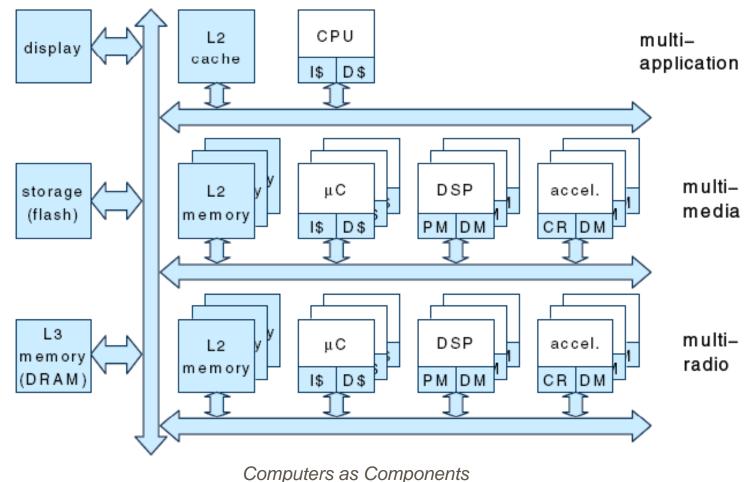

Value of Programming

TABLE II


VALUE-AFFORDABILITY OF PROGRAMMABLE SOLUTIONS (EXAMPLES).

	radio	video	3D graphics
very high	protocol stacks		geometry proces.
high	channel estimation		pixel shading
medium	demodulation	motion estimation	
low	turbo decoder	entropy (de)coding	
	(i)fft	deblocking	
very low	filters	filters	rasterization
		scaling	pixel blending

2/2.5G Dual-core Architecture

3/3.5G Multi-core Architecture

Cell-phone Chips

					· · ·				,	
year	ref	source	cmos	total	application radio			media		
			nm	# cores	core(s)	MHz	core(s)	MHz	core(s)	MHz
1992	[1]	Philips	1000	1	n.a.		KISS-16-V2			20
2000	[2]	Infineon	250	2	CPU	78	Oak			78
2001	[9]	Samsung	180	2	ARM9		Teaklite		n.a.	
2003	[6]	Toshiba	130	3	n.a.		n.a.		3x RISC	125
2004	[3]	Nokia	130	2	CPU	50	DSP			160
2004	[10]	Qualcomm	130	3	ARM9	180	DSP	95	DSP	95
2004	[11]	Renesas	130	2	CPU	216	n.a.		DSP	216
2005	[12]	NEC	130	4	ARM9	200	n.a.		2xARM9 + DSP	200
2006	[13]	ST	130	2	ARM8	156	ST122 DSP			156
2007	[14]	Infineon	90	2	ARM9	380	TEAKlite			104
2008	[15]	Renesas et al	65	4	ARM11	500	ARM9	166	ARM11 + SHX2	500
2008	[16]	TI	45	5	ARM11	840	?		C55 + ?	480
2008	[17]	NEC	65	3	ARM11	500	ARM11	250	DSP	500
2009	[18]	Panasonic	45	4	ARM11	486	ARM11	245	2xDSP	216
2009	[19]	Renesas	65	2	CPU	500	n.a.		SHX2	500

TABLE III PUBLISHED INDUSTRIAL CELL-PHONE CHIPS ("..." DENOTES A SHARED RADIO-MEDIA CORE).

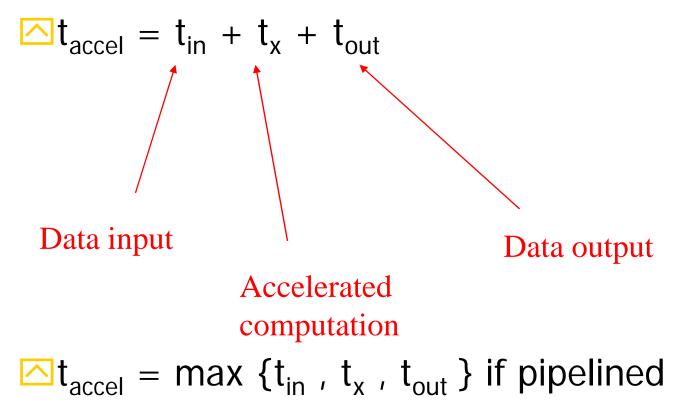
Power Management Knobs

TABLE IV

Power management knobs: f_C denotes clock frequency, V_{DD} and V_t denote supply and threshold voltage, and P_D and P_S denote dynamic and static power consumption.

	knob		throughput	power
stop the clock:	$f_C \downarrow 0$	\Rightarrow	$\downarrow 0$	$P_D \downarrow 0$
frequency scaling (FS)	$f_C \downarrow$	\Rightarrow	\downarrow	$P_D \downarrow$
voltage scaling (VS)	$V_{DD}\downarrow$	\Rightarrow	Ļ	$P_D \downarrow$
power down	$V_{DD}\downarrow 0$	\Rightarrow	$\downarrow 0$	$P_S \downarrow 0$
forward body bias (FBB)	$V_t \downarrow$	\Rightarrow	↑	$P_S \uparrow$
reverse body bias (RBB)	$V_t \uparrow$	\Rightarrow	\downarrow	$P_S \downarrow$

Accelerator speedup


#Critical parameter is **speedup**: how much faster is the system with the accelerator?

#Must take into account:

- Accelerator execution time.
- ☐ Data transfer time.
- △Synchronization with the master CPU.

Accelerator execution time

#Total accelerator execution time:

Accelerator speedup

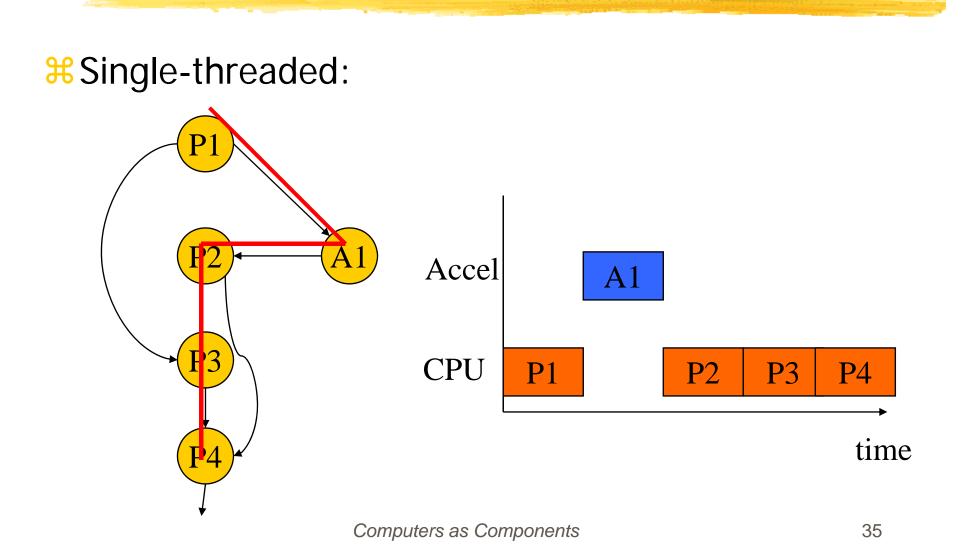
If the software loop is replaced with the accelerator, compare accelerated system to non-accelerated system:

$$S = n(t_{CPU} - t_{accel})$$

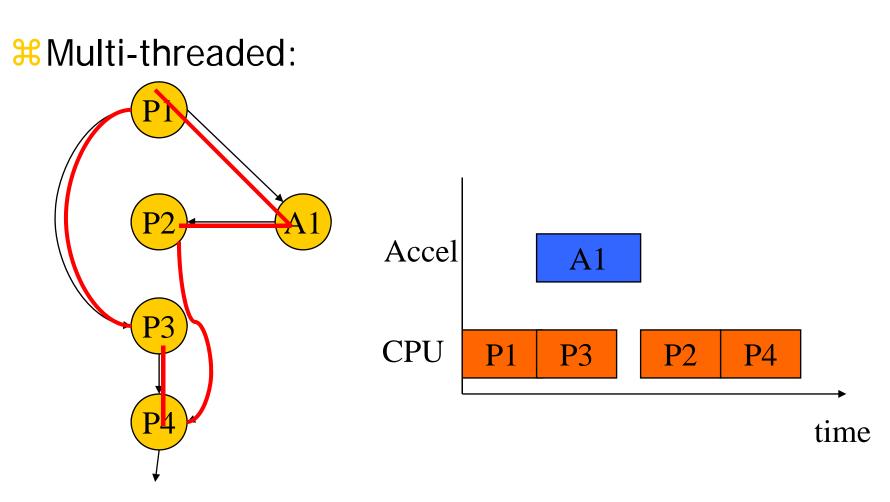
= n[t_{CPU} - (t_{in} + t_x + t_{out})]

Execution time on CPU

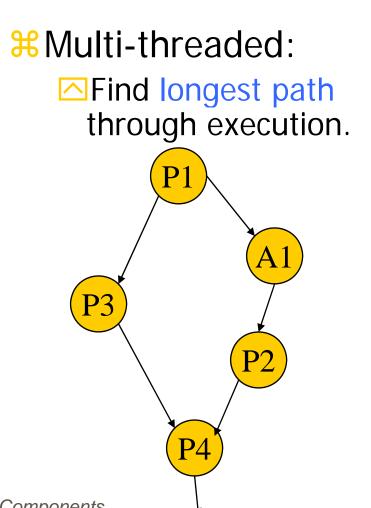
Single- vs. multi-threaded


#One critical factor is available parallelism:

- Single-threaded/blocking: CPU waits for accelerator;
- multithreaded/non-blocking: CPU continues to execute along with accelerator.


Strain CPU must have useful work to do.

Synchronization: software must also support multithreading.


Total execution time

Total execution time

Execution time analysis

Sources of parallelism

#Overlap I/O and accelerator computation.

- Perform operations in batches, read in second batch of data while computing on first batch.
- ₩Find other work to do on the CPU.
 - May reschedule operations to move work after accelerator initiation.

Data input/output times

#Bus transactions include:

- In the second second
- overhead of data transfers by bus packets, handshaking, etc.

Scheduling and allocation

₩Must:

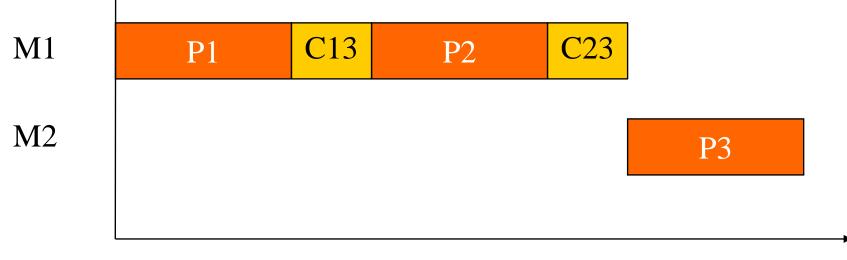
Schedule operations in time;

△allocate computations to processing elements.

Scheduling and allocation interact, but separating them helps.

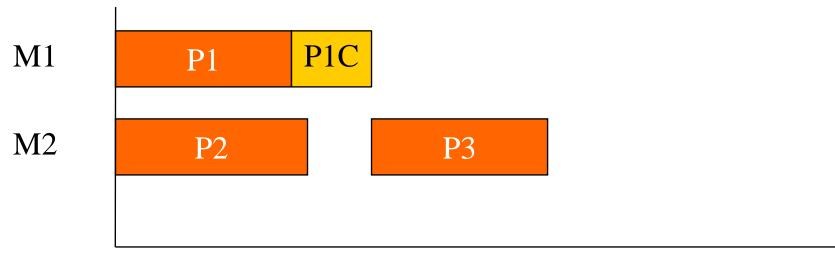
△(Alternatively) allocate, then schedule.

Example: scheduling and allocation

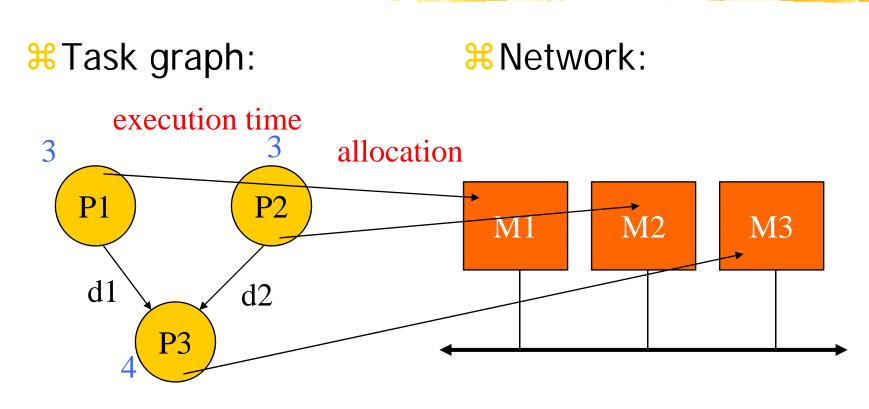


Task graph

Hardware platform

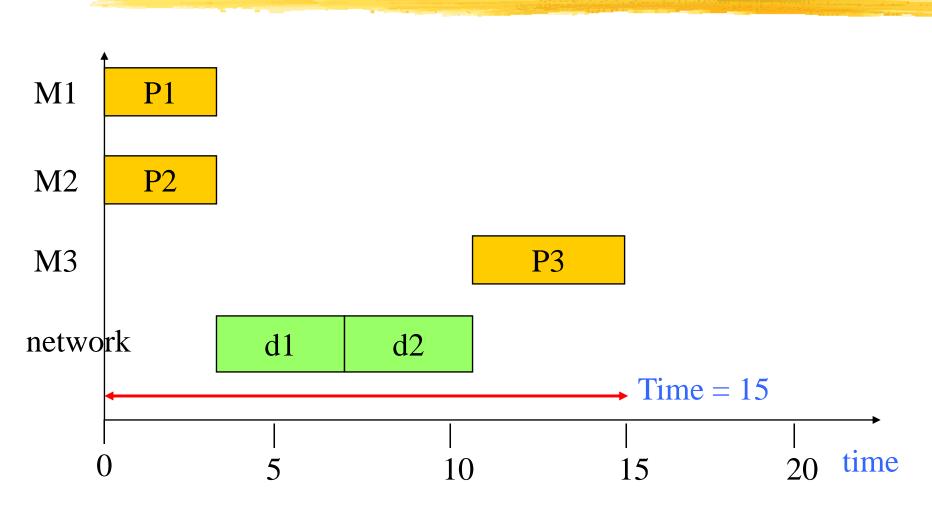

∺Allocate P1, P2 -> M1; P3 -> M2.

time


Second design

#Allocate P1 -> M1; P2, P3 -> M2:

time


Example: adjusting messages to reduce delay

Transmission time = Td1=Td2=4

Computers as Components

Initial schedule

Computers as Components

New design


∺Modify P3:

reads one packet of d1, one packet of d2

△computes partial result

△ continues to next packet

New schedule

Computers as Components

Buffering and performance

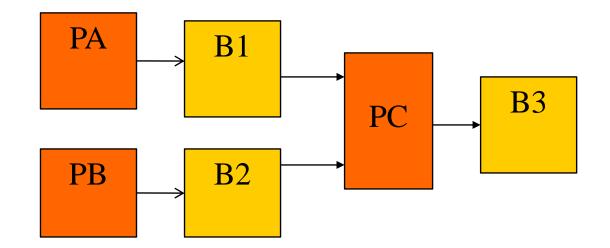
Moving data in microprocessor incurs significant and sometimes unpredictable costs

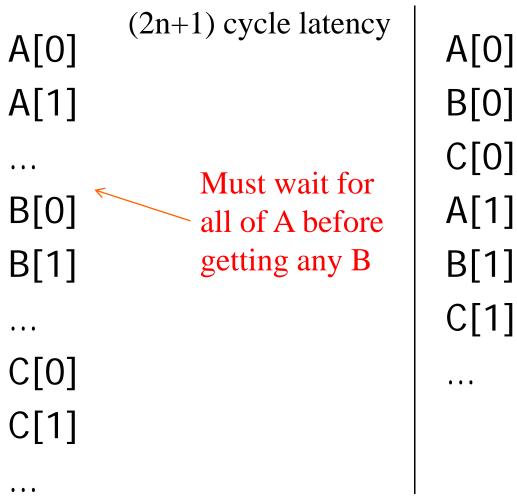
#Buffering may sequentialize operations.

Next process must wait for data to enter buffer before it can continue.

∺Buffer policy (queue, RAM) affects available parallelism.

Copying an array


Read a data from the source memory
Transfer the data through the bus
Write the data into the destination memory
The transfer rate is limited by the slowest element

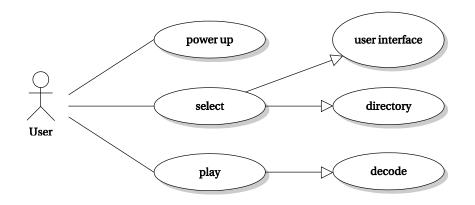

Buffers and latency

% Three processes
separated by buffers:

PA: copying array A PB: copying array B PC: computing C[i]= f(A[i],B[i])

Buffers and latency schedules

3-cycle latency


Multiprocessors

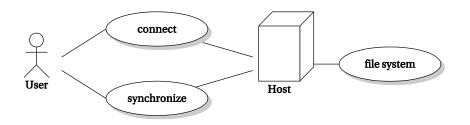
Consumer electronics systems.
Cell phones.
CDs and DVDs.
Audio players.
Digital still cameras.

Consumer electronics use cases

- Hultimedia: stored in compressed form, uncompressed on viewing.
- Data storage and management: keep track of your multimedia, etc.

Communication: download, upload, chat.

Non-functional requirements for CE

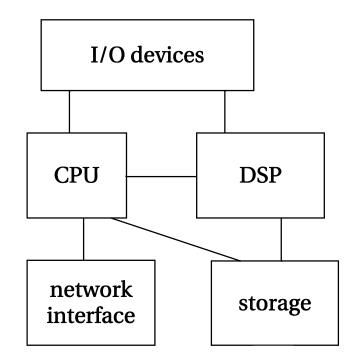

#Often battery-operated, strict power
budget.,

₩User interface must be capable but inexpensive.

CE devices and hosts

Many devices talk to host system.

- PC host does things that are hard to do on the device.
- Increasingly, CE devices communicate directly over the internet, avoiding the host for access.



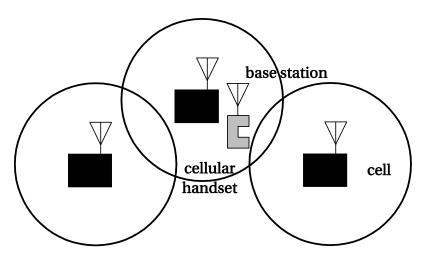
Platforms and OS

Hany CE devices use a DSP for signal processing and a RISC CPU for other tasks.

#OS runs on the CPU

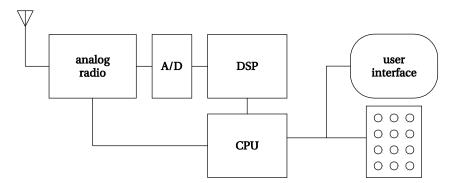
- maintain processes for concurrency and file systems
- I/O devices include buttons, screen, USB.

Flash memory


Flash is widely used for mass storage.Flash wears out on writing (up to 1 million cycles).

- Directory is most often written, wears out first.
- ₭Flash file system has layer that moves contents to levelize wear.

△ Hides wear leveling from API.

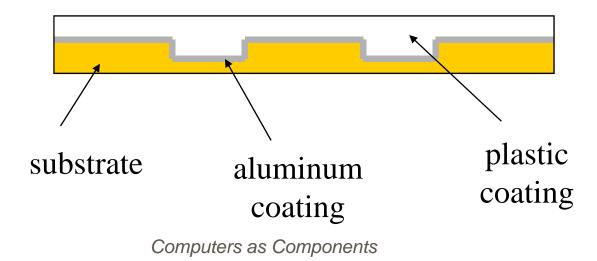

Cell phones

Most popular CE device in history; most widely used computing device.
1 billion sold per year.
Handset talks to cell.
Cells hand off handset as it moves.

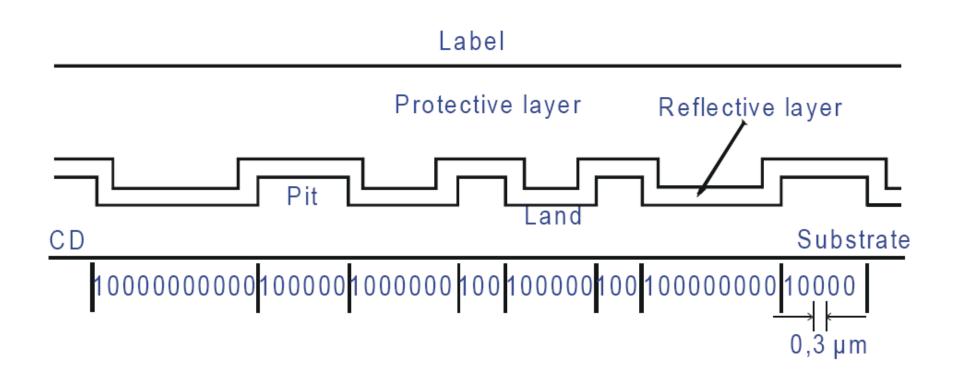
Cell phone platforms

- Hoday's cell phones use analog front end, digital baseband processing.
 - Future cell phones will perform IF processing with DSP.
- **Baseband processing in DSP:**
 - ➢ Voice compression.
 - Network protocol.
- **#** Other processing:
 - Multimedia functions.
 - User interface.
 - File system.
 - Applications (contacts, etc.)

Compact disc players


Device characteristics.
Hardware architectures.
Software.

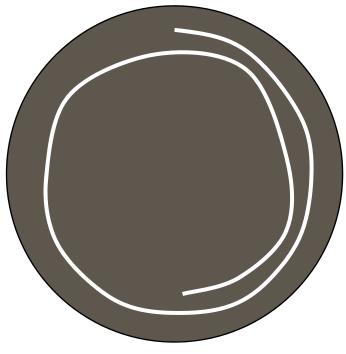
CD digital audio


₩44.1 kHz sample rate. \Re Quantization: 16 bit samples. [#]Pulse coded modulation (PCM) **#**Stereo (2 channels) \sim 1.4 Mbit/s. **#**Additional data tracks. **∺**S/N: ~ 6 dB/bit, 16 bit , 98dB

Compact disc

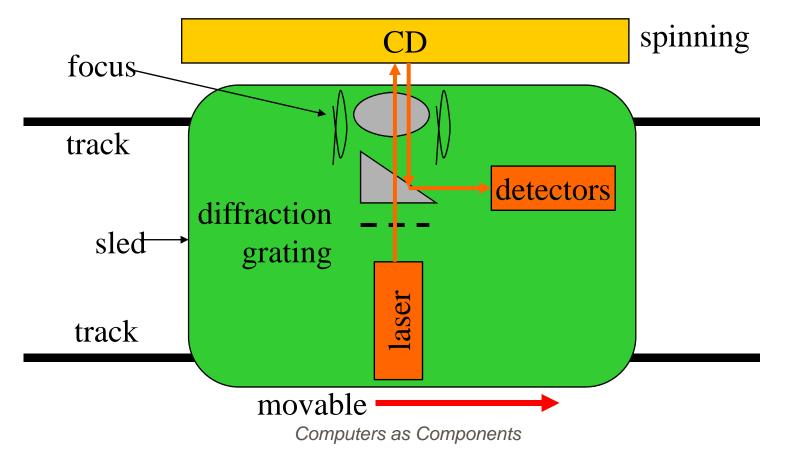
Playback time : max 74 min
747 Mbyte
Data stored on bottom of disc:

CD-DA: pits and Lands



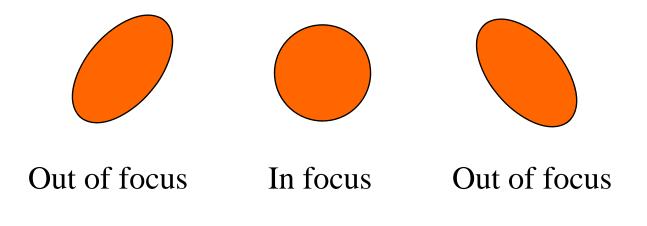
CD medium

Rotational speed: 1.2-1.4 m/s \Re Constant linear velocity (CLV). **H**Track pitch: 1.6 microns. High Diameter: 120 mm. \Re Pit length: 0.8 -3 microns. \Re Pit depth: .11 microns. \Re Pit width: 0.5 microns. **H**Laser wavelength: 780 nm.


#Data stored in spiral, not concentric circle: #One spiral with approx. 20k turns

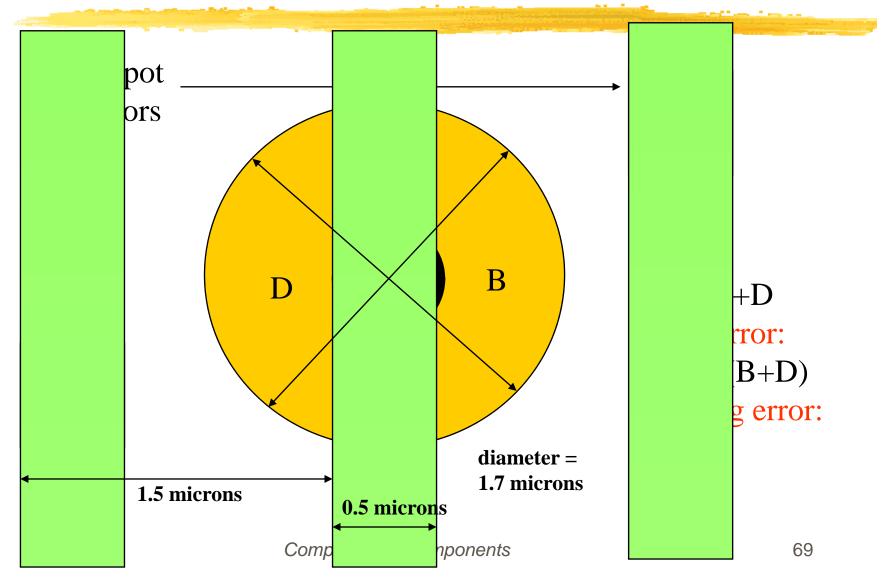
Computers as Components

CD mechanism


Laser pickup sled

#It is movable
#It is comprised of
The laser,
a system of lenses,
a photodetector, and
a motor which moves the sled.

Laser focus


Focus controlled by vertical position of lens.

#Unfocused beam causes irregular spot:

Computers as Components

Laser pickup

Servo control

Four main signals:
focus (laser) @ 245 kHz;
tracking (laser) @ 245 kHz;
sled (motor): @ 800 Hz;
Disc motor.

Optical pickup

EFM

Eight-to-fourteen modulation:

- ➢ Fourteen-bit code guarantees a maximum distance between transitions to minimize the transition rate.
- ☐ To guarantee pits of specific lengths, the CD standard requires that there are at least 2 and at most 10 zeroes between every 1.
- The shortest possible pit (or land) thus represents 3 EFM bits (100), and the longest 11 EFM bits (1000000000)
- △256 are chosen from 267 combinations that satisfies the constraints

Example from the code conversion table

data bits	channel bits
0000000	01001000100000
0000001	1000010000000

EFM

Concatenation of independent 14 bit values could lead to a violation of:

- minimum distance of 2 bits between Ones
- maximum distance of 10 bits between Ones
- => three additional *merging (filling) bits*

CD-DA: Eight-to-Fourteen Modulation Example

Audio Bits							0	0	0	0	0	0	0	0										0	0	0	0	0	0	0	1			
Modulation Bits				0	1	0	0	1	0	0	0	1	0	0	0	0	0				1	0	0	0	0	1	0	0	0	0	0	0	0	0
Filling Bits	0	1	0															1	0	0														
Channel Bits	0	1	0	0	1	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0
On the CD-DA	Ι	р	р	р				р	р	р	р							р	р	р				Ι		р	р	р	р	р	р	р	р	р

Error correction

CD capacity: 6.99 GB raw, 700 MB formatted.

- CD interleaves Reed-Solomon blocks to reduce effects of large data gaps (scratches and other bursty errors).
- The time required to complete Reed-Solomon coding depends greatly on the number of erasure bits

Error correction

Two-level Reed-Solomon code with frame

interleaving ("Cross Interleaved Reed Solomon Code"):

- First level: byte level, EDC and ECC. Two groups, each with four correction bytes for 24 data bytes:
 - 1st group: correction of single byte errors
 - 2nd group: correction of double byte errors, detection of further errors
- Second level: frame interleaving
 - frame: 588 channel bits = 24 audio data bytes
 - distribution of consecutive data bytes and corresponding ECC bytes over adjacent frames

Error correction

Error rate: 10⁻⁸ (~ 1 bit in 100 million bits (!)

- Exact correction of 4000 data bits possible
- 4000 data bits * 0.3 µm/channel bit
- hence: burst errors within 2.5 mm can be corrected
 With interpolation: Up to 12,300 data bits (~ 7 mm)

CIRC encoding

#Cross-interleaved Reed-Solomon coding.

☐ Interleaves to reduce burst errors.

Each 16-bit sample split into two 8-bit symbols.

△Pulse coded modulation (PCM)

- Sample split into two symbols.
- Six samples from each channel (=24 symbols=192 bits) are chosen to make a frame, which is encoded as a 224 bits.
- ₭ It will be eventually encoded as 588 bits

CIRC encoding

Each frame consists of

• Data

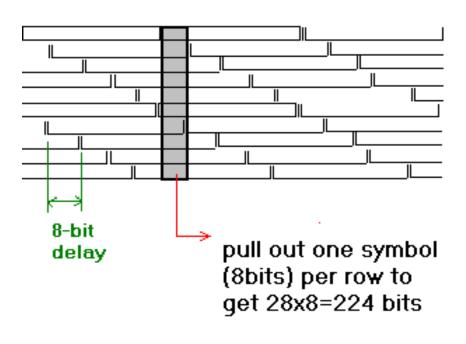
two groups of 12 audio data bytes each (actual data)

Error detection and correction code

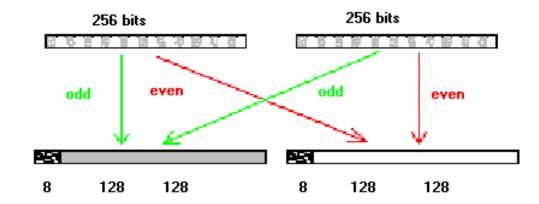
- two groups of four parity bytes
- Computed according to the Reed-Solomon code

Control&display byte

- Together with control&display bytes of other frames it forms the subchannel stream.
- Example: subchannel byte for track start identification
- Synchronization pattern
 - Start of a frame
 - 12 x "1" + 12 x "0" + 3 merging bits = 27 bits


Encoding – the numbers

Here and the second second


₩We pull out 8 binary columns (one symbol) to obtain a 28x8=224-bit frame which is then encoded using another Reed-Solomon code to obtain a codeword of length 256 bits.

Interleaving to disperse errors

- Codewords of first code are stacked like bricks
- % 28 rows of vectors
 over GF(256)
- Extract columns and re-encode using second Reed-Solomon code

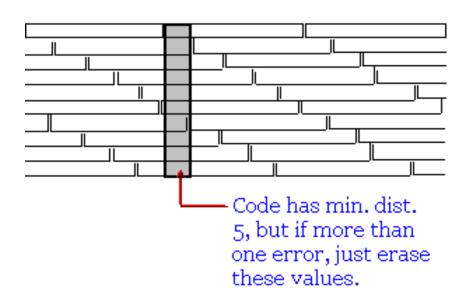
Splitting Odd and Even Bits

Further Processing

So 256+8=264=33x8 bits, carrying six samples, or 192 information bits, gets encoded as 588 channel bits on the disk This represents 0.000136 seconds of music

What actually goes on the disc?

We must do this 7,350 times per second
So CD player reads 4,321,800 bits per second of music produced


₭ To get 74 minutes of music, we must store

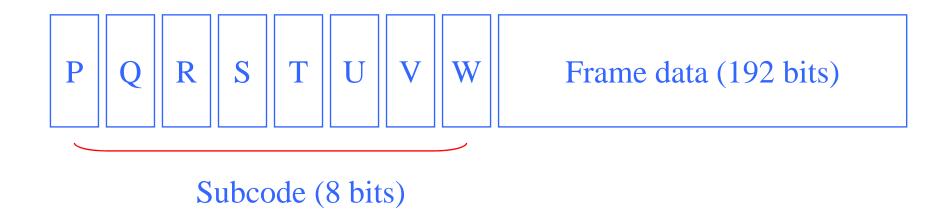
74x60x4321800 = 19,188,792,000bits of data on the compact disc!

When in doubt, erase

% Inner code has minimum distance 5 (over GF(256))

Rather than correct two-symbol errors, the CD just erases the entire received vector.

So...how good is it?


Here two Reed-Solomon codes team up to correct 'burst' errors of up to 4000 consecutive data bits (2.5 mm scratch on disc)

If signal at time t cannot be recovered, interpolate

With smart data distribution, this allows for recovery from burst errors of up to 12,000 data bits (7.5 mm track length on disc)

H all else fails, mute, giving 0.00028 sec of
 Silence.
 W J Martin Mathematical Sciences WPI
 Computers as Components
 Computers as Components
 Silence.
 Silen

CD frame

Control word

8-bit control word for every 32-symbol block:

- P: 1 during music/lead-in, 0 at start of selection.
- Q: track number, time, etc (spread over 98 frames).

Control and error correction

Skips caused by physical disturbance.

☐Wait for disturbance to subside.

Retry.

₭ Read errors caused by disc/servo problems.

Detect error.

△Choose location for retry.

☐Retry.

☐Fail and interpolate.

Retry problems

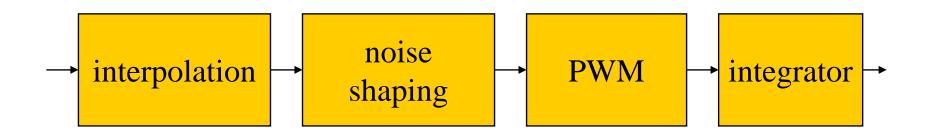
Berulary Barage State Handler Ha

△Can't seek track as on magnetic disc.

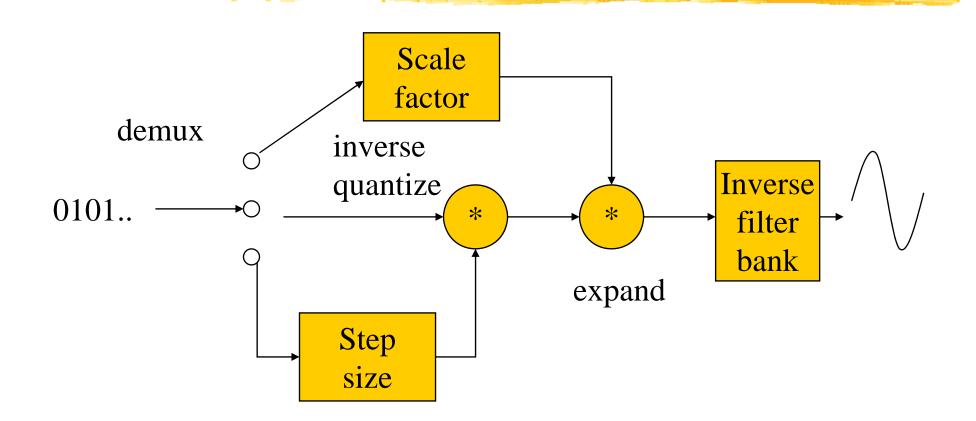
△Sled servo is very coarse.

Boundary Set the set of the

Must read data to know where to go.


Audio playback

#Audio CD needs no audio processing.#Tasks:


△convert to analog;
△amplify.

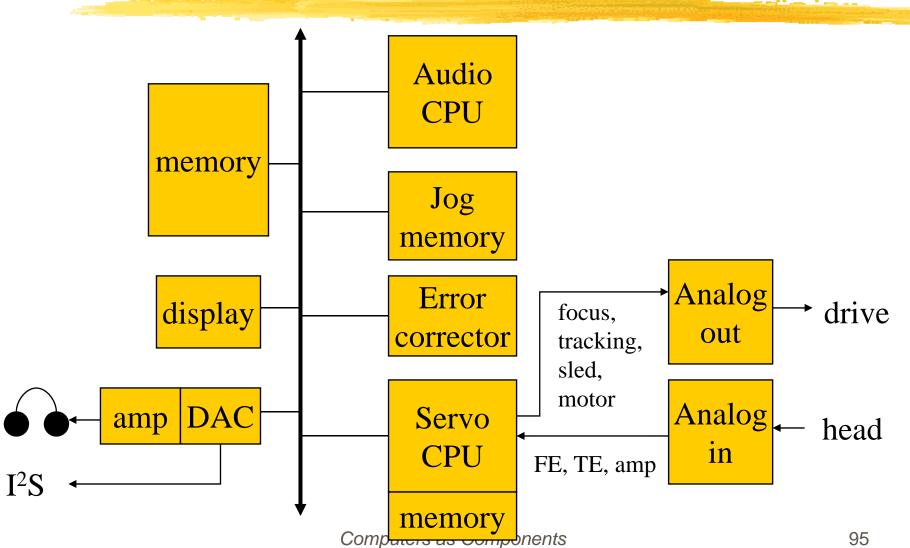
Digital/analog conversion

#1-bit MASH conversion:

MPEG Layer 1 decoder

MP3

#Decoding is easier than encoding, but
requires:


- Mecompression;
- ⊡filtering.
- **#**Basic CD standard for data discs.
- No standards for MP3 disc file structure: player must understand Windows, Mac, Unix discs.

Jog/skip memory

Read samples into RAM, play back from RAM.

- Modern RAMs are larger than needed for reasonable jog/skip.
- [₭]Jog memory saves some power.

CD/MP3 player

Similar to CD, but:
Shorter wavelength laser;
tighter pits;
two layers of data.

Audio on DVD

#Alternatives:

MP3 on data DVD (stereo).
△Audio track of video DVD (5.1).

△DVD audio (5.1).

△SACD (5.1).

MPEG audio standards

Lossless compression of subbands + optional simple masking model

∺Layer 2:

△ More advanced masking model.

∺Layer 3:

△Additional processing for lower bit rates.

MPEG audio rates

#Input sampling rates:
32, 44.1, 48 kHz.
#Output bit rates:
23, 48, 64, 96, 112, 128, 192, 256, 384 kbits/sec.
#Output can be mono-dual-channel

Cutput can be mono, dual-channel (bilingual, etc.), stereo.

Other standards

Holby Digital (AC-3):

☐Uses modified discrete cosine transform.

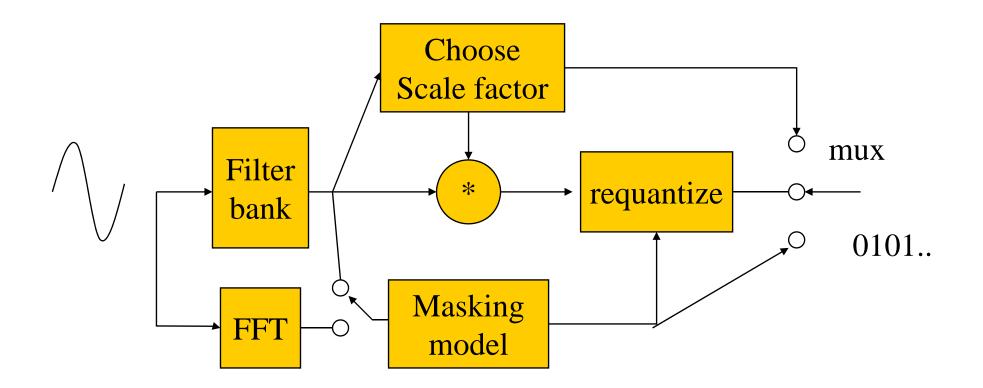
```
#ATRAC (MiniDisc):
```

✓Uses subband + modified DCT.

₩MPEG-2 AAC.

MPEG Layer 1

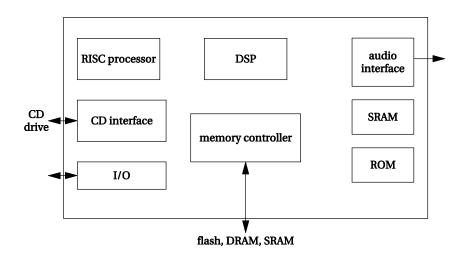
#384 samples/block at all frequencies.
Equals 8 ms at 48 kHz.
#Optional masking model.
Driven by separate FFT for better accuracy.


MPEG Layer 1 data frame

∺Bit allocation codes specify word length in each subband.

Scale factors give gain for each band.

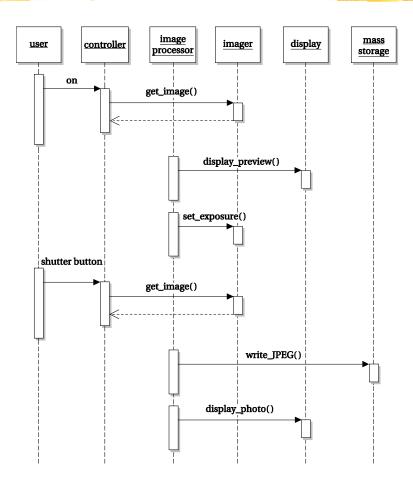
header	CRC	bit allocation	scale factors	subband samples	aux data
--------	-----	-------------------	------------------	-----------------	-------------


MPEG Layer 1 encoder

Audio players

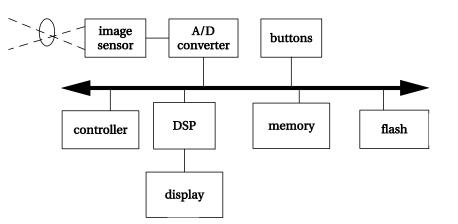
Haudio players may use flash, hard disk, or CD for mass storage.

- Decompression requires small amount of CPU:
 10% of ARM7.
- ₭ File system must be compatible (FAT).


Digital still cameras

BSC must determine exposure before taking picture.

After taking picture:


- Improve image quality.
- Compress.

Save as file.

Digital still camera architecture

- BSC uses CPU for general-purpose processing, DSP for image processing.
- Internal memory buffers the passes on the image.
- Display is lower resolution than image sensor.
 - Image must be downsampled.

Image capture

Before taking picture:
Determine exposure.
Determine focus.
Optimize white balance.

Bayer pattern

Image processing

#Must perform basic processing to get usable picture:

△Bayer->RGB interpolation.

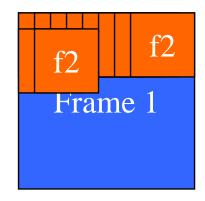
- SCs perform many functions formerly performed by photoprocessors for film:
 ☐ Image sharpening.
 - Color balance.

File management

#EXIF standard gives format for digital pictures:

- Format of data in a file.
- ⊡ Directory structure.
- **#EXIF** file includes:
 - ☐Image (JPEG, etc.)
 - ☐Thumbnail.
 - Metadata (camera type, date/time, etc.)

Accelerators


#Example: video accelerator

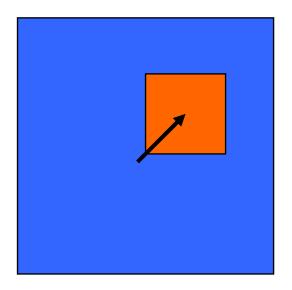
Computers as Components

Build accelerator for block motion estimation, one step in video compression.

#Perform two-dimensional correlation:

Computers as Components

Block motion estimation


#MPEG divides frame into 16 x 16 macroblocks for motion estimation.

- Search for best match within a search range.
- Measure similarity with sum-of-absolutedifferences (SAD):

 $\Sigma \mid M(i,j) - S(i-o_x, j-o_y) \mid$

Best match produces motion vector for motion block:

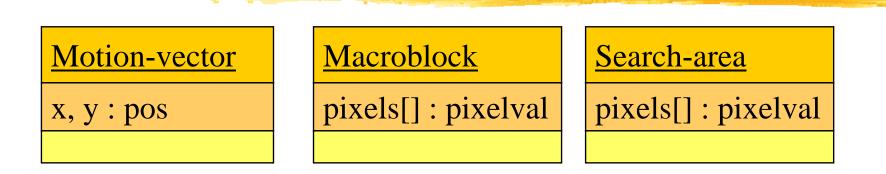
Full search algorithm

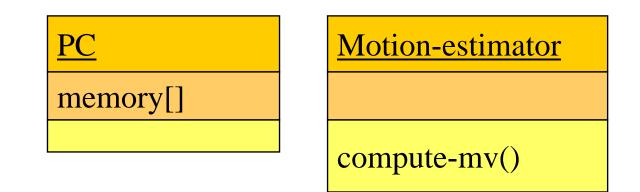
best x = 0; best y = 0; bestsad = MAXSAD;for (ox = - SEARCHSIZE; ox < SEARCHSIZE; ox ++) { for (oy = -SEARCHSIZE; oy < SEARCHSIZE; oy ++) { int result = 0: for (i=0; i < MBSIZE; i++) { for (j=0; j<MBSIZE; j++) { result += iabs(mb[i][j] - search[iox+XCENTER][j-oy-YCENTER]);

Full search algorithm, cont'd.

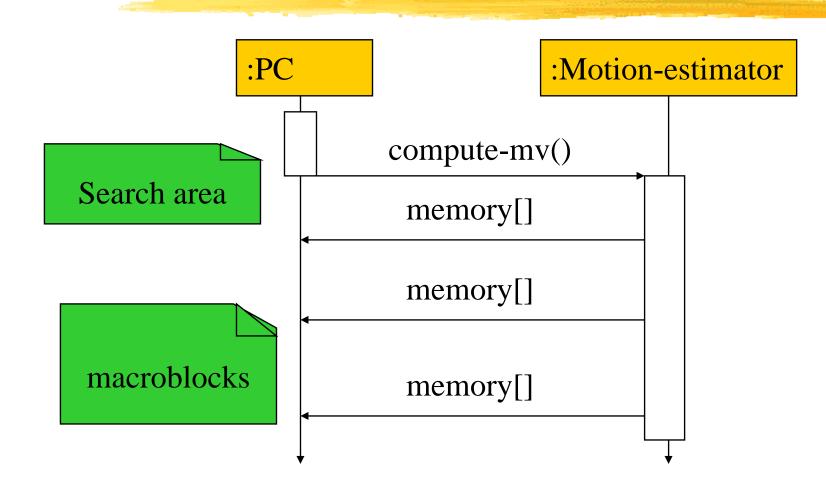
```
}
}
if (result <= bestsad) { bestsad = result; bestx =
ox; besty = oy; }
}</pre>
```

Computational requirements


Let MBSIZE = 16, SEARCHSIZE = 8.
Search area is 8 + 8 + 1 in each dimension.


∺Must perform:

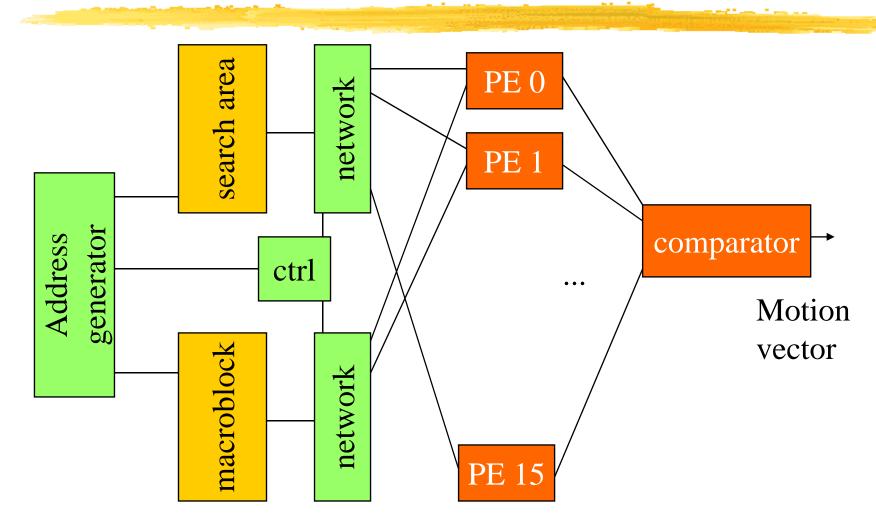
Accelerator requirements


name	block motion estimator
purpose	block motion est. in PC
inputs	macroblocks, search areas
outputs	motion vectors
functions	compute motion vectors with full search
performance	as fast as possible
manufacturing cost	hundreds of dollars
power	from PC power supply
physical size/weight	PCI card

Accelerator data types, basic classes

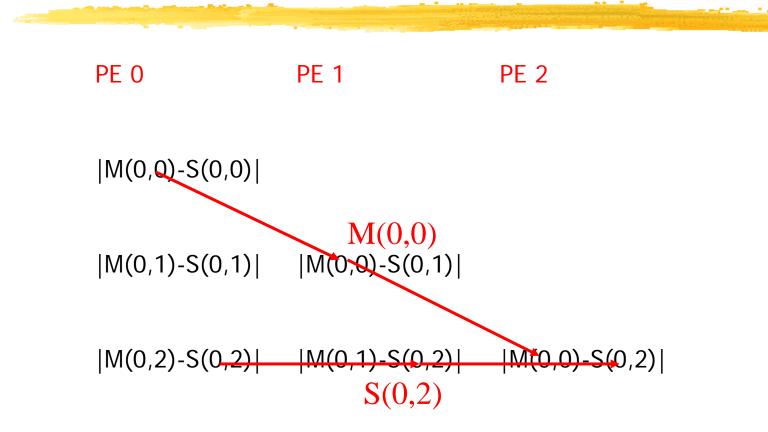
Sequence diagram

Architectural considerations


#Requires large amount of memory:

Macroblock has 256 pixels;

△ search area has 1,089 pixels.


₭ May need external memory (especially if buffering multiple macroblocks/search areas).

Motion estimator organization

Computers as Components

Pixel schedules

System testing

#Testing requires a large amount of data.
#Use simple patterns with obvious answers for initial tests.

#Extract sample data from JPEG pictures
for more realistic tests.